]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/ppc/8xx_io/fec.c
Merge branch 'irq-cleanups-upstream' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-artful-kernel.git] / arch / ppc / 8xx_io / fec.c
1 /*
2 * Fast Ethernet Controller (FEC) driver for Motorola MPC8xx.
3 * Copyright (c) 1997 Dan Malek (dmalek@jlc.net)
4 *
5 * This version of the driver is specific to the FADS implementation,
6 * since the board contains control registers external to the processor
7 * for the control of the LevelOne LXT970 transceiver. The MPC860T manual
8 * describes connections using the internal parallel port I/O, which
9 * is basically all of Port D.
10 *
11 * Includes support for the following PHYs: QS6612, LXT970, LXT971/2.
12 *
13 * Right now, I am very wasteful with the buffers. I allocate memory
14 * pages and then divide them into 2K frame buffers. This way I know I
15 * have buffers large enough to hold one frame within one buffer descriptor.
16 * Once I get this working, I will use 64 or 128 byte CPM buffers, which
17 * will be much more memory efficient and will easily handle lots of
18 * small packets.
19 *
20 * Much better multiple PHY support by Magnus Damm.
21 * Copyright (c) 2000 Ericsson Radio Systems AB.
22 *
23 * Make use of MII for PHY control configurable.
24 * Some fixes.
25 * Copyright (c) 2000-2002 Wolfgang Denk, DENX Software Engineering.
26 *
27 * Support for AMD AM79C874 added.
28 * Thomas Lange, thomas@corelatus.com
29 */
30
31 #include <linux/kernel.h>
32 #include <linux/sched.h>
33 #include <linux/string.h>
34 #include <linux/ptrace.h>
35 #include <linux/errno.h>
36 #include <linux/ioport.h>
37 #include <linux/slab.h>
38 #include <linux/interrupt.h>
39 #include <linux/pci.h>
40 #include <linux/init.h>
41 #include <linux/delay.h>
42 #include <linux/netdevice.h>
43 #include <linux/etherdevice.h>
44 #include <linux/skbuff.h>
45 #include <linux/spinlock.h>
46 #include <linux/bitops.h>
47 #ifdef CONFIG_FEC_PACKETHOOK
48 #include <linux/pkthook.h>
49 #endif
50
51 #include <asm/8xx_immap.h>
52 #include <asm/pgtable.h>
53 #include <asm/mpc8xx.h>
54 #include <asm/irq.h>
55 #include <asm/uaccess.h>
56 #include <asm/cpm1.h>
57
58 #ifdef CONFIG_USE_MDIO
59 /* Forward declarations of some structures to support different PHYs
60 */
61
62 typedef struct {
63 uint mii_data;
64 void (*funct)(uint mii_reg, struct net_device *dev);
65 } phy_cmd_t;
66
67 typedef struct {
68 uint id;
69 char *name;
70
71 const phy_cmd_t *config;
72 const phy_cmd_t *startup;
73 const phy_cmd_t *ack_int;
74 const phy_cmd_t *shutdown;
75 } phy_info_t;
76 #endif /* CONFIG_USE_MDIO */
77
78 /* The number of Tx and Rx buffers. These are allocated from the page
79 * pool. The code may assume these are power of two, so it is best
80 * to keep them that size.
81 * We don't need to allocate pages for the transmitter. We just use
82 * the skbuffer directly.
83 */
84 #ifdef CONFIG_ENET_BIG_BUFFERS
85 #define FEC_ENET_RX_PAGES 16
86 #define FEC_ENET_RX_FRSIZE 2048
87 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
88 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
89 #define TX_RING_SIZE 16 /* Must be power of two */
90 #define TX_RING_MOD_MASK 15 /* for this to work */
91 #else
92 #define FEC_ENET_RX_PAGES 4
93 #define FEC_ENET_RX_FRSIZE 2048
94 #define FEC_ENET_RX_FRPPG (PAGE_SIZE / FEC_ENET_RX_FRSIZE)
95 #define RX_RING_SIZE (FEC_ENET_RX_FRPPG * FEC_ENET_RX_PAGES)
96 #define TX_RING_SIZE 8 /* Must be power of two */
97 #define TX_RING_MOD_MASK 7 /* for this to work */
98 #endif
99
100 /* Interrupt events/masks.
101 */
102 #define FEC_ENET_HBERR ((uint)0x80000000) /* Heartbeat error */
103 #define FEC_ENET_BABR ((uint)0x40000000) /* Babbling receiver */
104 #define FEC_ENET_BABT ((uint)0x20000000) /* Babbling transmitter */
105 #define FEC_ENET_GRA ((uint)0x10000000) /* Graceful stop complete */
106 #define FEC_ENET_TXF ((uint)0x08000000) /* Full frame transmitted */
107 #define FEC_ENET_TXB ((uint)0x04000000) /* A buffer was transmitted */
108 #define FEC_ENET_RXF ((uint)0x02000000) /* Full frame received */
109 #define FEC_ENET_RXB ((uint)0x01000000) /* A buffer was received */
110 #define FEC_ENET_MII ((uint)0x00800000) /* MII interrupt */
111 #define FEC_ENET_EBERR ((uint)0x00400000) /* SDMA bus error */
112
113 /*
114 */
115 #define FEC_ECNTRL_PINMUX 0x00000004
116 #define FEC_ECNTRL_ETHER_EN 0x00000002
117 #define FEC_ECNTRL_RESET 0x00000001
118
119 #define FEC_RCNTRL_BC_REJ 0x00000010
120 #define FEC_RCNTRL_PROM 0x00000008
121 #define FEC_RCNTRL_MII_MODE 0x00000004
122 #define FEC_RCNTRL_DRT 0x00000002
123 #define FEC_RCNTRL_LOOP 0x00000001
124
125 #define FEC_TCNTRL_FDEN 0x00000004
126 #define FEC_TCNTRL_HBC 0x00000002
127 #define FEC_TCNTRL_GTS 0x00000001
128
129 /* Delay to wait for FEC reset command to complete (in us)
130 */
131 #define FEC_RESET_DELAY 50
132
133 /* The FEC stores dest/src/type, data, and checksum for receive packets.
134 */
135 #define PKT_MAXBUF_SIZE 1518
136 #define PKT_MINBUF_SIZE 64
137 #define PKT_MAXBLR_SIZE 1520
138
139 /* The FEC buffer descriptors track the ring buffers. The rx_bd_base and
140 * tx_bd_base always point to the base of the buffer descriptors. The
141 * cur_rx and cur_tx point to the currently available buffer.
142 * The dirty_tx tracks the current buffer that is being sent by the
143 * controller. The cur_tx and dirty_tx are equal under both completely
144 * empty and completely full conditions. The empty/ready indicator in
145 * the buffer descriptor determines the actual condition.
146 */
147 struct fec_enet_private {
148 /* The saved address of a sent-in-place packet/buffer, for skfree(). */
149 struct sk_buff* tx_skbuff[TX_RING_SIZE];
150 ushort skb_cur;
151 ushort skb_dirty;
152
153 /* CPM dual port RAM relative addresses.
154 */
155 cbd_t *rx_bd_base; /* Address of Rx and Tx buffers. */
156 cbd_t *tx_bd_base;
157 cbd_t *cur_rx, *cur_tx; /* The next free ring entry */
158 cbd_t *dirty_tx; /* The ring entries to be free()ed. */
159
160 /* Virtual addresses for the receive buffers because we can't
161 * do a __va() on them anymore.
162 */
163 unsigned char *rx_vaddr[RX_RING_SIZE];
164
165 struct net_device_stats stats;
166 uint tx_full;
167 spinlock_t lock;
168
169 #ifdef CONFIG_USE_MDIO
170 uint phy_id;
171 uint phy_id_done;
172 uint phy_status;
173 uint phy_speed;
174 phy_info_t *phy;
175 struct work_struct phy_task;
176 struct net_device *dev;
177
178 uint sequence_done;
179
180 uint phy_addr;
181 #endif /* CONFIG_USE_MDIO */
182
183 int link;
184 int old_link;
185 int full_duplex;
186
187 #ifdef CONFIG_FEC_PACKETHOOK
188 unsigned long ph_lock;
189 fec_ph_func *ph_rxhandler;
190 fec_ph_func *ph_txhandler;
191 __u16 ph_proto;
192 volatile __u32 *ph_regaddr;
193 void *ph_priv;
194 #endif
195 };
196
197 static int fec_enet_open(struct net_device *dev);
198 static int fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev);
199 #ifdef CONFIG_USE_MDIO
200 static void fec_enet_mii(struct net_device *dev);
201 #endif /* CONFIG_USE_MDIO */
202 #ifdef CONFIG_FEC_PACKETHOOK
203 static void fec_enet_tx(struct net_device *dev, __u32 regval);
204 static void fec_enet_rx(struct net_device *dev, __u32 regval);
205 #else
206 static void fec_enet_tx(struct net_device *dev);
207 static void fec_enet_rx(struct net_device *dev);
208 #endif
209 static int fec_enet_close(struct net_device *dev);
210 static struct net_device_stats *fec_enet_get_stats(struct net_device *dev);
211 static void set_multicast_list(struct net_device *dev);
212 static void fec_restart(struct net_device *dev, int duplex);
213 static void fec_stop(struct net_device *dev);
214 static ushort my_enet_addr[3];
215
216 #ifdef CONFIG_USE_MDIO
217 /* MII processing. We keep this as simple as possible. Requests are
218 * placed on the list (if there is room). When the request is finished
219 * by the MII, an optional function may be called.
220 */
221 typedef struct mii_list {
222 uint mii_regval;
223 void (*mii_func)(uint val, struct net_device *dev);
224 struct mii_list *mii_next;
225 } mii_list_t;
226
227 #define NMII 20
228 mii_list_t mii_cmds[NMII];
229 mii_list_t *mii_free;
230 mii_list_t *mii_head;
231 mii_list_t *mii_tail;
232
233 static int mii_queue(struct net_device *dev, int request,
234 void (*func)(uint, struct net_device *));
235
236 /* Make MII read/write commands for the FEC.
237 */
238 #define mk_mii_read(REG) (0x60020000 | ((REG & 0x1f) << 18))
239 #define mk_mii_write(REG, VAL) (0x50020000 | ((REG & 0x1f) << 18) | \
240 (VAL & 0xffff))
241 #define mk_mii_end 0
242 #endif /* CONFIG_USE_MDIO */
243
244 /* Transmitter timeout.
245 */
246 #define TX_TIMEOUT (2*HZ)
247
248 #ifdef CONFIG_USE_MDIO
249 /* Register definitions for the PHY.
250 */
251
252 #define MII_REG_CR 0 /* Control Register */
253 #define MII_REG_SR 1 /* Status Register */
254 #define MII_REG_PHYIR1 2 /* PHY Identification Register 1 */
255 #define MII_REG_PHYIR2 3 /* PHY Identification Register 2 */
256 #define MII_REG_ANAR 4 /* A-N Advertisement Register */
257 #define MII_REG_ANLPAR 5 /* A-N Link Partner Ability Register */
258 #define MII_REG_ANER 6 /* A-N Expansion Register */
259 #define MII_REG_ANNPTR 7 /* A-N Next Page Transmit Register */
260 #define MII_REG_ANLPRNPR 8 /* A-N Link Partner Received Next Page Reg. */
261
262 /* values for phy_status */
263
264 #define PHY_CONF_ANE 0x0001 /* 1 auto-negotiation enabled */
265 #define PHY_CONF_LOOP 0x0002 /* 1 loopback mode enabled */
266 #define PHY_CONF_SPMASK 0x00f0 /* mask for speed */
267 #define PHY_CONF_10HDX 0x0010 /* 10 Mbit half duplex supported */
268 #define PHY_CONF_10FDX 0x0020 /* 10 Mbit full duplex supported */
269 #define PHY_CONF_100HDX 0x0040 /* 100 Mbit half duplex supported */
270 #define PHY_CONF_100FDX 0x0080 /* 100 Mbit full duplex supported */
271
272 #define PHY_STAT_LINK 0x0100 /* 1 up - 0 down */
273 #define PHY_STAT_FAULT 0x0200 /* 1 remote fault */
274 #define PHY_STAT_ANC 0x0400 /* 1 auto-negotiation complete */
275 #define PHY_STAT_SPMASK 0xf000 /* mask for speed */
276 #define PHY_STAT_10HDX 0x1000 /* 10 Mbit half duplex selected */
277 #define PHY_STAT_10FDX 0x2000 /* 10 Mbit full duplex selected */
278 #define PHY_STAT_100HDX 0x4000 /* 100 Mbit half duplex selected */
279 #define PHY_STAT_100FDX 0x8000 /* 100 Mbit full duplex selected */
280 #endif /* CONFIG_USE_MDIO */
281
282 #ifdef CONFIG_FEC_PACKETHOOK
283 int
284 fec_register_ph(struct net_device *dev, fec_ph_func *rxfun, fec_ph_func *txfun,
285 __u16 proto, volatile __u32 *regaddr, void *priv)
286 {
287 struct fec_enet_private *fep;
288 int retval = 0;
289
290 fep = dev->priv;
291
292 if (test_and_set_bit(0, (void*)&fep->ph_lock) != 0) {
293 /* Someone is messing with the packet hook */
294 return -EAGAIN;
295 }
296 if (fep->ph_rxhandler != NULL || fep->ph_txhandler != NULL) {
297 retval = -EBUSY;
298 goto out;
299 }
300 fep->ph_rxhandler = rxfun;
301 fep->ph_txhandler = txfun;
302 fep->ph_proto = proto;
303 fep->ph_regaddr = regaddr;
304 fep->ph_priv = priv;
305
306 out:
307 fep->ph_lock = 0;
308
309 return retval;
310 }
311
312
313 int
314 fec_unregister_ph(struct net_device *dev)
315 {
316 struct fec_enet_private *fep;
317 int retval = 0;
318
319 fep = dev->priv;
320
321 if (test_and_set_bit(0, (void*)&fep->ph_lock) != 0) {
322 /* Someone is messing with the packet hook */
323 return -EAGAIN;
324 }
325
326 fep->ph_rxhandler = fep->ph_txhandler = NULL;
327 fep->ph_proto = 0;
328 fep->ph_regaddr = NULL;
329 fep->ph_priv = NULL;
330
331 fep->ph_lock = 0;
332
333 return retval;
334 }
335
336 EXPORT_SYMBOL(fec_register_ph);
337 EXPORT_SYMBOL(fec_unregister_ph);
338
339 #endif /* CONFIG_FEC_PACKETHOOK */
340
341 static int
342 fec_enet_start_xmit(struct sk_buff *skb, struct net_device *dev)
343 {
344 struct fec_enet_private *fep;
345 volatile fec_t *fecp;
346 volatile cbd_t *bdp;
347
348 fep = dev->priv;
349 fecp = (volatile fec_t*)dev->base_addr;
350
351 if (!fep->link) {
352 /* Link is down or autonegotiation is in progress. */
353 return 1;
354 }
355
356 /* Fill in a Tx ring entry */
357 bdp = fep->cur_tx;
358
359 #ifndef final_version
360 if (bdp->cbd_sc & BD_ENET_TX_READY) {
361 /* Ooops. All transmit buffers are full. Bail out.
362 * This should not happen, since dev->tbusy should be set.
363 */
364 printk("%s: tx queue full!.\n", dev->name);
365 return 1;
366 }
367 #endif
368
369 /* Clear all of the status flags.
370 */
371 bdp->cbd_sc &= ~BD_ENET_TX_STATS;
372
373 /* Set buffer length and buffer pointer.
374 */
375 bdp->cbd_bufaddr = __pa(skb->data);
376 bdp->cbd_datlen = skb->len;
377
378 /* Save skb pointer.
379 */
380 fep->tx_skbuff[fep->skb_cur] = skb;
381
382 fep->stats.tx_bytes += skb->len;
383 fep->skb_cur = (fep->skb_cur+1) & TX_RING_MOD_MASK;
384
385 /* Push the data cache so the CPM does not get stale memory
386 * data.
387 */
388 flush_dcache_range((unsigned long)skb->data,
389 (unsigned long)skb->data + skb->len);
390
391 /* disable interrupts while triggering transmit */
392 spin_lock_irq(&fep->lock);
393
394 /* Send it on its way. Tell FEC its ready, interrupt when done,
395 * its the last BD of the frame, and to put the CRC on the end.
396 */
397
398 bdp->cbd_sc |= (BD_ENET_TX_READY | BD_ENET_TX_INTR
399 | BD_ENET_TX_LAST | BD_ENET_TX_TC);
400
401 dev->trans_start = jiffies;
402
403 /* Trigger transmission start */
404 fecp->fec_x_des_active = 0x01000000;
405
406 /* If this was the last BD in the ring, start at the beginning again.
407 */
408 if (bdp->cbd_sc & BD_ENET_TX_WRAP) {
409 bdp = fep->tx_bd_base;
410 } else {
411 bdp++;
412 }
413
414 if (bdp->cbd_sc & BD_ENET_TX_READY) {
415 netif_stop_queue(dev);
416 fep->tx_full = 1;
417 }
418
419 fep->cur_tx = (cbd_t *)bdp;
420
421 spin_unlock_irq(&fep->lock);
422
423 return 0;
424 }
425
426 static void
427 fec_timeout(struct net_device *dev)
428 {
429 struct fec_enet_private *fep = dev->priv;
430
431 printk("%s: transmit timed out.\n", dev->name);
432 fep->stats.tx_errors++;
433 #ifndef final_version
434 {
435 int i;
436 cbd_t *bdp;
437
438 printk("Ring data dump: cur_tx %lx%s, dirty_tx %lx cur_rx: %lx\n",
439 (unsigned long)fep->cur_tx, fep->tx_full ? " (full)" : "",
440 (unsigned long)fep->dirty_tx,
441 (unsigned long)fep->cur_rx);
442
443 bdp = fep->tx_bd_base;
444 printk(" tx: %u buffers\n", TX_RING_SIZE);
445 for (i = 0 ; i < TX_RING_SIZE; i++) {
446 printk(" %08x: %04x %04x %08x\n",
447 (uint) bdp,
448 bdp->cbd_sc,
449 bdp->cbd_datlen,
450 bdp->cbd_bufaddr);
451 bdp++;
452 }
453
454 bdp = fep->rx_bd_base;
455 printk(" rx: %lu buffers\n", RX_RING_SIZE);
456 for (i = 0 ; i < RX_RING_SIZE; i++) {
457 printk(" %08x: %04x %04x %08x\n",
458 (uint) bdp,
459 bdp->cbd_sc,
460 bdp->cbd_datlen,
461 bdp->cbd_bufaddr);
462 bdp++;
463 }
464 }
465 #endif
466 if (!fep->tx_full)
467 netif_wake_queue(dev);
468 }
469
470 /* The interrupt handler.
471 * This is called from the MPC core interrupt.
472 */
473 static irqreturn_t
474 fec_enet_interrupt(int irq, void *dev_id)
475 {
476 struct net_device *dev = dev_id;
477 volatile fec_t *fecp;
478 uint int_events;
479 #ifdef CONFIG_FEC_PACKETHOOK
480 struct fec_enet_private *fep = dev->priv;
481 __u32 regval;
482
483 if (fep->ph_regaddr) regval = *fep->ph_regaddr;
484 #endif
485 fecp = (volatile fec_t*)dev->base_addr;
486
487 /* Get the interrupt events that caused us to be here.
488 */
489 while ((int_events = fecp->fec_ievent) != 0) {
490 fecp->fec_ievent = int_events;
491 if ((int_events & (FEC_ENET_HBERR | FEC_ENET_BABR |
492 FEC_ENET_BABT | FEC_ENET_EBERR)) != 0) {
493 printk("FEC ERROR %x\n", int_events);
494 }
495
496 /* Handle receive event in its own function.
497 */
498 if (int_events & FEC_ENET_RXF) {
499 #ifdef CONFIG_FEC_PACKETHOOK
500 fec_enet_rx(dev, regval);
501 #else
502 fec_enet_rx(dev);
503 #endif
504 }
505
506 /* Transmit OK, or non-fatal error. Update the buffer
507 descriptors. FEC handles all errors, we just discover
508 them as part of the transmit process.
509 */
510 if (int_events & FEC_ENET_TXF) {
511 #ifdef CONFIG_FEC_PACKETHOOK
512 fec_enet_tx(dev, regval);
513 #else
514 fec_enet_tx(dev);
515 #endif
516 }
517
518 if (int_events & FEC_ENET_MII) {
519 #ifdef CONFIG_USE_MDIO
520 fec_enet_mii(dev);
521 #else
522 printk("%s[%d] %s: unexpected FEC_ENET_MII event\n", __FILE__, __LINE__, __func__);
523 #endif /* CONFIG_USE_MDIO */
524 }
525
526 }
527 return IRQ_RETVAL(IRQ_HANDLED);
528 }
529
530
531 static void
532 #ifdef CONFIG_FEC_PACKETHOOK
533 fec_enet_tx(struct net_device *dev, __u32 regval)
534 #else
535 fec_enet_tx(struct net_device *dev)
536 #endif
537 {
538 struct fec_enet_private *fep;
539 volatile cbd_t *bdp;
540 struct sk_buff *skb;
541
542 fep = dev->priv;
543 /* lock while transmitting */
544 spin_lock(&fep->lock);
545 bdp = fep->dirty_tx;
546
547 while ((bdp->cbd_sc&BD_ENET_TX_READY) == 0) {
548 if (bdp == fep->cur_tx && fep->tx_full == 0) break;
549
550 skb = fep->tx_skbuff[fep->skb_dirty];
551 /* Check for errors. */
552 if (bdp->cbd_sc & (BD_ENET_TX_HB | BD_ENET_TX_LC |
553 BD_ENET_TX_RL | BD_ENET_TX_UN |
554 BD_ENET_TX_CSL)) {
555 fep->stats.tx_errors++;
556 if (bdp->cbd_sc & BD_ENET_TX_HB) /* No heartbeat */
557 fep->stats.tx_heartbeat_errors++;
558 if (bdp->cbd_sc & BD_ENET_TX_LC) /* Late collision */
559 fep->stats.tx_window_errors++;
560 if (bdp->cbd_sc & BD_ENET_TX_RL) /* Retrans limit */
561 fep->stats.tx_aborted_errors++;
562 if (bdp->cbd_sc & BD_ENET_TX_UN) /* Underrun */
563 fep->stats.tx_fifo_errors++;
564 if (bdp->cbd_sc & BD_ENET_TX_CSL) /* Carrier lost */
565 fep->stats.tx_carrier_errors++;
566 } else {
567 #ifdef CONFIG_FEC_PACKETHOOK
568 /* Packet hook ... */
569 if (fep->ph_txhandler &&
570 ((struct ethhdr *)skb->data)->h_proto
571 == fep->ph_proto) {
572 fep->ph_txhandler((__u8*)skb->data, skb->len,
573 regval, fep->ph_priv);
574 }
575 #endif
576 fep->stats.tx_packets++;
577 }
578
579 #ifndef final_version
580 if (bdp->cbd_sc & BD_ENET_TX_READY)
581 printk("HEY! Enet xmit interrupt and TX_READY.\n");
582 #endif
583 /* Deferred means some collisions occurred during transmit,
584 * but we eventually sent the packet OK.
585 */
586 if (bdp->cbd_sc & BD_ENET_TX_DEF)
587 fep->stats.collisions++;
588
589 /* Free the sk buffer associated with this last transmit.
590 */
591 #if 0
592 printk("TXI: %x %x %x\n", bdp, skb, fep->skb_dirty);
593 #endif
594 dev_kfree_skb_irq (skb/*, FREE_WRITE*/);
595 fep->tx_skbuff[fep->skb_dirty] = NULL;
596 fep->skb_dirty = (fep->skb_dirty + 1) & TX_RING_MOD_MASK;
597
598 /* Update pointer to next buffer descriptor to be transmitted.
599 */
600 if (bdp->cbd_sc & BD_ENET_TX_WRAP)
601 bdp = fep->tx_bd_base;
602 else
603 bdp++;
604
605 /* Since we have freed up a buffer, the ring is no longer
606 * full.
607 */
608 if (fep->tx_full) {
609 fep->tx_full = 0;
610 if (netif_queue_stopped(dev))
611 netif_wake_queue(dev);
612 }
613 #ifdef CONFIG_FEC_PACKETHOOK
614 /* Re-read register. Not exactly guaranteed to be correct,
615 but... */
616 if (fep->ph_regaddr) regval = *fep->ph_regaddr;
617 #endif
618 }
619 fep->dirty_tx = (cbd_t *)bdp;
620 spin_unlock(&fep->lock);
621 }
622
623
624 /* During a receive, the cur_rx points to the current incoming buffer.
625 * When we update through the ring, if the next incoming buffer has
626 * not been given to the system, we just set the empty indicator,
627 * effectively tossing the packet.
628 */
629 static void
630 #ifdef CONFIG_FEC_PACKETHOOK
631 fec_enet_rx(struct net_device *dev, __u32 regval)
632 #else
633 fec_enet_rx(struct net_device *dev)
634 #endif
635 {
636 struct fec_enet_private *fep;
637 volatile fec_t *fecp;
638 volatile cbd_t *bdp;
639 struct sk_buff *skb;
640 ushort pkt_len;
641 __u8 *data;
642
643 fep = dev->priv;
644 fecp = (volatile fec_t*)dev->base_addr;
645
646 /* First, grab all of the stats for the incoming packet.
647 * These get messed up if we get called due to a busy condition.
648 */
649 bdp = fep->cur_rx;
650
651 while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) {
652
653 #ifndef final_version
654 /* Since we have allocated space to hold a complete frame,
655 * the last indicator should be set.
656 */
657 if ((bdp->cbd_sc & BD_ENET_RX_LAST) == 0)
658 printk("FEC ENET: rcv is not +last\n");
659 #endif
660
661 /* Check for errors. */
662 if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH | BD_ENET_RX_NO |
663 BD_ENET_RX_CR | BD_ENET_RX_OV)) {
664 fep->stats.rx_errors++;
665 if (bdp->cbd_sc & (BD_ENET_RX_LG | BD_ENET_RX_SH)) {
666 /* Frame too long or too short. */
667 fep->stats.rx_length_errors++;
668 }
669 if (bdp->cbd_sc & BD_ENET_RX_NO) /* Frame alignment */
670 fep->stats.rx_frame_errors++;
671 if (bdp->cbd_sc & BD_ENET_RX_CR) /* CRC Error */
672 fep->stats.rx_crc_errors++;
673 if (bdp->cbd_sc & BD_ENET_RX_OV) /* FIFO overrun */
674 fep->stats.rx_crc_errors++;
675 }
676
677 /* Report late collisions as a frame error.
678 * On this error, the BD is closed, but we don't know what we
679 * have in the buffer. So, just drop this frame on the floor.
680 */
681 if (bdp->cbd_sc & BD_ENET_RX_CL) {
682 fep->stats.rx_errors++;
683 fep->stats.rx_frame_errors++;
684 goto rx_processing_done;
685 }
686
687 /* Process the incoming frame.
688 */
689 fep->stats.rx_packets++;
690 pkt_len = bdp->cbd_datlen;
691 fep->stats.rx_bytes += pkt_len;
692 data = fep->rx_vaddr[bdp - fep->rx_bd_base];
693
694 #ifdef CONFIG_FEC_PACKETHOOK
695 /* Packet hook ... */
696 if (fep->ph_rxhandler) {
697 if (((struct ethhdr *)data)->h_proto == fep->ph_proto) {
698 switch (fep->ph_rxhandler(data, pkt_len, regval,
699 fep->ph_priv)) {
700 case 1:
701 goto rx_processing_done;
702 break;
703 case 0:
704 break;
705 default:
706 fep->stats.rx_errors++;
707 goto rx_processing_done;
708 }
709 }
710 }
711
712 /* If it wasn't filtered - copy it to an sk buffer. */
713 #endif
714
715 /* This does 16 byte alignment, exactly what we need.
716 * The packet length includes FCS, but we don't want to
717 * include that when passing upstream as it messes up
718 * bridging applications.
719 */
720 skb = dev_alloc_skb(pkt_len-4);
721
722 if (skb == NULL) {
723 printk("%s: Memory squeeze, dropping packet.\n", dev->name);
724 fep->stats.rx_dropped++;
725 } else {
726 skb_put(skb,pkt_len-4); /* Make room */
727 skb_copy_to_linear_data(skb, data, pkt_len-4);
728 skb->protocol=eth_type_trans(skb,dev);
729 netif_rx(skb);
730 }
731 rx_processing_done:
732
733 /* Clear the status flags for this buffer.
734 */
735 bdp->cbd_sc &= ~BD_ENET_RX_STATS;
736
737 /* Mark the buffer empty.
738 */
739 bdp->cbd_sc |= BD_ENET_RX_EMPTY;
740
741 /* Update BD pointer to next entry.
742 */
743 if (bdp->cbd_sc & BD_ENET_RX_WRAP)
744 bdp = fep->rx_bd_base;
745 else
746 bdp++;
747
748 #if 1
749 /* Doing this here will keep the FEC running while we process
750 * incoming frames. On a heavily loaded network, we should be
751 * able to keep up at the expense of system resources.
752 */
753 fecp->fec_r_des_active = 0x01000000;
754 #endif
755 #ifdef CONFIG_FEC_PACKETHOOK
756 /* Re-read register. Not exactly guaranteed to be correct,
757 but... */
758 if (fep->ph_regaddr) regval = *fep->ph_regaddr;
759 #endif
760 } /* while (!(bdp->cbd_sc & BD_ENET_RX_EMPTY)) */
761 fep->cur_rx = (cbd_t *)bdp;
762
763 #if 0
764 /* Doing this here will allow us to process all frames in the
765 * ring before the FEC is allowed to put more there. On a heavily
766 * loaded network, some frames may be lost. Unfortunately, this
767 * increases the interrupt overhead since we can potentially work
768 * our way back to the interrupt return only to come right back
769 * here.
770 */
771 fecp->fec_r_des_active = 0x01000000;
772 #endif
773 }
774
775
776 #ifdef CONFIG_USE_MDIO
777 static void
778 fec_enet_mii(struct net_device *dev)
779 {
780 struct fec_enet_private *fep;
781 volatile fec_t *ep;
782 mii_list_t *mip;
783 uint mii_reg;
784
785 fep = (struct fec_enet_private *)dev->priv;
786 ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec);
787 mii_reg = ep->fec_mii_data;
788
789 if ((mip = mii_head) == NULL) {
790 printk("MII and no head!\n");
791 return;
792 }
793
794 if (mip->mii_func != NULL)
795 (*(mip->mii_func))(mii_reg, dev);
796
797 mii_head = mip->mii_next;
798 mip->mii_next = mii_free;
799 mii_free = mip;
800
801 if ((mip = mii_head) != NULL) {
802 ep->fec_mii_data = mip->mii_regval;
803
804 }
805 }
806
807 static int
808 mii_queue(struct net_device *dev, int regval, void (*func)(uint, struct net_device *))
809 {
810 struct fec_enet_private *fep;
811 unsigned long flags;
812 mii_list_t *mip;
813 int retval;
814
815 /* Add PHY address to register command.
816 */
817 fep = dev->priv;
818 regval |= fep->phy_addr << 23;
819
820 retval = 0;
821
822 /* lock while modifying mii_list */
823 spin_lock_irqsave(&fep->lock, flags);
824
825 if ((mip = mii_free) != NULL) {
826 mii_free = mip->mii_next;
827 mip->mii_regval = regval;
828 mip->mii_func = func;
829 mip->mii_next = NULL;
830 if (mii_head) {
831 mii_tail->mii_next = mip;
832 mii_tail = mip;
833 } else {
834 mii_head = mii_tail = mip;
835 (&(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec))->fec_mii_data = regval;
836 }
837 } else {
838 retval = 1;
839 }
840
841 spin_unlock_irqrestore(&fep->lock, flags);
842
843 return(retval);
844 }
845
846 static void mii_do_cmd(struct net_device *dev, const phy_cmd_t *c)
847 {
848 int k;
849
850 if(!c)
851 return;
852
853 for(k = 0; (c+k)->mii_data != mk_mii_end; k++)
854 mii_queue(dev, (c+k)->mii_data, (c+k)->funct);
855 }
856
857 static void mii_parse_sr(uint mii_reg, struct net_device *dev)
858 {
859 struct fec_enet_private *fep = dev->priv;
860 volatile uint *s = &(fep->phy_status);
861
862 *s &= ~(PHY_STAT_LINK | PHY_STAT_FAULT | PHY_STAT_ANC);
863
864 if (mii_reg & 0x0004)
865 *s |= PHY_STAT_LINK;
866 if (mii_reg & 0x0010)
867 *s |= PHY_STAT_FAULT;
868 if (mii_reg & 0x0020)
869 *s |= PHY_STAT_ANC;
870
871 fep->link = (*s & PHY_STAT_LINK) ? 1 : 0;
872 }
873
874 static void mii_parse_cr(uint mii_reg, struct net_device *dev)
875 {
876 struct fec_enet_private *fep = dev->priv;
877 volatile uint *s = &(fep->phy_status);
878
879 *s &= ~(PHY_CONF_ANE | PHY_CONF_LOOP);
880
881 if (mii_reg & 0x1000)
882 *s |= PHY_CONF_ANE;
883 if (mii_reg & 0x4000)
884 *s |= PHY_CONF_LOOP;
885 }
886
887 static void mii_parse_anar(uint mii_reg, struct net_device *dev)
888 {
889 struct fec_enet_private *fep = dev->priv;
890 volatile uint *s = &(fep->phy_status);
891
892 *s &= ~(PHY_CONF_SPMASK);
893
894 if (mii_reg & 0x0020)
895 *s |= PHY_CONF_10HDX;
896 if (mii_reg & 0x0040)
897 *s |= PHY_CONF_10FDX;
898 if (mii_reg & 0x0080)
899 *s |= PHY_CONF_100HDX;
900 if (mii_reg & 0x00100)
901 *s |= PHY_CONF_100FDX;
902 }
903 #if 0
904 static void mii_disp_reg(uint mii_reg, struct net_device *dev)
905 {
906 printk("reg %u = 0x%04x\n", (mii_reg >> 18) & 0x1f, mii_reg & 0xffff);
907 }
908 #endif
909
910 /* ------------------------------------------------------------------------- */
911 /* The Level one LXT970 is used by many boards */
912
913 #ifdef CONFIG_FEC_LXT970
914
915 #define MII_LXT970_MIRROR 16 /* Mirror register */
916 #define MII_LXT970_IER 17 /* Interrupt Enable Register */
917 #define MII_LXT970_ISR 18 /* Interrupt Status Register */
918 #define MII_LXT970_CONFIG 19 /* Configuration Register */
919 #define MII_LXT970_CSR 20 /* Chip Status Register */
920
921 static void mii_parse_lxt970_csr(uint mii_reg, struct net_device *dev)
922 {
923 struct fec_enet_private *fep = dev->priv;
924 volatile uint *s = &(fep->phy_status);
925
926 *s &= ~(PHY_STAT_SPMASK);
927
928 if (mii_reg & 0x0800) {
929 if (mii_reg & 0x1000)
930 *s |= PHY_STAT_100FDX;
931 else
932 *s |= PHY_STAT_100HDX;
933 }
934 else {
935 if (mii_reg & 0x1000)
936 *s |= PHY_STAT_10FDX;
937 else
938 *s |= PHY_STAT_10HDX;
939 }
940 }
941
942 static phy_info_t phy_info_lxt970 = {
943 0x07810000,
944 "LXT970",
945
946 (const phy_cmd_t []) { /* config */
947 #if 0
948 // { mk_mii_write(MII_REG_ANAR, 0x0021), NULL },
949
950 /* Set default operation of 100-TX....for some reason
951 * some of these bits are set on power up, which is wrong.
952 */
953 { mk_mii_write(MII_LXT970_CONFIG, 0), NULL },
954 #endif
955 { mk_mii_read(MII_REG_CR), mii_parse_cr },
956 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
957 { mk_mii_end, }
958 },
959 (const phy_cmd_t []) { /* startup - enable interrupts */
960 { mk_mii_write(MII_LXT970_IER, 0x0002), NULL },
961 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
962 { mk_mii_end, }
963 },
964 (const phy_cmd_t []) { /* ack_int */
965 /* read SR and ISR to acknowledge */
966
967 { mk_mii_read(MII_REG_SR), mii_parse_sr },
968 { mk_mii_read(MII_LXT970_ISR), NULL },
969
970 /* find out the current status */
971
972 { mk_mii_read(MII_LXT970_CSR), mii_parse_lxt970_csr },
973 { mk_mii_end, }
974 },
975 (const phy_cmd_t []) { /* shutdown - disable interrupts */
976 { mk_mii_write(MII_LXT970_IER, 0x0000), NULL },
977 { mk_mii_end, }
978 },
979 };
980
981 #endif /* CONFIG_FEC_LXT970 */
982
983 /* ------------------------------------------------------------------------- */
984 /* The Level one LXT971 is used on some of my custom boards */
985
986 #ifdef CONFIG_FEC_LXT971
987
988 /* register definitions for the 971 */
989
990 #define MII_LXT971_PCR 16 /* Port Control Register */
991 #define MII_LXT971_SR2 17 /* Status Register 2 */
992 #define MII_LXT971_IER 18 /* Interrupt Enable Register */
993 #define MII_LXT971_ISR 19 /* Interrupt Status Register */
994 #define MII_LXT971_LCR 20 /* LED Control Register */
995 #define MII_LXT971_TCR 30 /* Transmit Control Register */
996
997 /*
998 * I had some nice ideas of running the MDIO faster...
999 * The 971 should support 8MHz and I tried it, but things acted really
1000 * weird, so 2.5 MHz ought to be enough for anyone...
1001 */
1002
1003 static void mii_parse_lxt971_sr2(uint mii_reg, struct net_device *dev)
1004 {
1005 struct fec_enet_private *fep = dev->priv;
1006 volatile uint *s = &(fep->phy_status);
1007
1008 *s &= ~(PHY_STAT_SPMASK);
1009
1010 if (mii_reg & 0x4000) {
1011 if (mii_reg & 0x0200)
1012 *s |= PHY_STAT_100FDX;
1013 else
1014 *s |= PHY_STAT_100HDX;
1015 }
1016 else {
1017 if (mii_reg & 0x0200)
1018 *s |= PHY_STAT_10FDX;
1019 else
1020 *s |= PHY_STAT_10HDX;
1021 }
1022 if (mii_reg & 0x0008)
1023 *s |= PHY_STAT_FAULT;
1024 }
1025
1026 static phy_info_t phy_info_lxt971 = {
1027 0x0001378e,
1028 "LXT971",
1029
1030 (const phy_cmd_t []) { /* config */
1031 // { mk_mii_write(MII_REG_ANAR, 0x021), NULL }, /* 10 Mbps, HD */
1032 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1033 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1034 { mk_mii_end, }
1035 },
1036 (const phy_cmd_t []) { /* startup - enable interrupts */
1037 { mk_mii_write(MII_LXT971_IER, 0x00f2), NULL },
1038 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1039
1040 /* Somehow does the 971 tell me that the link is down
1041 * the first read after power-up.
1042 * read here to get a valid value in ack_int */
1043
1044 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1045 { mk_mii_end, }
1046 },
1047 (const phy_cmd_t []) { /* ack_int */
1048 /* find out the current status */
1049
1050 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1051 { mk_mii_read(MII_LXT971_SR2), mii_parse_lxt971_sr2 },
1052
1053 /* we only need to read ISR to acknowledge */
1054
1055 { mk_mii_read(MII_LXT971_ISR), NULL },
1056 { mk_mii_end, }
1057 },
1058 (const phy_cmd_t []) { /* shutdown - disable interrupts */
1059 { mk_mii_write(MII_LXT971_IER, 0x0000), NULL },
1060 { mk_mii_end, }
1061 },
1062 };
1063
1064 #endif /* CONFIG_FEC_LXT970 */
1065
1066
1067 /* ------------------------------------------------------------------------- */
1068 /* The Quality Semiconductor QS6612 is used on the RPX CLLF */
1069
1070 #ifdef CONFIG_FEC_QS6612
1071
1072 /* register definitions */
1073
1074 #define MII_QS6612_MCR 17 /* Mode Control Register */
1075 #define MII_QS6612_FTR 27 /* Factory Test Register */
1076 #define MII_QS6612_MCO 28 /* Misc. Control Register */
1077 #define MII_QS6612_ISR 29 /* Interrupt Source Register */
1078 #define MII_QS6612_IMR 30 /* Interrupt Mask Register */
1079 #define MII_QS6612_PCR 31 /* 100BaseTx PHY Control Reg. */
1080
1081 static void mii_parse_qs6612_pcr(uint mii_reg, struct net_device *dev)
1082 {
1083 struct fec_enet_private *fep = dev->priv;
1084 volatile uint *s = &(fep->phy_status);
1085
1086 *s &= ~(PHY_STAT_SPMASK);
1087
1088 switch((mii_reg >> 2) & 7) {
1089 case 1: *s |= PHY_STAT_10HDX; break;
1090 case 2: *s |= PHY_STAT_100HDX; break;
1091 case 5: *s |= PHY_STAT_10FDX; break;
1092 case 6: *s |= PHY_STAT_100FDX; break;
1093 }
1094 }
1095
1096 static phy_info_t phy_info_qs6612 = {
1097 0x00181440,
1098 "QS6612",
1099
1100 (const phy_cmd_t []) { /* config */
1101 // { mk_mii_write(MII_REG_ANAR, 0x061), NULL }, /* 10 Mbps */
1102
1103 /* The PHY powers up isolated on the RPX,
1104 * so send a command to allow operation.
1105 */
1106
1107 { mk_mii_write(MII_QS6612_PCR, 0x0dc0), NULL },
1108
1109 /* parse cr and anar to get some info */
1110
1111 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1112 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1113 { mk_mii_end, }
1114 },
1115 (const phy_cmd_t []) { /* startup - enable interrupts */
1116 { mk_mii_write(MII_QS6612_IMR, 0x003a), NULL },
1117 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1118 { mk_mii_end, }
1119 },
1120 (const phy_cmd_t []) { /* ack_int */
1121
1122 /* we need to read ISR, SR and ANER to acknowledge */
1123
1124 { mk_mii_read(MII_QS6612_ISR), NULL },
1125 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1126 { mk_mii_read(MII_REG_ANER), NULL },
1127
1128 /* read pcr to get info */
1129
1130 { mk_mii_read(MII_QS6612_PCR), mii_parse_qs6612_pcr },
1131 { mk_mii_end, }
1132 },
1133 (const phy_cmd_t []) { /* shutdown - disable interrupts */
1134 { mk_mii_write(MII_QS6612_IMR, 0x0000), NULL },
1135 { mk_mii_end, }
1136 },
1137 };
1138
1139 #endif /* CONFIG_FEC_QS6612 */
1140
1141 /* ------------------------------------------------------------------------- */
1142 /* The Advanced Micro Devices AM79C874 is used on the ICU862 */
1143
1144 #ifdef CONFIG_FEC_AM79C874
1145
1146 /* register definitions for the 79C874 */
1147
1148 #define MII_AM79C874_MFR 16 /* Miscellaneous Features Register */
1149 #define MII_AM79C874_ICSR 17 /* Interrupt Control/Status Register */
1150 #define MII_AM79C874_DR 18 /* Diagnostic Register */
1151 #define MII_AM79C874_PMLR 19 /* Power Management & Loopback Register */
1152 #define MII_AM79C874_MCR 21 /* Mode Control Register */
1153 #define MII_AM79C874_DC 23 /* Disconnect Counter */
1154 #define MII_AM79C874_REC 24 /* Receiver Error Counter */
1155
1156 static void mii_parse_amd79c874_dr(uint mii_reg, struct net_device *dev, uint data)
1157 {
1158 volatile struct fec_enet_private *fep = dev->priv;
1159 uint s = fep->phy_status;
1160
1161 s &= ~(PHY_STAT_SPMASK);
1162
1163 /* Register 18: Bit 10 is data rate, 11 is Duplex */
1164 switch ((mii_reg >> 10) & 3) {
1165 case 0: s |= PHY_STAT_10HDX; break;
1166 case 1: s |= PHY_STAT_100HDX; break;
1167 case 2: s |= PHY_STAT_10FDX; break;
1168 case 3: s |= PHY_STAT_100FDX; break;
1169 }
1170
1171 fep->phy_status = s;
1172 }
1173
1174 static phy_info_t phy_info_amd79c874 = {
1175 0x00022561,
1176 "AM79C874",
1177
1178 (const phy_cmd_t []) { /* config */
1179 // { mk_mii_write(MII_REG_ANAR, 0x021), NULL }, /* 10 Mbps, HD */
1180 { mk_mii_read(MII_REG_CR), mii_parse_cr },
1181 { mk_mii_read(MII_REG_ANAR), mii_parse_anar },
1182 { mk_mii_end, }
1183 },
1184 (const phy_cmd_t []) { /* startup - enable interrupts */
1185 { mk_mii_write(MII_AM79C874_ICSR, 0xff00), NULL },
1186 { mk_mii_write(MII_REG_CR, 0x1200), NULL }, /* autonegotiate */
1187 { mk_mii_end, }
1188 },
1189 (const phy_cmd_t []) { /* ack_int */
1190 /* find out the current status */
1191
1192 { mk_mii_read(MII_REG_SR), mii_parse_sr },
1193 { mk_mii_read(MII_AM79C874_DR), mii_parse_amd79c874_dr },
1194
1195 /* we only need to read ICSR to acknowledge */
1196
1197 { mk_mii_read(MII_AM79C874_ICSR), NULL },
1198 { mk_mii_end, }
1199 },
1200 (const phy_cmd_t []) { /* shutdown - disable interrupts */
1201 { mk_mii_write(MII_AM79C874_ICSR, 0x0000), NULL },
1202 { mk_mii_end, }
1203 },
1204 };
1205
1206 #endif /* CONFIG_FEC_AM79C874 */
1207
1208 static phy_info_t *phy_info[] = {
1209
1210 #ifdef CONFIG_FEC_LXT970
1211 &phy_info_lxt970,
1212 #endif /* CONFIG_FEC_LXT970 */
1213
1214 #ifdef CONFIG_FEC_LXT971
1215 &phy_info_lxt971,
1216 #endif /* CONFIG_FEC_LXT971 */
1217
1218 #ifdef CONFIG_FEC_QS6612
1219 &phy_info_qs6612,
1220 #endif /* CONFIG_FEC_QS6612 */
1221
1222 #ifdef CONFIG_FEC_AM79C874
1223 &phy_info_amd79c874,
1224 #endif /* CONFIG_FEC_AM79C874 */
1225
1226 NULL
1227 };
1228
1229 static void mii_display_status(struct net_device *dev)
1230 {
1231 struct fec_enet_private *fep = dev->priv;
1232 volatile uint *s = &(fep->phy_status);
1233
1234 if (!fep->link && !fep->old_link) {
1235 /* Link is still down - don't print anything */
1236 return;
1237 }
1238
1239 printk("%s: status: ", dev->name);
1240
1241 if (!fep->link) {
1242 printk("link down");
1243 } else {
1244 printk("link up");
1245
1246 switch(*s & PHY_STAT_SPMASK) {
1247 case PHY_STAT_100FDX: printk(", 100 Mbps Full Duplex"); break;
1248 case PHY_STAT_100HDX: printk(", 100 Mbps Half Duplex"); break;
1249 case PHY_STAT_10FDX: printk(", 10 Mbps Full Duplex"); break;
1250 case PHY_STAT_10HDX: printk(", 10 Mbps Half Duplex"); break;
1251 default:
1252 printk(", Unknown speed/duplex");
1253 }
1254
1255 if (*s & PHY_STAT_ANC)
1256 printk(", auto-negotiation complete");
1257 }
1258
1259 if (*s & PHY_STAT_FAULT)
1260 printk(", remote fault");
1261
1262 printk(".\n");
1263 }
1264
1265 static void mii_display_config(struct work_struct *work)
1266 {
1267 struct fec_enet_private *fep =
1268 container_of(work, struct fec_enet_private, phy_task);
1269 struct net_device *dev = fep->dev;
1270 volatile uint *s = &(fep->phy_status);
1271
1272 printk("%s: config: auto-negotiation ", dev->name);
1273
1274 if (*s & PHY_CONF_ANE)
1275 printk("on");
1276 else
1277 printk("off");
1278
1279 if (*s & PHY_CONF_100FDX)
1280 printk(", 100FDX");
1281 if (*s & PHY_CONF_100HDX)
1282 printk(", 100HDX");
1283 if (*s & PHY_CONF_10FDX)
1284 printk(", 10FDX");
1285 if (*s & PHY_CONF_10HDX)
1286 printk(", 10HDX");
1287 if (!(*s & PHY_CONF_SPMASK))
1288 printk(", No speed/duplex selected?");
1289
1290 if (*s & PHY_CONF_LOOP)
1291 printk(", loopback enabled");
1292
1293 printk(".\n");
1294
1295 fep->sequence_done = 1;
1296 }
1297
1298 static void mii_relink(struct work_struct *work)
1299 {
1300 struct fec_enet_private *fep =
1301 container_of(work, struct fec_enet_private, phy_task);
1302 struct net_device *dev = fep->dev;
1303 int duplex;
1304
1305 fep->link = (fep->phy_status & PHY_STAT_LINK) ? 1 : 0;
1306 mii_display_status(dev);
1307 fep->old_link = fep->link;
1308
1309 if (fep->link) {
1310 duplex = 0;
1311 if (fep->phy_status
1312 & (PHY_STAT_100FDX | PHY_STAT_10FDX))
1313 duplex = 1;
1314 fec_restart(dev, duplex);
1315 }
1316 else
1317 fec_stop(dev);
1318
1319 #if 0
1320 enable_irq(fep->mii_irq);
1321 #endif
1322
1323 }
1324
1325 static void mii_queue_relink(uint mii_reg, struct net_device *dev)
1326 {
1327 struct fec_enet_private *fep = dev->priv;
1328
1329 fep->dev = dev;
1330 INIT_WORK(&fep->phy_task, mii_relink);
1331 schedule_work(&fep->phy_task);
1332 }
1333
1334 static void mii_queue_config(uint mii_reg, struct net_device *dev)
1335 {
1336 struct fec_enet_private *fep = dev->priv;
1337
1338 fep->dev = dev;
1339 INIT_WORK(&fep->phy_task, mii_display_config);
1340 schedule_work(&fep->phy_task);
1341 }
1342
1343
1344
1345 phy_cmd_t phy_cmd_relink[] = { { mk_mii_read(MII_REG_CR), mii_queue_relink },
1346 { mk_mii_end, } };
1347 phy_cmd_t phy_cmd_config[] = { { mk_mii_read(MII_REG_CR), mii_queue_config },
1348 { mk_mii_end, } };
1349
1350
1351
1352 /* Read remainder of PHY ID.
1353 */
1354 static void
1355 mii_discover_phy3(uint mii_reg, struct net_device *dev)
1356 {
1357 struct fec_enet_private *fep;
1358 int i;
1359
1360 fep = dev->priv;
1361 fep->phy_id |= (mii_reg & 0xffff);
1362
1363 for(i = 0; phy_info[i]; i++)
1364 if(phy_info[i]->id == (fep->phy_id >> 4))
1365 break;
1366
1367 if(!phy_info[i])
1368 panic("%s: PHY id 0x%08x is not supported!\n",
1369 dev->name, fep->phy_id);
1370
1371 fep->phy = phy_info[i];
1372 fep->phy_id_done = 1;
1373
1374 printk("%s: Phy @ 0x%x, type %s (0x%08x)\n",
1375 dev->name, fep->phy_addr, fep->phy->name, fep->phy_id);
1376 }
1377
1378 /* Scan all of the MII PHY addresses looking for someone to respond
1379 * with a valid ID. This usually happens quickly.
1380 */
1381 static void
1382 mii_discover_phy(uint mii_reg, struct net_device *dev)
1383 {
1384 struct fec_enet_private *fep;
1385 uint phytype;
1386
1387 fep = dev->priv;
1388
1389 if ((phytype = (mii_reg & 0xffff)) != 0xffff) {
1390
1391 /* Got first part of ID, now get remainder.
1392 */
1393 fep->phy_id = phytype << 16;
1394 mii_queue(dev, mk_mii_read(MII_REG_PHYIR2), mii_discover_phy3);
1395 } else {
1396 fep->phy_addr++;
1397 if (fep->phy_addr < 32) {
1398 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1),
1399 mii_discover_phy);
1400 } else {
1401 printk("fec: No PHY device found.\n");
1402 }
1403 }
1404 }
1405 #endif /* CONFIG_USE_MDIO */
1406
1407 /* This interrupt occurs when the PHY detects a link change.
1408 */
1409 static
1410 #ifdef CONFIG_RPXCLASSIC
1411 void mii_link_interrupt(void *dev_id)
1412 #else
1413 irqreturn_t mii_link_interrupt(int irq, void * dev_id)
1414 #endif
1415 {
1416 #ifdef CONFIG_USE_MDIO
1417 struct net_device *dev = dev_id;
1418 struct fec_enet_private *fep = dev->priv;
1419 volatile immap_t *immap = (immap_t *)IMAP_ADDR;
1420 volatile fec_t *fecp = &(immap->im_cpm.cp_fec);
1421 unsigned int ecntrl = fecp->fec_ecntrl;
1422
1423 /* We need the FEC enabled to access the MII
1424 */
1425 if ((ecntrl & FEC_ECNTRL_ETHER_EN) == 0) {
1426 fecp->fec_ecntrl |= FEC_ECNTRL_ETHER_EN;
1427 }
1428 #endif /* CONFIG_USE_MDIO */
1429
1430 #if 0
1431 disable_irq(fep->mii_irq); /* disable now, enable later */
1432 #endif
1433
1434
1435 #ifdef CONFIG_USE_MDIO
1436 mii_do_cmd(dev, fep->phy->ack_int);
1437 mii_do_cmd(dev, phy_cmd_relink); /* restart and display status */
1438
1439 if ((ecntrl & FEC_ECNTRL_ETHER_EN) == 0) {
1440 fecp->fec_ecntrl = ecntrl; /* restore old settings */
1441 }
1442 #else
1443 printk("%s[%d] %s: unexpected Link interrupt\n", __FILE__, __LINE__, __func__);
1444 #endif /* CONFIG_USE_MDIO */
1445
1446 #ifndef CONFIG_RPXCLASSIC
1447 return IRQ_RETVAL(IRQ_HANDLED);
1448 #endif /* CONFIG_RPXCLASSIC */
1449 }
1450
1451 static int
1452 fec_enet_open(struct net_device *dev)
1453 {
1454 struct fec_enet_private *fep = dev->priv;
1455
1456 /* I should reset the ring buffers here, but I don't yet know
1457 * a simple way to do that.
1458 */
1459
1460 #ifdef CONFIG_USE_MDIO
1461 fep->sequence_done = 0;
1462 fep->link = 0;
1463
1464 if (fep->phy) {
1465 mii_do_cmd(dev, fep->phy->ack_int);
1466 mii_do_cmd(dev, fep->phy->config);
1467 mii_do_cmd(dev, phy_cmd_config); /* display configuration */
1468 while(!fep->sequence_done)
1469 schedule();
1470
1471 mii_do_cmd(dev, fep->phy->startup);
1472 netif_start_queue(dev);
1473 return 0; /* Success */
1474 }
1475 return -ENODEV; /* No PHY we understand */
1476 #else
1477 fep->link = 1;
1478 netif_start_queue(dev);
1479 return 0; /* Success */
1480 #endif /* CONFIG_USE_MDIO */
1481
1482 }
1483
1484 static int
1485 fec_enet_close(struct net_device *dev)
1486 {
1487 /* Don't know what to do yet.
1488 */
1489 netif_stop_queue(dev);
1490 fec_stop(dev);
1491
1492 return 0;
1493 }
1494
1495 static struct net_device_stats *fec_enet_get_stats(struct net_device *dev)
1496 {
1497 struct fec_enet_private *fep = (struct fec_enet_private *)dev->priv;
1498
1499 return &fep->stats;
1500 }
1501
1502 /* Set or clear the multicast filter for this adaptor.
1503 * Skeleton taken from sunlance driver.
1504 * The CPM Ethernet implementation allows Multicast as well as individual
1505 * MAC address filtering. Some of the drivers check to make sure it is
1506 * a group multicast address, and discard those that are not. I guess I
1507 * will do the same for now, but just remove the test if you want
1508 * individual filtering as well (do the upper net layers want or support
1509 * this kind of feature?).
1510 */
1511
1512 static void set_multicast_list(struct net_device *dev)
1513 {
1514 struct fec_enet_private *fep;
1515 volatile fec_t *ep;
1516
1517 fep = (struct fec_enet_private *)dev->priv;
1518 ep = &(((immap_t *)IMAP_ADDR)->im_cpm.cp_fec);
1519
1520 if (dev->flags&IFF_PROMISC) {
1521
1522 /* Log any net taps. */
1523 printk("%s: Promiscuous mode enabled.\n", dev->name);
1524 ep->fec_r_cntrl |= FEC_RCNTRL_PROM;
1525 } else {
1526
1527 ep->fec_r_cntrl &= ~FEC_RCNTRL_PROM;
1528
1529 if (dev->flags & IFF_ALLMULTI) {
1530 /* Catch all multicast addresses, so set the
1531 * filter to all 1's.
1532 */
1533 ep->fec_hash_table_high = 0xffffffff;
1534 ep->fec_hash_table_low = 0xffffffff;
1535 }
1536 #if 0
1537 else {
1538 /* Clear filter and add the addresses in the list.
1539 */
1540 ep->sen_gaddr1 = 0;
1541 ep->sen_gaddr2 = 0;
1542 ep->sen_gaddr3 = 0;
1543 ep->sen_gaddr4 = 0;
1544
1545 dmi = dev->mc_list;
1546
1547 for (i=0; i<dev->mc_count; i++) {
1548
1549 /* Only support group multicast for now.
1550 */
1551 if (!(dmi->dmi_addr[0] & 1))
1552 continue;
1553
1554 /* The address in dmi_addr is LSB first,
1555 * and taddr is MSB first. We have to
1556 * copy bytes MSB first from dmi_addr.
1557 */
1558 mcptr = (u_char *)dmi->dmi_addr + 5;
1559 tdptr = (u_char *)&ep->sen_taddrh;
1560 for (j=0; j<6; j++)
1561 *tdptr++ = *mcptr--;
1562
1563 /* Ask CPM to run CRC and set bit in
1564 * filter mask.
1565 */
1566 cpmp->cp_cpcr = mk_cr_cmd(CPM_CR_CH_SCC1, CPM_CR_SET_GADDR) | CPM_CR_FLG;
1567 /* this delay is necessary here -- Cort */
1568 udelay(10);
1569 while (cpmp->cp_cpcr & CPM_CR_FLG);
1570 }
1571 }
1572 #endif
1573 }
1574 }
1575
1576 /* Initialize the FEC Ethernet on 860T.
1577 */
1578 static int __init fec_enet_init(void)
1579 {
1580 struct net_device *dev;
1581 struct fec_enet_private *fep;
1582 int i, j, k, err;
1583 unsigned char *eap, *iap, *ba;
1584 dma_addr_t mem_addr;
1585 volatile cbd_t *bdp;
1586 cbd_t *cbd_base;
1587 volatile immap_t *immap;
1588 volatile fec_t *fecp;
1589 bd_t *bd;
1590 #ifdef CONFIG_SCC_ENET
1591 unsigned char tmpaddr[6];
1592 #endif
1593
1594 immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
1595
1596 bd = (bd_t *)__res;
1597
1598 dev = alloc_etherdev(sizeof(*fep));
1599 if (!dev)
1600 return -ENOMEM;
1601
1602 fep = dev->priv;
1603
1604 fecp = &(immap->im_cpm.cp_fec);
1605
1606 /* Whack a reset. We should wait for this.
1607 */
1608 fecp->fec_ecntrl = FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET;
1609 for (i = 0;
1610 (fecp->fec_ecntrl & FEC_ECNTRL_RESET) && (i < FEC_RESET_DELAY);
1611 ++i) {
1612 udelay(1);
1613 }
1614 if (i == FEC_RESET_DELAY) {
1615 printk ("FEC Reset timeout!\n");
1616 }
1617
1618 /* Set the Ethernet address. If using multiple Enets on the 8xx,
1619 * this needs some work to get unique addresses.
1620 */
1621 eap = (unsigned char *)my_enet_addr;
1622 iap = bd->bi_enetaddr;
1623
1624 #ifdef CONFIG_SCC_ENET
1625 /*
1626 * If a board has Ethernet configured both on a SCC and the
1627 * FEC, it needs (at least) 2 MAC addresses (we know that Sun
1628 * disagrees, but anyway). For the FEC port, we create
1629 * another address by setting one of the address bits above
1630 * something that would have (up to now) been allocated.
1631 */
1632 for (i=0; i<6; i++)
1633 tmpaddr[i] = *iap++;
1634 tmpaddr[3] |= 0x80;
1635 iap = tmpaddr;
1636 #endif
1637
1638 for (i=0; i<6; i++) {
1639 dev->dev_addr[i] = *eap++ = *iap++;
1640 }
1641
1642 /* Allocate memory for buffer descriptors.
1643 */
1644 if (((RX_RING_SIZE + TX_RING_SIZE) * sizeof(cbd_t)) > PAGE_SIZE) {
1645 printk("FEC init error. Need more space.\n");
1646 printk("FEC initialization failed.\n");
1647 return 1;
1648 }
1649 cbd_base = (cbd_t *)dma_alloc_coherent(dev->class_dev.dev, PAGE_SIZE,
1650 &mem_addr, GFP_KERNEL);
1651
1652 /* Set receive and transmit descriptor base.
1653 */
1654 fep->rx_bd_base = cbd_base;
1655 fep->tx_bd_base = cbd_base + RX_RING_SIZE;
1656
1657 fep->skb_cur = fep->skb_dirty = 0;
1658
1659 /* Initialize the receive buffer descriptors.
1660 */
1661 bdp = fep->rx_bd_base;
1662 k = 0;
1663 for (i=0; i<FEC_ENET_RX_PAGES; i++) {
1664
1665 /* Allocate a page.
1666 */
1667 ba = (unsigned char *)dma_alloc_coherent(dev->class_dev.dev,
1668 PAGE_SIZE,
1669 &mem_addr,
1670 GFP_KERNEL);
1671 /* BUG: no check for failure */
1672
1673 /* Initialize the BD for every fragment in the page.
1674 */
1675 for (j=0; j<FEC_ENET_RX_FRPPG; j++) {
1676 bdp->cbd_sc = BD_ENET_RX_EMPTY;
1677 bdp->cbd_bufaddr = mem_addr;
1678 fep->rx_vaddr[k++] = ba;
1679 mem_addr += FEC_ENET_RX_FRSIZE;
1680 ba += FEC_ENET_RX_FRSIZE;
1681 bdp++;
1682 }
1683 }
1684
1685 /* Set the last buffer to wrap.
1686 */
1687 bdp--;
1688 bdp->cbd_sc |= BD_SC_WRAP;
1689
1690 #ifdef CONFIG_FEC_PACKETHOOK
1691 fep->ph_lock = 0;
1692 fep->ph_rxhandler = fep->ph_txhandler = NULL;
1693 fep->ph_proto = 0;
1694 fep->ph_regaddr = NULL;
1695 fep->ph_priv = NULL;
1696 #endif
1697
1698 /* Install our interrupt handler.
1699 */
1700 if (request_irq(FEC_INTERRUPT, fec_enet_interrupt, 0, "fec", dev) != 0)
1701 panic("Could not allocate FEC IRQ!");
1702
1703 #ifdef CONFIG_RPXCLASSIC
1704 /* Make Port C, bit 15 an input that causes interrupts.
1705 */
1706 immap->im_ioport.iop_pcpar &= ~0x0001;
1707 immap->im_ioport.iop_pcdir &= ~0x0001;
1708 immap->im_ioport.iop_pcso &= ~0x0001;
1709 immap->im_ioport.iop_pcint |= 0x0001;
1710 cpm_install_handler(CPMVEC_PIO_PC15, mii_link_interrupt, dev);
1711
1712 /* Make LEDS reflect Link status.
1713 */
1714 *((uint *) RPX_CSR_ADDR) &= ~BCSR2_FETHLEDMODE;
1715 #endif
1716
1717 #ifdef PHY_INTERRUPT
1718 ((immap_t *)IMAP_ADDR)->im_siu_conf.sc_siel |=
1719 (0x80000000 >> PHY_INTERRUPT);
1720
1721 if (request_irq(PHY_INTERRUPT, mii_link_interrupt, 0, "mii", dev) != 0)
1722 panic("Could not allocate MII IRQ!");
1723 #endif
1724
1725 dev->base_addr = (unsigned long)fecp;
1726
1727 /* The FEC Ethernet specific entries in the device structure. */
1728 dev->open = fec_enet_open;
1729 dev->hard_start_xmit = fec_enet_start_xmit;
1730 dev->tx_timeout = fec_timeout;
1731 dev->watchdog_timeo = TX_TIMEOUT;
1732 dev->stop = fec_enet_close;
1733 dev->get_stats = fec_enet_get_stats;
1734 dev->set_multicast_list = set_multicast_list;
1735
1736 #ifdef CONFIG_USE_MDIO
1737 for (i=0; i<NMII-1; i++)
1738 mii_cmds[i].mii_next = &mii_cmds[i+1];
1739 mii_free = mii_cmds;
1740 #endif /* CONFIG_USE_MDIO */
1741
1742 /* Configure all of port D for MII.
1743 */
1744 immap->im_ioport.iop_pdpar = 0x1fff;
1745
1746 /* Bits moved from Rev. D onward.
1747 */
1748 if ((mfspr(SPRN_IMMR) & 0xffff) < 0x0501)
1749 immap->im_ioport.iop_pddir = 0x1c58; /* Pre rev. D */
1750 else
1751 immap->im_ioport.iop_pddir = 0x1fff; /* Rev. D and later */
1752
1753 #ifdef CONFIG_USE_MDIO
1754 /* Set MII speed to 2.5 MHz
1755 */
1756 fecp->fec_mii_speed = fep->phy_speed =
1757 (( (bd->bi_intfreq + 500000) / 2500000 / 2 ) & 0x3F ) << 1;
1758 #else
1759 fecp->fec_mii_speed = 0; /* turn off MDIO */
1760 #endif /* CONFIG_USE_MDIO */
1761
1762 err = register_netdev(dev);
1763 if (err) {
1764 free_netdev(dev);
1765 return err;
1766 }
1767
1768 printk ("%s: FEC ENET Version 0.2, FEC irq %d"
1769 #ifdef PHY_INTERRUPT
1770 ", MII irq %d"
1771 #endif
1772 ", addr ",
1773 dev->name, FEC_INTERRUPT
1774 #ifdef PHY_INTERRUPT
1775 , PHY_INTERRUPT
1776 #endif
1777 );
1778 for (i=0; i<6; i++)
1779 printk("%02x%c", dev->dev_addr[i], (i==5) ? '\n' : ':');
1780
1781 #ifdef CONFIG_USE_MDIO /* start in full duplex mode, and negotiate speed */
1782 fec_restart (dev, 1);
1783 #else /* always use half duplex mode only */
1784 fec_restart (dev, 0);
1785 #endif
1786
1787 #ifdef CONFIG_USE_MDIO
1788 /* Queue up command to detect the PHY and initialize the
1789 * remainder of the interface.
1790 */
1791 fep->phy_id_done = 0;
1792 fep->phy_addr = 0;
1793 mii_queue(dev, mk_mii_read(MII_REG_PHYIR1), mii_discover_phy);
1794 #endif /* CONFIG_USE_MDIO */
1795
1796 return 0;
1797 }
1798 module_init(fec_enet_init);
1799
1800 /* This function is called to start or restart the FEC during a link
1801 * change. This only happens when switching between half and full
1802 * duplex.
1803 */
1804 static void
1805 fec_restart(struct net_device *dev, int duplex)
1806 {
1807 struct fec_enet_private *fep;
1808 int i;
1809 volatile cbd_t *bdp;
1810 volatile immap_t *immap;
1811 volatile fec_t *fecp;
1812
1813 immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
1814
1815 fecp = &(immap->im_cpm.cp_fec);
1816
1817 fep = dev->priv;
1818
1819 /* Whack a reset. We should wait for this.
1820 */
1821 fecp->fec_ecntrl = FEC_ECNTRL_PINMUX | FEC_ECNTRL_RESET;
1822 for (i = 0;
1823 (fecp->fec_ecntrl & FEC_ECNTRL_RESET) && (i < FEC_RESET_DELAY);
1824 ++i) {
1825 udelay(1);
1826 }
1827 if (i == FEC_RESET_DELAY) {
1828 printk ("FEC Reset timeout!\n");
1829 }
1830
1831 /* Set station address.
1832 */
1833 fecp->fec_addr_low = (my_enet_addr[0] << 16) | my_enet_addr[1];
1834 fecp->fec_addr_high = my_enet_addr[2];
1835
1836 /* Reset all multicast.
1837 */
1838 fecp->fec_hash_table_high = 0;
1839 fecp->fec_hash_table_low = 0;
1840
1841 /* Set maximum receive buffer size.
1842 */
1843 fecp->fec_r_buff_size = PKT_MAXBLR_SIZE;
1844 fecp->fec_r_hash = PKT_MAXBUF_SIZE;
1845
1846 /* Set receive and transmit descriptor base.
1847 */
1848 fecp->fec_r_des_start = iopa((uint)(fep->rx_bd_base));
1849 fecp->fec_x_des_start = iopa((uint)(fep->tx_bd_base));
1850
1851 fep->dirty_tx = fep->cur_tx = fep->tx_bd_base;
1852 fep->cur_rx = fep->rx_bd_base;
1853
1854 /* Reset SKB transmit buffers.
1855 */
1856 fep->skb_cur = fep->skb_dirty = 0;
1857 for (i=0; i<=TX_RING_MOD_MASK; i++) {
1858 if (fep->tx_skbuff[i] != NULL) {
1859 dev_kfree_skb(fep->tx_skbuff[i]);
1860 fep->tx_skbuff[i] = NULL;
1861 }
1862 }
1863
1864 /* Initialize the receive buffer descriptors.
1865 */
1866 bdp = fep->rx_bd_base;
1867 for (i=0; i<RX_RING_SIZE; i++) {
1868
1869 /* Initialize the BD for every fragment in the page.
1870 */
1871 bdp->cbd_sc = BD_ENET_RX_EMPTY;
1872 bdp++;
1873 }
1874
1875 /* Set the last buffer to wrap.
1876 */
1877 bdp--;
1878 bdp->cbd_sc |= BD_SC_WRAP;
1879
1880 /* ...and the same for transmit.
1881 */
1882 bdp = fep->tx_bd_base;
1883 for (i=0; i<TX_RING_SIZE; i++) {
1884
1885 /* Initialize the BD for every fragment in the page.
1886 */
1887 bdp->cbd_sc = 0;
1888 bdp->cbd_bufaddr = 0;
1889 bdp++;
1890 }
1891
1892 /* Set the last buffer to wrap.
1893 */
1894 bdp--;
1895 bdp->cbd_sc |= BD_SC_WRAP;
1896
1897 /* Enable MII mode.
1898 */
1899 if (duplex) {
1900 fecp->fec_r_cntrl = FEC_RCNTRL_MII_MODE; /* MII enable */
1901 fecp->fec_x_cntrl = FEC_TCNTRL_FDEN; /* FD enable */
1902 }
1903 else {
1904 fecp->fec_r_cntrl = FEC_RCNTRL_MII_MODE | FEC_RCNTRL_DRT;
1905 fecp->fec_x_cntrl = 0;
1906 }
1907 fep->full_duplex = duplex;
1908
1909 /* Enable big endian and don't care about SDMA FC.
1910 */
1911 fecp->fec_fun_code = 0x78000000;
1912
1913 #ifdef CONFIG_USE_MDIO
1914 /* Set MII speed.
1915 */
1916 fecp->fec_mii_speed = fep->phy_speed;
1917 #endif /* CONFIG_USE_MDIO */
1918
1919 /* Clear any outstanding interrupt.
1920 */
1921 fecp->fec_ievent = 0xffc0;
1922
1923 fecp->fec_ivec = (FEC_INTERRUPT/2) << 29;
1924
1925 /* Enable interrupts we wish to service.
1926 */
1927 fecp->fec_imask = ( FEC_ENET_TXF | FEC_ENET_TXB |
1928 FEC_ENET_RXF | FEC_ENET_RXB | FEC_ENET_MII );
1929
1930 /* And last, enable the transmit and receive processing.
1931 */
1932 fecp->fec_ecntrl = FEC_ECNTRL_PINMUX | FEC_ECNTRL_ETHER_EN;
1933 fecp->fec_r_des_active = 0x01000000;
1934 }
1935
1936 static void
1937 fec_stop(struct net_device *dev)
1938 {
1939 volatile immap_t *immap;
1940 volatile fec_t *fecp;
1941 struct fec_enet_private *fep;
1942 int i;
1943
1944 immap = (immap_t *)IMAP_ADDR; /* pointer to internal registers */
1945
1946 fecp = &(immap->im_cpm.cp_fec);
1947
1948 if ((fecp->fec_ecntrl & FEC_ECNTRL_ETHER_EN) == 0)
1949 return; /* already down */
1950
1951 fep = dev->priv;
1952
1953
1954 fecp->fec_x_cntrl = 0x01; /* Graceful transmit stop */
1955
1956 for (i = 0;
1957 ((fecp->fec_ievent & 0x10000000) == 0) && (i < FEC_RESET_DELAY);
1958 ++i) {
1959 udelay(1);
1960 }
1961 if (i == FEC_RESET_DELAY) {
1962 printk ("FEC timeout on graceful transmit stop\n");
1963 }
1964
1965 /* Clear outstanding MII command interrupts.
1966 */
1967 fecp->fec_ievent = FEC_ENET_MII;
1968
1969 /* Enable MII command finished interrupt
1970 */
1971 fecp->fec_ivec = (FEC_INTERRUPT/2) << 29;
1972 fecp->fec_imask = FEC_ENET_MII;
1973
1974 #ifdef CONFIG_USE_MDIO
1975 /* Set MII speed.
1976 */
1977 fecp->fec_mii_speed = fep->phy_speed;
1978 #endif /* CONFIG_USE_MDIO */
1979
1980 /* Disable FEC
1981 */
1982 fecp->fec_ecntrl &= ~(FEC_ECNTRL_ETHER_EN);
1983 }