]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/ppc/kernel/time.c
Merge branch 'devel' of master.kernel.org:/home/rmk/linux-2.6-serial
[mirror_ubuntu-hirsute-kernel.git] / arch / ppc / kernel / time.c
1 /*
2 * Common time routines among all ppc machines.
3 *
4 * Written by Cort Dougan (cort@cs.nmt.edu) to merge
5 * Paul Mackerras' version and mine for PReP and Pmac.
6 * MPC8xx/MBX changes by Dan Malek (dmalek@jlc.net).
7 *
8 * First round of bugfixes by Gabriel Paubert (paubert@iram.es)
9 * to make clock more stable (2.4.0-test5). The only thing
10 * that this code assumes is that the timebases have been synchronized
11 * by firmware on SMP and are never stopped (never do sleep
12 * on SMP then, nap and doze are OK).
13 *
14 * TODO (not necessarily in this file):
15 * - improve precision and reproducibility of timebase frequency
16 * measurement at boot time.
17 * - get rid of xtime_lock for gettimeofday (generic kernel problem
18 * to be implemented on all architectures for SMP scalability and
19 * eventually implementing gettimeofday without entering the kernel).
20 * - put all time/clock related variables in a single structure
21 * to minimize number of cache lines touched by gettimeofday()
22 * - for astronomical applications: add a new function to get
23 * non ambiguous timestamps even around leap seconds. This needs
24 * a new timestamp format and a good name.
25 *
26 *
27 * The following comment is partially obsolete (at least the long wait
28 * is no more a valid reason):
29 * Since the MPC8xx has a programmable interrupt timer, I decided to
30 * use that rather than the decrementer. Two reasons: 1.) the clock
31 * frequency is low, causing 2.) a long wait in the timer interrupt
32 * while ((d = get_dec()) == dval)
33 * loop. The MPC8xx can be driven from a variety of input clocks,
34 * so a number of assumptions have been made here because the kernel
35 * parameter HZ is a constant. We assume (correctly, today :-) that
36 * the MPC8xx on the MBX board is driven from a 32.768 kHz crystal.
37 * This is then divided by 4, providing a 8192 Hz clock into the PIT.
38 * Since it is not possible to get a nice 100 Hz clock out of this, without
39 * creating a software PLL, I have set HZ to 128. -- Dan
40 *
41 * 1997-09-10 Updated NTP code according to technical memorandum Jan '96
42 * "A Kernel Model for Precision Timekeeping" by Dave Mills
43 */
44
45 #include <linux/errno.h>
46 #include <linux/sched.h>
47 #include <linux/kernel.h>
48 #include <linux/param.h>
49 #include <linux/string.h>
50 #include <linux/mm.h>
51 #include <linux/module.h>
52 #include <linux/interrupt.h>
53 #include <linux/timex.h>
54 #include <linux/kernel_stat.h>
55 #include <linux/mc146818rtc.h>
56 #include <linux/time.h>
57 #include <linux/init.h>
58 #include <linux/profile.h>
59
60 #include <asm/io.h>
61 #include <asm/nvram.h>
62 #include <asm/cache.h>
63 #include <asm/8xx_immap.h>
64 #include <asm/machdep.h>
65
66 #include <asm/time.h>
67
68 unsigned long disarm_decr[NR_CPUS];
69
70 extern struct timezone sys_tz;
71
72 /* keep track of when we need to update the rtc */
73 time_t last_rtc_update;
74
75 /* The decrementer counts down by 128 every 128ns on a 601. */
76 #define DECREMENTER_COUNT_601 (1000000000 / HZ)
77
78 unsigned tb_ticks_per_jiffy;
79 unsigned tb_to_us;
80 unsigned tb_last_stamp;
81 unsigned long tb_to_ns_scale;
82
83 /* used for timezone offset */
84 static long timezone_offset;
85
86 DEFINE_SPINLOCK(rtc_lock);
87
88 EXPORT_SYMBOL(rtc_lock);
89
90 /* Timer interrupt helper function */
91 static inline int tb_delta(unsigned *jiffy_stamp) {
92 int delta;
93 if (__USE_RTC()) {
94 delta = get_rtcl();
95 if (delta < *jiffy_stamp) *jiffy_stamp -= 1000000000;
96 delta -= *jiffy_stamp;
97 } else {
98 delta = get_tbl() - *jiffy_stamp;
99 }
100 return delta;
101 }
102
103 #ifdef CONFIG_SMP
104 unsigned long profile_pc(struct pt_regs *regs)
105 {
106 unsigned long pc = instruction_pointer(regs);
107
108 if (in_lock_functions(pc))
109 return regs->link;
110
111 return pc;
112 }
113 EXPORT_SYMBOL(profile_pc);
114 #endif
115
116 void wakeup_decrementer(void)
117 {
118 set_dec(tb_ticks_per_jiffy);
119 /* No currently-supported powerbook has a 601,
120 * so use get_tbl, not native
121 */
122 last_jiffy_stamp(0) = tb_last_stamp = get_tbl();
123 }
124
125 /*
126 * timer_interrupt - gets called when the decrementer overflows,
127 * with interrupts disabled.
128 * We set it up to overflow again in 1/HZ seconds.
129 */
130 void timer_interrupt(struct pt_regs * regs)
131 {
132 int next_dec;
133 unsigned long cpu = smp_processor_id();
134 unsigned jiffy_stamp = last_jiffy_stamp(cpu);
135 extern void do_IRQ(struct pt_regs *);
136
137 if (atomic_read(&ppc_n_lost_interrupts) != 0)
138 do_IRQ(regs);
139
140 irq_enter();
141
142 while ((next_dec = tb_ticks_per_jiffy - tb_delta(&jiffy_stamp)) <= 0) {
143 jiffy_stamp += tb_ticks_per_jiffy;
144
145 profile_tick(CPU_PROFILING, regs);
146 update_process_times(user_mode(regs));
147
148 if (smp_processor_id())
149 continue;
150
151 /* We are in an interrupt, no need to save/restore flags */
152 write_seqlock(&xtime_lock);
153 tb_last_stamp = jiffy_stamp;
154 do_timer(1);
155
156 /*
157 * update the rtc when needed, this should be performed on the
158 * right fraction of a second. Half or full second ?
159 * Full second works on mk48t59 clocks, others need testing.
160 * Note that this update is basically only used through
161 * the adjtimex system calls. Setting the HW clock in
162 * any other way is a /dev/rtc and userland business.
163 * This is still wrong by -0.5/+1.5 jiffies because of the
164 * timer interrupt resolution and possible delay, but here we
165 * hit a quantization limit which can only be solved by higher
166 * resolution timers and decoupling time management from timer
167 * interrupts. This is also wrong on the clocks
168 * which require being written at the half second boundary.
169 * We should have an rtc call that only sets the minutes and
170 * seconds like on Intel to avoid problems with non UTC clocks.
171 */
172 if ( ppc_md.set_rtc_time && ntp_synced() &&
173 xtime.tv_sec - last_rtc_update >= 659 &&
174 abs((xtime.tv_nsec / 1000) - (1000000-1000000/HZ)) < 500000/HZ) {
175 if (ppc_md.set_rtc_time(xtime.tv_sec+1 + timezone_offset) == 0)
176 last_rtc_update = xtime.tv_sec+1;
177 else
178 /* Try again one minute later */
179 last_rtc_update += 60;
180 }
181 write_sequnlock(&xtime_lock);
182 }
183 if ( !disarm_decr[smp_processor_id()] )
184 set_dec(next_dec);
185 last_jiffy_stamp(cpu) = jiffy_stamp;
186
187 if (ppc_md.heartbeat && !ppc_md.heartbeat_count--)
188 ppc_md.heartbeat();
189
190 irq_exit();
191 }
192
193 /*
194 * This version of gettimeofday has microsecond resolution.
195 */
196 void do_gettimeofday(struct timeval *tv)
197 {
198 unsigned long flags;
199 unsigned long seq;
200 unsigned delta, usec, sec;
201
202 do {
203 seq = read_seqbegin_irqsave(&xtime_lock, flags);
204 sec = xtime.tv_sec;
205 usec = (xtime.tv_nsec / 1000);
206 delta = tb_ticks_since(tb_last_stamp);
207 #ifdef CONFIG_SMP
208 /* As long as timebases are not in sync, gettimeofday can only
209 * have jiffy resolution on SMP.
210 */
211 if (!smp_tb_synchronized)
212 delta = 0;
213 #endif /* CONFIG_SMP */
214 } while (read_seqretry_irqrestore(&xtime_lock, seq, flags));
215
216 usec += mulhwu(tb_to_us, delta);
217 while (usec >= 1000000) {
218 sec++;
219 usec -= 1000000;
220 }
221 tv->tv_sec = sec;
222 tv->tv_usec = usec;
223 }
224
225 EXPORT_SYMBOL(do_gettimeofday);
226
227 int do_settimeofday(struct timespec *tv)
228 {
229 time_t wtm_sec, new_sec = tv->tv_sec;
230 long wtm_nsec, new_nsec = tv->tv_nsec;
231 unsigned long flags;
232 int tb_delta;
233
234 if ((unsigned long)tv->tv_nsec >= NSEC_PER_SEC)
235 return -EINVAL;
236
237 write_seqlock_irqsave(&xtime_lock, flags);
238 /* Updating the RTC is not the job of this code. If the time is
239 * stepped under NTP, the RTC will be update after STA_UNSYNC
240 * is cleared. Tool like clock/hwclock either copy the RTC
241 * to the system time, in which case there is no point in writing
242 * to the RTC again, or write to the RTC but then they don't call
243 * settimeofday to perform this operation. Note also that
244 * we don't touch the decrementer since:
245 * a) it would lose timer interrupt synchronization on SMP
246 * (if it is working one day)
247 * b) it could make one jiffy spuriously shorter or longer
248 * which would introduce another source of uncertainty potentially
249 * harmful to relatively short timers.
250 */
251
252 /* This works perfectly on SMP only if the tb are in sync but
253 * guarantees an error < 1 jiffy even if they are off by eons,
254 * still reasonable when gettimeofday resolution is 1 jiffy.
255 */
256 tb_delta = tb_ticks_since(last_jiffy_stamp(smp_processor_id()));
257
258 new_nsec -= 1000 * mulhwu(tb_to_us, tb_delta);
259
260 wtm_sec = wall_to_monotonic.tv_sec + (xtime.tv_sec - new_sec);
261 wtm_nsec = wall_to_monotonic.tv_nsec + (xtime.tv_nsec - new_nsec);
262
263 set_normalized_timespec(&xtime, new_sec, new_nsec);
264 set_normalized_timespec(&wall_to_monotonic, wtm_sec, wtm_nsec);
265
266 /* In case of a large backwards jump in time with NTP, we want the
267 * clock to be updated as soon as the PLL is again in lock.
268 */
269 last_rtc_update = new_sec - 658;
270
271 ntp_clear();
272 write_sequnlock_irqrestore(&xtime_lock, flags);
273 clock_was_set();
274 return 0;
275 }
276
277 EXPORT_SYMBOL(do_settimeofday);
278
279 /* This function is only called on the boot processor */
280 void __init time_init(void)
281 {
282 time_t sec, old_sec;
283 unsigned old_stamp, stamp, elapsed;
284
285 if (ppc_md.time_init != NULL)
286 timezone_offset = ppc_md.time_init();
287
288 if (__USE_RTC()) {
289 /* 601 processor: dec counts down by 128 every 128ns */
290 tb_ticks_per_jiffy = DECREMENTER_COUNT_601;
291 /* mulhwu_scale_factor(1000000000, 1000000) is 0x418937 */
292 tb_to_us = 0x418937;
293 } else {
294 ppc_md.calibrate_decr();
295 tb_to_ns_scale = mulhwu(tb_to_us, 1000 << 10);
296 }
297
298 /* Now that the decrementer is calibrated, it can be used in case the
299 * clock is stuck, but the fact that we have to handle the 601
300 * makes things more complex. Repeatedly read the RTC until the
301 * next second boundary to try to achieve some precision. If there
302 * is no RTC, we still need to set tb_last_stamp and
303 * last_jiffy_stamp(cpu 0) to the current stamp.
304 */
305 stamp = get_native_tbl();
306 if (ppc_md.get_rtc_time) {
307 sec = ppc_md.get_rtc_time();
308 elapsed = 0;
309 do {
310 old_stamp = stamp;
311 old_sec = sec;
312 stamp = get_native_tbl();
313 if (__USE_RTC() && stamp < old_stamp)
314 old_stamp -= 1000000000;
315 elapsed += stamp - old_stamp;
316 sec = ppc_md.get_rtc_time();
317 } while ( sec == old_sec && elapsed < 2*HZ*tb_ticks_per_jiffy);
318 if (sec==old_sec)
319 printk("Warning: real time clock seems stuck!\n");
320 xtime.tv_sec = sec;
321 xtime.tv_nsec = 0;
322 /* No update now, we just read the time from the RTC ! */
323 last_rtc_update = xtime.tv_sec;
324 }
325 last_jiffy_stamp(0) = tb_last_stamp = stamp;
326
327 /* Not exact, but the timer interrupt takes care of this */
328 set_dec(tb_ticks_per_jiffy);
329
330 /* If platform provided a timezone (pmac), we correct the time */
331 if (timezone_offset) {
332 sys_tz.tz_minuteswest = -timezone_offset / 60;
333 sys_tz.tz_dsttime = 0;
334 xtime.tv_sec -= timezone_offset;
335 }
336 set_normalized_timespec(&wall_to_monotonic,
337 -xtime.tv_sec, -xtime.tv_nsec);
338 }
339
340 #define FEBRUARY 2
341 #define STARTOFTIME 1970
342 #define SECDAY 86400L
343 #define SECYR (SECDAY * 365)
344
345 /*
346 * Note: this is wrong for 2100, but our signed 32-bit time_t will
347 * have overflowed long before that, so who cares. -- paulus
348 */
349 #define leapyear(year) ((year) % 4 == 0)
350 #define days_in_year(a) (leapyear(a) ? 366 : 365)
351 #define days_in_month(a) (month_days[(a) - 1])
352
353 static int month_days[12] = {
354 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31
355 };
356
357 void to_tm(int tim, struct rtc_time * tm)
358 {
359 register int i;
360 register long hms, day, gday;
361
362 gday = day = tim / SECDAY;
363 hms = tim % SECDAY;
364
365 /* Hours, minutes, seconds are easy */
366 tm->tm_hour = hms / 3600;
367 tm->tm_min = (hms % 3600) / 60;
368 tm->tm_sec = (hms % 3600) % 60;
369
370 /* Number of years in days */
371 for (i = STARTOFTIME; day >= days_in_year(i); i++)
372 day -= days_in_year(i);
373 tm->tm_year = i;
374
375 /* Number of months in days left */
376 if (leapyear(tm->tm_year))
377 days_in_month(FEBRUARY) = 29;
378 for (i = 1; day >= days_in_month(i); i++)
379 day -= days_in_month(i);
380 days_in_month(FEBRUARY) = 28;
381 tm->tm_mon = i;
382
383 /* Days are what is left over (+1) from all that. */
384 tm->tm_mday = day + 1;
385
386 /*
387 * Determine the day of week. Jan. 1, 1970 was a Thursday.
388 */
389 tm->tm_wday = (gday + 4) % 7;
390 }
391
392 /* Auxiliary function to compute scaling factors */
393 /* Actually the choice of a timebase running at 1/4 the of the bus
394 * frequency giving resolution of a few tens of nanoseconds is quite nice.
395 * It makes this computation very precise (27-28 bits typically) which
396 * is optimistic considering the stability of most processor clock
397 * oscillators and the precision with which the timebase frequency
398 * is measured but does not harm.
399 */
400 unsigned mulhwu_scale_factor(unsigned inscale, unsigned outscale) {
401 unsigned mlt=0, tmp, err;
402 /* No concern for performance, it's done once: use a stupid
403 * but safe and compact method to find the multiplier.
404 */
405 for (tmp = 1U<<31; tmp != 0; tmp >>= 1) {
406 if (mulhwu(inscale, mlt|tmp) < outscale) mlt|=tmp;
407 }
408 /* We might still be off by 1 for the best approximation.
409 * A side effect of this is that if outscale is too large
410 * the returned value will be zero.
411 * Many corner cases have been checked and seem to work,
412 * some might have been forgotten in the test however.
413 */
414 err = inscale*(mlt+1);
415 if (err <= inscale/2) mlt++;
416 return mlt;
417 }
418
419 unsigned long long sched_clock(void)
420 {
421 unsigned long lo, hi, hi2;
422 unsigned long long tb;
423
424 if (!__USE_RTC()) {
425 do {
426 hi = get_tbu();
427 lo = get_tbl();
428 hi2 = get_tbu();
429 } while (hi2 != hi);
430 tb = ((unsigned long long) hi << 32) | lo;
431 tb = (tb * tb_to_ns_scale) >> 10;
432 } else {
433 do {
434 hi = get_rtcu();
435 lo = get_rtcl();
436 hi2 = get_rtcu();
437 } while (hi2 != hi);
438 tb = ((unsigned long long) hi) * 1000000000 + lo;
439 }
440 return tb;
441 }