]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/ppc64/kernel/eeh.c
Merge branch 'master' of /usr/src/ntfs-2.6/
[mirror_ubuntu-bionic-kernel.git] / arch / ppc64 / kernel / eeh.c
1 /*
2 * eeh.c
3 * Copyright (C) 2001 Dave Engebretsen & Todd Inglett IBM Corporation
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
18 */
19
20 #include <linux/bootmem.h>
21 #include <linux/init.h>
22 #include <linux/list.h>
23 #include <linux/mm.h>
24 #include <linux/notifier.h>
25 #include <linux/pci.h>
26 #include <linux/proc_fs.h>
27 #include <linux/rbtree.h>
28 #include <linux/seq_file.h>
29 #include <linux/spinlock.h>
30 #include <asm/eeh.h>
31 #include <asm/io.h>
32 #include <asm/machdep.h>
33 #include <asm/rtas.h>
34 #include <asm/atomic.h>
35 #include <asm/systemcfg.h>
36 #include <asm/ppc-pci.h>
37
38 #undef DEBUG
39
40 /** Overview:
41 * EEH, or "Extended Error Handling" is a PCI bridge technology for
42 * dealing with PCI bus errors that can't be dealt with within the
43 * usual PCI framework, except by check-stopping the CPU. Systems
44 * that are designed for high-availability/reliability cannot afford
45 * to crash due to a "mere" PCI error, thus the need for EEH.
46 * An EEH-capable bridge operates by converting a detected error
47 * into a "slot freeze", taking the PCI adapter off-line, making
48 * the slot behave, from the OS'es point of view, as if the slot
49 * were "empty": all reads return 0xff's and all writes are silently
50 * ignored. EEH slot isolation events can be triggered by parity
51 * errors on the address or data busses (e.g. during posted writes),
52 * which in turn might be caused by dust, vibration, humidity,
53 * radioactivity or plain-old failed hardware.
54 *
55 * Note, however, that one of the leading causes of EEH slot
56 * freeze events are buggy device drivers, buggy device microcode,
57 * or buggy device hardware. This is because any attempt by the
58 * device to bus-master data to a memory address that is not
59 * assigned to the device will trigger a slot freeze. (The idea
60 * is to prevent devices-gone-wild from corrupting system memory).
61 * Buggy hardware/drivers will have a miserable time co-existing
62 * with EEH.
63 *
64 * Ideally, a PCI device driver, when suspecting that an isolation
65 * event has occured (e.g. by reading 0xff's), will then ask EEH
66 * whether this is the case, and then take appropriate steps to
67 * reset the PCI slot, the PCI device, and then resume operations.
68 * However, until that day, the checking is done here, with the
69 * eeh_check_failure() routine embedded in the MMIO macros. If
70 * the slot is found to be isolated, an "EEH Event" is synthesized
71 * and sent out for processing.
72 */
73
74 /** Bus Unit ID macros; get low and hi 32-bits of the 64-bit BUID */
75 #define BUID_HI(buid) ((buid) >> 32)
76 #define BUID_LO(buid) ((buid) & 0xffffffff)
77
78 /* EEH event workqueue setup. */
79 static DEFINE_SPINLOCK(eeh_eventlist_lock);
80 LIST_HEAD(eeh_eventlist);
81 static void eeh_event_handler(void *);
82 DECLARE_WORK(eeh_event_wq, eeh_event_handler, NULL);
83
84 static struct notifier_block *eeh_notifier_chain;
85
86 /*
87 * If a device driver keeps reading an MMIO register in an interrupt
88 * handler after a slot isolation event has occurred, we assume it
89 * is broken and panic. This sets the threshold for how many read
90 * attempts we allow before panicking.
91 */
92 #define EEH_MAX_FAILS 1000
93 static atomic_t eeh_fail_count;
94
95 /* RTAS tokens */
96 static int ibm_set_eeh_option;
97 static int ibm_set_slot_reset;
98 static int ibm_read_slot_reset_state;
99 static int ibm_read_slot_reset_state2;
100 static int ibm_slot_error_detail;
101
102 static int eeh_subsystem_enabled;
103
104 /* Buffer for reporting slot-error-detail rtas calls */
105 static unsigned char slot_errbuf[RTAS_ERROR_LOG_MAX];
106 static DEFINE_SPINLOCK(slot_errbuf_lock);
107 static int eeh_error_buf_size;
108
109 /* System monitoring statistics */
110 static DEFINE_PER_CPU(unsigned long, total_mmio_ffs);
111 static DEFINE_PER_CPU(unsigned long, false_positives);
112 static DEFINE_PER_CPU(unsigned long, ignored_failures);
113 static DEFINE_PER_CPU(unsigned long, slot_resets);
114
115 /**
116 * The pci address cache subsystem. This subsystem places
117 * PCI device address resources into a red-black tree, sorted
118 * according to the address range, so that given only an i/o
119 * address, the corresponding PCI device can be **quickly**
120 * found. It is safe to perform an address lookup in an interrupt
121 * context; this ability is an important feature.
122 *
123 * Currently, the only customer of this code is the EEH subsystem;
124 * thus, this code has been somewhat tailored to suit EEH better.
125 * In particular, the cache does *not* hold the addresses of devices
126 * for which EEH is not enabled.
127 *
128 * (Implementation Note: The RB tree seems to be better/faster
129 * than any hash algo I could think of for this problem, even
130 * with the penalty of slow pointer chases for d-cache misses).
131 */
132 struct pci_io_addr_range
133 {
134 struct rb_node rb_node;
135 unsigned long addr_lo;
136 unsigned long addr_hi;
137 struct pci_dev *pcidev;
138 unsigned int flags;
139 };
140
141 static struct pci_io_addr_cache
142 {
143 struct rb_root rb_root;
144 spinlock_t piar_lock;
145 } pci_io_addr_cache_root;
146
147 static inline struct pci_dev *__pci_get_device_by_addr(unsigned long addr)
148 {
149 struct rb_node *n = pci_io_addr_cache_root.rb_root.rb_node;
150
151 while (n) {
152 struct pci_io_addr_range *piar;
153 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
154
155 if (addr < piar->addr_lo) {
156 n = n->rb_left;
157 } else {
158 if (addr > piar->addr_hi) {
159 n = n->rb_right;
160 } else {
161 pci_dev_get(piar->pcidev);
162 return piar->pcidev;
163 }
164 }
165 }
166
167 return NULL;
168 }
169
170 /**
171 * pci_get_device_by_addr - Get device, given only address
172 * @addr: mmio (PIO) phys address or i/o port number
173 *
174 * Given an mmio phys address, or a port number, find a pci device
175 * that implements this address. Be sure to pci_dev_put the device
176 * when finished. I/O port numbers are assumed to be offset
177 * from zero (that is, they do *not* have pci_io_addr added in).
178 * It is safe to call this function within an interrupt.
179 */
180 static struct pci_dev *pci_get_device_by_addr(unsigned long addr)
181 {
182 struct pci_dev *dev;
183 unsigned long flags;
184
185 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
186 dev = __pci_get_device_by_addr(addr);
187 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
188 return dev;
189 }
190
191 #ifdef DEBUG
192 /*
193 * Handy-dandy debug print routine, does nothing more
194 * than print out the contents of our addr cache.
195 */
196 static void pci_addr_cache_print(struct pci_io_addr_cache *cache)
197 {
198 struct rb_node *n;
199 int cnt = 0;
200
201 n = rb_first(&cache->rb_root);
202 while (n) {
203 struct pci_io_addr_range *piar;
204 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
205 printk(KERN_DEBUG "PCI: %s addr range %d [%lx-%lx]: %s\n",
206 (piar->flags & IORESOURCE_IO) ? "i/o" : "mem", cnt,
207 piar->addr_lo, piar->addr_hi, pci_name(piar->pcidev));
208 cnt++;
209 n = rb_next(n);
210 }
211 }
212 #endif
213
214 /* Insert address range into the rb tree. */
215 static struct pci_io_addr_range *
216 pci_addr_cache_insert(struct pci_dev *dev, unsigned long alo,
217 unsigned long ahi, unsigned int flags)
218 {
219 struct rb_node **p = &pci_io_addr_cache_root.rb_root.rb_node;
220 struct rb_node *parent = NULL;
221 struct pci_io_addr_range *piar;
222
223 /* Walk tree, find a place to insert into tree */
224 while (*p) {
225 parent = *p;
226 piar = rb_entry(parent, struct pci_io_addr_range, rb_node);
227 if (alo < piar->addr_lo) {
228 p = &parent->rb_left;
229 } else if (ahi > piar->addr_hi) {
230 p = &parent->rb_right;
231 } else {
232 if (dev != piar->pcidev ||
233 alo != piar->addr_lo || ahi != piar->addr_hi) {
234 printk(KERN_WARNING "PIAR: overlapping address range\n");
235 }
236 return piar;
237 }
238 }
239 piar = (struct pci_io_addr_range *)kmalloc(sizeof(struct pci_io_addr_range), GFP_ATOMIC);
240 if (!piar)
241 return NULL;
242
243 piar->addr_lo = alo;
244 piar->addr_hi = ahi;
245 piar->pcidev = dev;
246 piar->flags = flags;
247
248 rb_link_node(&piar->rb_node, parent, p);
249 rb_insert_color(&piar->rb_node, &pci_io_addr_cache_root.rb_root);
250
251 return piar;
252 }
253
254 static void __pci_addr_cache_insert_device(struct pci_dev *dev)
255 {
256 struct device_node *dn;
257 struct pci_dn *pdn;
258 int i;
259 int inserted = 0;
260
261 dn = pci_device_to_OF_node(dev);
262 if (!dn) {
263 printk(KERN_WARNING "PCI: no pci dn found for dev=%s\n",
264 pci_name(dev));
265 return;
266 }
267
268 /* Skip any devices for which EEH is not enabled. */
269 pdn = dn->data;
270 if (!(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
271 pdn->eeh_mode & EEH_MODE_NOCHECK) {
272 #ifdef DEBUG
273 printk(KERN_INFO "PCI: skip building address cache for=%s\n",
274 pci_name(dev));
275 #endif
276 return;
277 }
278
279 /* The cache holds a reference to the device... */
280 pci_dev_get(dev);
281
282 /* Walk resources on this device, poke them into the tree */
283 for (i = 0; i < DEVICE_COUNT_RESOURCE; i++) {
284 unsigned long start = pci_resource_start(dev,i);
285 unsigned long end = pci_resource_end(dev,i);
286 unsigned int flags = pci_resource_flags(dev,i);
287
288 /* We are interested only bus addresses, not dma or other stuff */
289 if (0 == (flags & (IORESOURCE_IO | IORESOURCE_MEM)))
290 continue;
291 if (start == 0 || ~start == 0 || end == 0 || ~end == 0)
292 continue;
293 pci_addr_cache_insert(dev, start, end, flags);
294 inserted = 1;
295 }
296
297 /* If there was nothing to add, the cache has no reference... */
298 if (!inserted)
299 pci_dev_put(dev);
300 }
301
302 /**
303 * pci_addr_cache_insert_device - Add a device to the address cache
304 * @dev: PCI device whose I/O addresses we are interested in.
305 *
306 * In order to support the fast lookup of devices based on addresses,
307 * we maintain a cache of devices that can be quickly searched.
308 * This routine adds a device to that cache.
309 */
310 void pci_addr_cache_insert_device(struct pci_dev *dev)
311 {
312 unsigned long flags;
313
314 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
315 __pci_addr_cache_insert_device(dev);
316 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
317 }
318
319 static inline void __pci_addr_cache_remove_device(struct pci_dev *dev)
320 {
321 struct rb_node *n;
322 int removed = 0;
323
324 restart:
325 n = rb_first(&pci_io_addr_cache_root.rb_root);
326 while (n) {
327 struct pci_io_addr_range *piar;
328 piar = rb_entry(n, struct pci_io_addr_range, rb_node);
329
330 if (piar->pcidev == dev) {
331 rb_erase(n, &pci_io_addr_cache_root.rb_root);
332 removed = 1;
333 kfree(piar);
334 goto restart;
335 }
336 n = rb_next(n);
337 }
338
339 /* The cache no longer holds its reference to this device... */
340 if (removed)
341 pci_dev_put(dev);
342 }
343
344 /**
345 * pci_addr_cache_remove_device - remove pci device from addr cache
346 * @dev: device to remove
347 *
348 * Remove a device from the addr-cache tree.
349 * This is potentially expensive, since it will walk
350 * the tree multiple times (once per resource).
351 * But so what; device removal doesn't need to be that fast.
352 */
353 void pci_addr_cache_remove_device(struct pci_dev *dev)
354 {
355 unsigned long flags;
356
357 spin_lock_irqsave(&pci_io_addr_cache_root.piar_lock, flags);
358 __pci_addr_cache_remove_device(dev);
359 spin_unlock_irqrestore(&pci_io_addr_cache_root.piar_lock, flags);
360 }
361
362 /**
363 * pci_addr_cache_build - Build a cache of I/O addresses
364 *
365 * Build a cache of pci i/o addresses. This cache will be used to
366 * find the pci device that corresponds to a given address.
367 * This routine scans all pci busses to build the cache.
368 * Must be run late in boot process, after the pci controllers
369 * have been scaned for devices (after all device resources are known).
370 */
371 void __init pci_addr_cache_build(void)
372 {
373 struct pci_dev *dev = NULL;
374
375 spin_lock_init(&pci_io_addr_cache_root.piar_lock);
376
377 while ((dev = pci_get_device(PCI_ANY_ID, PCI_ANY_ID, dev)) != NULL) {
378 /* Ignore PCI bridges ( XXX why ??) */
379 if ((dev->class >> 16) == PCI_BASE_CLASS_BRIDGE) {
380 continue;
381 }
382 pci_addr_cache_insert_device(dev);
383 }
384
385 #ifdef DEBUG
386 /* Verify tree built up above, echo back the list of addrs. */
387 pci_addr_cache_print(&pci_io_addr_cache_root);
388 #endif
389 }
390
391 /* --------------------------------------------------------------- */
392 /* Above lies the PCI Address Cache. Below lies the EEH event infrastructure */
393
394 /**
395 * eeh_register_notifier - Register to find out about EEH events.
396 * @nb: notifier block to callback on events
397 */
398 int eeh_register_notifier(struct notifier_block *nb)
399 {
400 return notifier_chain_register(&eeh_notifier_chain, nb);
401 }
402
403 /**
404 * eeh_unregister_notifier - Unregister to an EEH event notifier.
405 * @nb: notifier block to callback on events
406 */
407 int eeh_unregister_notifier(struct notifier_block *nb)
408 {
409 return notifier_chain_unregister(&eeh_notifier_chain, nb);
410 }
411
412 /**
413 * read_slot_reset_state - Read the reset state of a device node's slot
414 * @dn: device node to read
415 * @rets: array to return results in
416 */
417 static int read_slot_reset_state(struct device_node *dn, int rets[])
418 {
419 int token, outputs;
420 struct pci_dn *pdn = dn->data;
421
422 if (ibm_read_slot_reset_state2 != RTAS_UNKNOWN_SERVICE) {
423 token = ibm_read_slot_reset_state2;
424 outputs = 4;
425 } else {
426 token = ibm_read_slot_reset_state;
427 outputs = 3;
428 }
429
430 return rtas_call(token, 3, outputs, rets, pdn->eeh_config_addr,
431 BUID_HI(pdn->phb->buid), BUID_LO(pdn->phb->buid));
432 }
433
434 /**
435 * eeh_panic - call panic() for an eeh event that cannot be handled.
436 * The philosophy of this routine is that it is better to panic and
437 * halt the OS than it is to risk possible data corruption by
438 * oblivious device drivers that don't know better.
439 *
440 * @dev pci device that had an eeh event
441 * @reset_state current reset state of the device slot
442 */
443 static void eeh_panic(struct pci_dev *dev, int reset_state)
444 {
445 /*
446 * XXX We should create a separate sysctl for this.
447 *
448 * Since the panic_on_oops sysctl is used to halt the system
449 * in light of potential corruption, we can use it here.
450 */
451 if (panic_on_oops)
452 panic("EEH: MMIO failure (%d) on device:%s\n", reset_state,
453 pci_name(dev));
454 else {
455 __get_cpu_var(ignored_failures)++;
456 printk(KERN_INFO "EEH: Ignored MMIO failure (%d) on device:%s\n",
457 reset_state, pci_name(dev));
458 }
459 }
460
461 /**
462 * eeh_event_handler - dispatch EEH events. The detection of a frozen
463 * slot can occur inside an interrupt, where it can be hard to do
464 * anything about it. The goal of this routine is to pull these
465 * detection events out of the context of the interrupt handler, and
466 * re-dispatch them for processing at a later time in a normal context.
467 *
468 * @dummy - unused
469 */
470 static void eeh_event_handler(void *dummy)
471 {
472 unsigned long flags;
473 struct eeh_event *event;
474
475 while (1) {
476 spin_lock_irqsave(&eeh_eventlist_lock, flags);
477 event = NULL;
478 if (!list_empty(&eeh_eventlist)) {
479 event = list_entry(eeh_eventlist.next, struct eeh_event, list);
480 list_del(&event->list);
481 }
482 spin_unlock_irqrestore(&eeh_eventlist_lock, flags);
483 if (event == NULL)
484 break;
485
486 printk(KERN_INFO "EEH: MMIO failure (%d), notifiying device "
487 "%s\n", event->reset_state,
488 pci_name(event->dev));
489
490 atomic_set(&eeh_fail_count, 0);
491 notifier_call_chain (&eeh_notifier_chain,
492 EEH_NOTIFY_FREEZE, event);
493
494 __get_cpu_var(slot_resets)++;
495
496 pci_dev_put(event->dev);
497 kfree(event);
498 }
499 }
500
501 /**
502 * eeh_token_to_phys - convert EEH address token to phys address
503 * @token i/o token, should be address in the form 0xE....
504 */
505 static inline unsigned long eeh_token_to_phys(unsigned long token)
506 {
507 pte_t *ptep;
508 unsigned long pa;
509
510 ptep = find_linux_pte(init_mm.pgd, token);
511 if (!ptep)
512 return token;
513 pa = pte_pfn(*ptep) << PAGE_SHIFT;
514
515 return pa | (token & (PAGE_SIZE-1));
516 }
517
518 /**
519 * eeh_dn_check_failure - check if all 1's data is due to EEH slot freeze
520 * @dn device node
521 * @dev pci device, if known
522 *
523 * Check for an EEH failure for the given device node. Call this
524 * routine if the result of a read was all 0xff's and you want to
525 * find out if this is due to an EEH slot freeze. This routine
526 * will query firmware for the EEH status.
527 *
528 * Returns 0 if there has not been an EEH error; otherwise returns
529 * a non-zero value and queues up a solt isolation event notification.
530 *
531 * It is safe to call this routine in an interrupt context.
532 */
533 int eeh_dn_check_failure(struct device_node *dn, struct pci_dev *dev)
534 {
535 int ret;
536 int rets[3];
537 unsigned long flags;
538 int rc, reset_state;
539 struct eeh_event *event;
540 struct pci_dn *pdn;
541
542 __get_cpu_var(total_mmio_ffs)++;
543
544 if (!eeh_subsystem_enabled)
545 return 0;
546
547 if (!dn)
548 return 0;
549 pdn = dn->data;
550
551 /* Access to IO BARs might get this far and still not want checking. */
552 if (!pdn->eeh_capable || !(pdn->eeh_mode & EEH_MODE_SUPPORTED) ||
553 pdn->eeh_mode & EEH_MODE_NOCHECK) {
554 return 0;
555 }
556
557 if (!pdn->eeh_config_addr) {
558 return 0;
559 }
560
561 /*
562 * If we already have a pending isolation event for this
563 * slot, we know it's bad already, we don't need to check...
564 */
565 if (pdn->eeh_mode & EEH_MODE_ISOLATED) {
566 atomic_inc(&eeh_fail_count);
567 if (atomic_read(&eeh_fail_count) >= EEH_MAX_FAILS) {
568 /* re-read the slot reset state */
569 if (read_slot_reset_state(dn, rets) != 0)
570 rets[0] = -1; /* reset state unknown */
571 eeh_panic(dev, rets[0]);
572 }
573 return 0;
574 }
575
576 /*
577 * Now test for an EEH failure. This is VERY expensive.
578 * Note that the eeh_config_addr may be a parent device
579 * in the case of a device behind a bridge, or it may be
580 * function zero of a multi-function device.
581 * In any case they must share a common PHB.
582 */
583 ret = read_slot_reset_state(dn, rets);
584 if (!(ret == 0 && rets[1] == 1 && (rets[0] == 2 || rets[0] == 4))) {
585 __get_cpu_var(false_positives)++;
586 return 0;
587 }
588
589 /* prevent repeated reports of this failure */
590 pdn->eeh_mode |= EEH_MODE_ISOLATED;
591
592 reset_state = rets[0];
593
594 spin_lock_irqsave(&slot_errbuf_lock, flags);
595 memset(slot_errbuf, 0, eeh_error_buf_size);
596
597 rc = rtas_call(ibm_slot_error_detail,
598 8, 1, NULL, pdn->eeh_config_addr,
599 BUID_HI(pdn->phb->buid),
600 BUID_LO(pdn->phb->buid), NULL, 0,
601 virt_to_phys(slot_errbuf),
602 eeh_error_buf_size,
603 1 /* Temporary Error */);
604
605 if (rc == 0)
606 log_error(slot_errbuf, ERR_TYPE_RTAS_LOG, 0);
607 spin_unlock_irqrestore(&slot_errbuf_lock, flags);
608
609 printk(KERN_INFO "EEH: MMIO failure (%d) on device: %s %s\n",
610 rets[0], dn->name, dn->full_name);
611 event = kmalloc(sizeof(*event), GFP_ATOMIC);
612 if (event == NULL) {
613 eeh_panic(dev, reset_state);
614 return 1;
615 }
616
617 event->dev = dev;
618 event->dn = dn;
619 event->reset_state = reset_state;
620
621 /* We may or may not be called in an interrupt context */
622 spin_lock_irqsave(&eeh_eventlist_lock, flags);
623 list_add(&event->list, &eeh_eventlist);
624 spin_unlock_irqrestore(&eeh_eventlist_lock, flags);
625
626 /* Most EEH events are due to device driver bugs. Having
627 * a stack trace will help the device-driver authors figure
628 * out what happened. So print that out. */
629 dump_stack();
630 schedule_work(&eeh_event_wq);
631
632 return 0;
633 }
634
635 EXPORT_SYMBOL(eeh_dn_check_failure);
636
637 /**
638 * eeh_check_failure - check if all 1's data is due to EEH slot freeze
639 * @token i/o token, should be address in the form 0xA....
640 * @val value, should be all 1's (XXX why do we need this arg??)
641 *
642 * Check for an eeh failure at the given token address.
643 * Check for an EEH failure at the given token address. Call this
644 * routine if the result of a read was all 0xff's and you want to
645 * find out if this is due to an EEH slot freeze event. This routine
646 * will query firmware for the EEH status.
647 *
648 * Note this routine is safe to call in an interrupt context.
649 */
650 unsigned long eeh_check_failure(const volatile void __iomem *token, unsigned long val)
651 {
652 unsigned long addr;
653 struct pci_dev *dev;
654 struct device_node *dn;
655
656 /* Finding the phys addr + pci device; this is pretty quick. */
657 addr = eeh_token_to_phys((unsigned long __force) token);
658 dev = pci_get_device_by_addr(addr);
659 if (!dev)
660 return val;
661
662 dn = pci_device_to_OF_node(dev);
663 eeh_dn_check_failure (dn, dev);
664
665 pci_dev_put(dev);
666 return val;
667 }
668
669 EXPORT_SYMBOL(eeh_check_failure);
670
671 struct eeh_early_enable_info {
672 unsigned int buid_hi;
673 unsigned int buid_lo;
674 };
675
676 /* Enable eeh for the given device node. */
677 static void *early_enable_eeh(struct device_node *dn, void *data)
678 {
679 struct eeh_early_enable_info *info = data;
680 int ret;
681 char *status = get_property(dn, "status", NULL);
682 u32 *class_code = (u32 *)get_property(dn, "class-code", NULL);
683 u32 *vendor_id = (u32 *)get_property(dn, "vendor-id", NULL);
684 u32 *device_id = (u32 *)get_property(dn, "device-id", NULL);
685 u32 *regs;
686 int enable;
687 struct pci_dn *pdn = dn->data;
688
689 pdn->eeh_mode = 0;
690
691 if (status && strcmp(status, "ok") != 0)
692 return NULL; /* ignore devices with bad status */
693
694 /* Ignore bad nodes. */
695 if (!class_code || !vendor_id || !device_id)
696 return NULL;
697
698 /* There is nothing to check on PCI to ISA bridges */
699 if (dn->type && !strcmp(dn->type, "isa")) {
700 pdn->eeh_mode |= EEH_MODE_NOCHECK;
701 return NULL;
702 }
703
704 /*
705 * Now decide if we are going to "Disable" EEH checking
706 * for this device. We still run with the EEH hardware active,
707 * but we won't be checking for ff's. This means a driver
708 * could return bad data (very bad!), an interrupt handler could
709 * hang waiting on status bits that won't change, etc.
710 * But there are a few cases like display devices that make sense.
711 */
712 enable = 1; /* i.e. we will do checking */
713 if ((*class_code >> 16) == PCI_BASE_CLASS_DISPLAY)
714 enable = 0;
715
716 if (!enable)
717 pdn->eeh_mode |= EEH_MODE_NOCHECK;
718
719 /* Ok... see if this device supports EEH. Some do, some don't,
720 * and the only way to find out is to check each and every one. */
721 regs = (u32 *)get_property(dn, "reg", NULL);
722 if (regs) {
723 /* First register entry is addr (00BBSS00) */
724 /* Try to enable eeh */
725 ret = rtas_call(ibm_set_eeh_option, 4, 1, NULL,
726 regs[0], info->buid_hi, info->buid_lo,
727 EEH_ENABLE);
728 if (ret == 0) {
729 eeh_subsystem_enabled = 1;
730 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
731 pdn->eeh_config_addr = regs[0];
732 #ifdef DEBUG
733 printk(KERN_DEBUG "EEH: %s: eeh enabled\n", dn->full_name);
734 #endif
735 } else {
736
737 /* This device doesn't support EEH, but it may have an
738 * EEH parent, in which case we mark it as supported. */
739 if (dn->parent && dn->parent->data
740 && (PCI_DN(dn->parent)->eeh_mode & EEH_MODE_SUPPORTED)) {
741 /* Parent supports EEH. */
742 pdn->eeh_mode |= EEH_MODE_SUPPORTED;
743 pdn->eeh_config_addr = PCI_DN(dn->parent)->eeh_config_addr;
744 return NULL;
745 }
746 }
747 } else {
748 printk(KERN_WARNING "EEH: %s: unable to get reg property.\n",
749 dn->full_name);
750 }
751
752 return NULL;
753 }
754
755 /*
756 * Initialize EEH by trying to enable it for all of the adapters in the system.
757 * As a side effect we can determine here if eeh is supported at all.
758 * Note that we leave EEH on so failed config cycles won't cause a machine
759 * check. If a user turns off EEH for a particular adapter they are really
760 * telling Linux to ignore errors. Some hardware (e.g. POWER5) won't
761 * grant access to a slot if EEH isn't enabled, and so we always enable
762 * EEH for all slots/all devices.
763 *
764 * The eeh-force-off option disables EEH checking globally, for all slots.
765 * Even if force-off is set, the EEH hardware is still enabled, so that
766 * newer systems can boot.
767 */
768 void __init eeh_init(void)
769 {
770 struct device_node *phb, *np;
771 struct eeh_early_enable_info info;
772
773 np = of_find_node_by_path("/rtas");
774 if (np == NULL)
775 return;
776
777 ibm_set_eeh_option = rtas_token("ibm,set-eeh-option");
778 ibm_set_slot_reset = rtas_token("ibm,set-slot-reset");
779 ibm_read_slot_reset_state2 = rtas_token("ibm,read-slot-reset-state2");
780 ibm_read_slot_reset_state = rtas_token("ibm,read-slot-reset-state");
781 ibm_slot_error_detail = rtas_token("ibm,slot-error-detail");
782
783 if (ibm_set_eeh_option == RTAS_UNKNOWN_SERVICE)
784 return;
785
786 eeh_error_buf_size = rtas_token("rtas-error-log-max");
787 if (eeh_error_buf_size == RTAS_UNKNOWN_SERVICE) {
788 eeh_error_buf_size = 1024;
789 }
790 if (eeh_error_buf_size > RTAS_ERROR_LOG_MAX) {
791 printk(KERN_WARNING "EEH: rtas-error-log-max is bigger than allocated "
792 "buffer ! (%d vs %d)", eeh_error_buf_size, RTAS_ERROR_LOG_MAX);
793 eeh_error_buf_size = RTAS_ERROR_LOG_MAX;
794 }
795
796 /* Enable EEH for all adapters. Note that eeh requires buid's */
797 for (phb = of_find_node_by_name(NULL, "pci"); phb;
798 phb = of_find_node_by_name(phb, "pci")) {
799 unsigned long buid;
800 struct pci_dn *pci;
801
802 buid = get_phb_buid(phb);
803 if (buid == 0 || phb->data == NULL)
804 continue;
805
806 pci = phb->data;
807 info.buid_lo = BUID_LO(buid);
808 info.buid_hi = BUID_HI(buid);
809 traverse_pci_devices(phb, early_enable_eeh, &info);
810 }
811
812 if (eeh_subsystem_enabled)
813 printk(KERN_INFO "EEH: PCI Enhanced I/O Error Handling Enabled\n");
814 else
815 printk(KERN_WARNING "EEH: No capable adapters found\n");
816 }
817
818 /**
819 * eeh_add_device_early - enable EEH for the indicated device_node
820 * @dn: device node for which to set up EEH
821 *
822 * This routine must be used to perform EEH initialization for PCI
823 * devices that were added after system boot (e.g. hotplug, dlpar).
824 * This routine must be called before any i/o is performed to the
825 * adapter (inluding any config-space i/o).
826 * Whether this actually enables EEH or not for this device depends
827 * on the CEC architecture, type of the device, on earlier boot
828 * command-line arguments & etc.
829 */
830 void eeh_add_device_early(struct device_node *dn)
831 {
832 struct pci_controller *phb;
833 struct eeh_early_enable_info info;
834
835 if (!dn || !dn->data)
836 return;
837 phb = PCI_DN(dn)->phb;
838 if (NULL == phb || 0 == phb->buid) {
839 printk(KERN_WARNING "EEH: Expected buid but found none\n");
840 return;
841 }
842
843 info.buid_hi = BUID_HI(phb->buid);
844 info.buid_lo = BUID_LO(phb->buid);
845 early_enable_eeh(dn, &info);
846 }
847 EXPORT_SYMBOL(eeh_add_device_early);
848
849 /**
850 * eeh_add_device_late - perform EEH initialization for the indicated pci device
851 * @dev: pci device for which to set up EEH
852 *
853 * This routine must be used to complete EEH initialization for PCI
854 * devices that were added after system boot (e.g. hotplug, dlpar).
855 */
856 void eeh_add_device_late(struct pci_dev *dev)
857 {
858 if (!dev || !eeh_subsystem_enabled)
859 return;
860
861 #ifdef DEBUG
862 printk(KERN_DEBUG "EEH: adding device %s\n", pci_name(dev));
863 #endif
864
865 pci_addr_cache_insert_device (dev);
866 }
867 EXPORT_SYMBOL(eeh_add_device_late);
868
869 /**
870 * eeh_remove_device - undo EEH setup for the indicated pci device
871 * @dev: pci device to be removed
872 *
873 * This routine should be when a device is removed from a running
874 * system (e.g. by hotplug or dlpar).
875 */
876 void eeh_remove_device(struct pci_dev *dev)
877 {
878 if (!dev || !eeh_subsystem_enabled)
879 return;
880
881 /* Unregister the device with the EEH/PCI address search system */
882 #ifdef DEBUG
883 printk(KERN_DEBUG "EEH: remove device %s\n", pci_name(dev));
884 #endif
885 pci_addr_cache_remove_device(dev);
886 }
887 EXPORT_SYMBOL(eeh_remove_device);
888
889 static int proc_eeh_show(struct seq_file *m, void *v)
890 {
891 unsigned int cpu;
892 unsigned long ffs = 0, positives = 0, failures = 0;
893 unsigned long resets = 0;
894
895 for_each_cpu(cpu) {
896 ffs += per_cpu(total_mmio_ffs, cpu);
897 positives += per_cpu(false_positives, cpu);
898 failures += per_cpu(ignored_failures, cpu);
899 resets += per_cpu(slot_resets, cpu);
900 }
901
902 if (0 == eeh_subsystem_enabled) {
903 seq_printf(m, "EEH Subsystem is globally disabled\n");
904 seq_printf(m, "eeh_total_mmio_ffs=%ld\n", ffs);
905 } else {
906 seq_printf(m, "EEH Subsystem is enabled\n");
907 seq_printf(m, "eeh_total_mmio_ffs=%ld\n"
908 "eeh_false_positives=%ld\n"
909 "eeh_ignored_failures=%ld\n"
910 "eeh_slot_resets=%ld\n"
911 "eeh_fail_count=%d\n",
912 ffs, positives, failures, resets,
913 eeh_fail_count.counter);
914 }
915
916 return 0;
917 }
918
919 static int proc_eeh_open(struct inode *inode, struct file *file)
920 {
921 return single_open(file, proc_eeh_show, NULL);
922 }
923
924 static struct file_operations proc_eeh_operations = {
925 .open = proc_eeh_open,
926 .read = seq_read,
927 .llseek = seq_lseek,
928 .release = single_release,
929 };
930
931 static int __init eeh_init_proc(void)
932 {
933 struct proc_dir_entry *e;
934
935 if (systemcfg->platform & PLATFORM_PSERIES) {
936 e = create_proc_entry("ppc64/eeh", 0, NULL);
937 if (e)
938 e->proc_fops = &proc_eeh_operations;
939 }
940
941 return 0;
942 }
943 __initcall(eeh_init_proc);