]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/ppc64/kernel/kprobes.c
[PATCH] Kprobes: Track kprobe on a per_cpu basis - ppc64 changes
[mirror_ubuntu-zesty-kernel.git] / arch / ppc64 / kernel / kprobes.c
1 /*
2 * Kernel Probes (KProbes)
3 * arch/ppc64/kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation ( includes contributions from
23 * Rusty Russell).
24 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
25 * interface to access function arguments.
26 * 2004-Nov Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
27 * for PPC64
28 */
29
30 #include <linux/config.h>
31 #include <linux/kprobes.h>
32 #include <linux/ptrace.h>
33 #include <linux/spinlock.h>
34 #include <linux/preempt.h>
35 #include <asm/cacheflush.h>
36 #include <asm/kdebug.h>
37 #include <asm/sstep.h>
38
39 static DECLARE_MUTEX(kprobe_mutex);
40 DEFINE_PER_CPU(struct kprobe *, current_kprobe) = NULL;
41 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
42
43 int __kprobes arch_prepare_kprobe(struct kprobe *p)
44 {
45 int ret = 0;
46 kprobe_opcode_t insn = *p->addr;
47
48 if ((unsigned long)p->addr & 0x03) {
49 printk("Attempt to register kprobe at an unaligned address\n");
50 ret = -EINVAL;
51 } else if (IS_MTMSRD(insn) || IS_RFID(insn)) {
52 printk("Cannot register a kprobe on rfid or mtmsrd\n");
53 ret = -EINVAL;
54 }
55
56 /* insn must be on a special executable page on ppc64 */
57 if (!ret) {
58 down(&kprobe_mutex);
59 p->ainsn.insn = get_insn_slot();
60 up(&kprobe_mutex);
61 if (!p->ainsn.insn)
62 ret = -ENOMEM;
63 }
64 return ret;
65 }
66
67 void __kprobes arch_copy_kprobe(struct kprobe *p)
68 {
69 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
70 p->opcode = *p->addr;
71 }
72
73 void __kprobes arch_arm_kprobe(struct kprobe *p)
74 {
75 *p->addr = BREAKPOINT_INSTRUCTION;
76 flush_icache_range((unsigned long) p->addr,
77 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
78 }
79
80 void __kprobes arch_disarm_kprobe(struct kprobe *p)
81 {
82 *p->addr = p->opcode;
83 flush_icache_range((unsigned long) p->addr,
84 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
85 }
86
87 void __kprobes arch_remove_kprobe(struct kprobe *p)
88 {
89 down(&kprobe_mutex);
90 free_insn_slot(p->ainsn.insn);
91 up(&kprobe_mutex);
92 }
93
94 static inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
95 {
96 kprobe_opcode_t insn = *p->ainsn.insn;
97
98 regs->msr |= MSR_SE;
99
100 /* single step inline if it is a trap variant */
101 if (is_trap(insn))
102 regs->nip = (unsigned long)p->addr;
103 else
104 regs->nip = (unsigned long)p->ainsn.insn;
105 }
106
107 static inline void save_previous_kprobe(struct kprobe_ctlblk *kcb)
108 {
109 kcb->prev_kprobe.kp = kprobe_running();
110 kcb->prev_kprobe.status = kcb->kprobe_status;
111 kcb->prev_kprobe.saved_msr = kcb->kprobe_saved_msr;
112 }
113
114 static inline void restore_previous_kprobe(struct kprobe_ctlblk *kcb)
115 {
116 __get_cpu_var(current_kprobe) = kcb->prev_kprobe.kp;
117 kcb->kprobe_status = kcb->prev_kprobe.status;
118 kcb->kprobe_saved_msr = kcb->prev_kprobe.saved_msr;
119 }
120
121 static inline void set_current_kprobe(struct kprobe *p, struct pt_regs *regs,
122 struct kprobe_ctlblk *kcb)
123 {
124 __get_cpu_var(current_kprobe) = p;
125 kcb->kprobe_saved_msr = regs->msr;
126 }
127
128 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
129 struct pt_regs *regs)
130 {
131 struct kretprobe_instance *ri;
132
133 if ((ri = get_free_rp_inst(rp)) != NULL) {
134 ri->rp = rp;
135 ri->task = current;
136 ri->ret_addr = (kprobe_opcode_t *)regs->link;
137
138 /* Replace the return addr with trampoline addr */
139 regs->link = (unsigned long)kretprobe_trampoline;
140 add_rp_inst(ri);
141 } else {
142 rp->nmissed++;
143 }
144 }
145
146 static inline int kprobe_handler(struct pt_regs *regs)
147 {
148 struct kprobe *p;
149 int ret = 0;
150 unsigned int *addr = (unsigned int *)regs->nip;
151 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
152
153 /* Check we're not actually recursing */
154 if (kprobe_running()) {
155 /* We *are* holding lock here, so this is safe.
156 Disarm the probe we just hit, and ignore it. */
157 p = get_kprobe(addr);
158 if (p) {
159 kprobe_opcode_t insn = *p->ainsn.insn;
160 if (kcb->kprobe_status == KPROBE_HIT_SS &&
161 is_trap(insn)) {
162 regs->msr &= ~MSR_SE;
163 regs->msr |= kcb->kprobe_saved_msr;
164 unlock_kprobes();
165 goto no_kprobe;
166 }
167 /* We have reentered the kprobe_handler(), since
168 * another probe was hit while within the handler.
169 * We here save the original kprobes variables and
170 * just single step on the instruction of the new probe
171 * without calling any user handlers.
172 */
173 save_previous_kprobe(kcb);
174 set_current_kprobe(p, regs, kcb);
175 kcb->kprobe_saved_msr = regs->msr;
176 p->nmissed++;
177 prepare_singlestep(p, regs);
178 kcb->kprobe_status = KPROBE_REENTER;
179 return 1;
180 } else {
181 p = __get_cpu_var(current_kprobe);
182 if (p->break_handler && p->break_handler(p, regs)) {
183 goto ss_probe;
184 }
185 }
186 /* If it's not ours, can't be delete race, (we hold lock). */
187 goto no_kprobe;
188 }
189
190 lock_kprobes();
191 p = get_kprobe(addr);
192 if (!p) {
193 unlock_kprobes();
194 if (*addr != BREAKPOINT_INSTRUCTION) {
195 /*
196 * PowerPC has multiple variants of the "trap"
197 * instruction. If the current instruction is a
198 * trap variant, it could belong to someone else
199 */
200 kprobe_opcode_t cur_insn = *addr;
201 if (is_trap(cur_insn))
202 goto no_kprobe;
203 /*
204 * The breakpoint instruction was removed right
205 * after we hit it. Another cpu has removed
206 * either a probepoint or a debugger breakpoint
207 * at this address. In either case, no further
208 * handling of this interrupt is appropriate.
209 */
210 ret = 1;
211 }
212 /* Not one of ours: let kernel handle it */
213 goto no_kprobe;
214 }
215
216 /*
217 * This preempt_disable() matches the preempt_enable_no_resched()
218 * in post_kprobe_handler().
219 */
220 preempt_disable();
221 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
222 set_current_kprobe(p, regs, kcb);
223 if (p->pre_handler && p->pre_handler(p, regs))
224 /* handler has already set things up, so skip ss setup */
225 return 1;
226
227 ss_probe:
228 prepare_singlestep(p, regs);
229 kcb->kprobe_status = KPROBE_HIT_SS;
230 return 1;
231
232 no_kprobe:
233 return ret;
234 }
235
236 /*
237 * Function return probe trampoline:
238 * - init_kprobes() establishes a probepoint here
239 * - When the probed function returns, this probe
240 * causes the handlers to fire
241 */
242 void kretprobe_trampoline_holder(void)
243 {
244 asm volatile(".global kretprobe_trampoline\n"
245 "kretprobe_trampoline:\n"
246 "nop\n");
247 }
248
249 /*
250 * Called when the probe at kretprobe trampoline is hit
251 */
252 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
253 {
254 struct kretprobe_instance *ri = NULL;
255 struct hlist_head *head;
256 struct hlist_node *node, *tmp;
257 unsigned long orig_ret_address = 0;
258 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
259
260 head = kretprobe_inst_table_head(current);
261
262 /*
263 * It is possible to have multiple instances associated with a given
264 * task either because an multiple functions in the call path
265 * have a return probe installed on them, and/or more then one return
266 * return probe was registered for a target function.
267 *
268 * We can handle this because:
269 * - instances are always inserted at the head of the list
270 * - when multiple return probes are registered for the same
271 * function, the first instance's ret_addr will point to the
272 * real return address, and all the rest will point to
273 * kretprobe_trampoline
274 */
275 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
276 if (ri->task != current)
277 /* another task is sharing our hash bucket */
278 continue;
279
280 if (ri->rp && ri->rp->handler)
281 ri->rp->handler(ri, regs);
282
283 orig_ret_address = (unsigned long)ri->ret_addr;
284 recycle_rp_inst(ri);
285
286 if (orig_ret_address != trampoline_address)
287 /*
288 * This is the real return address. Any other
289 * instances associated with this task are for
290 * other calls deeper on the call stack
291 */
292 break;
293 }
294
295 BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
296 regs->nip = orig_ret_address;
297
298 reset_current_kprobe();
299 unlock_kprobes();
300 preempt_enable_no_resched();
301
302 /*
303 * By returning a non-zero value, we are telling
304 * kprobe_handler() that we have handled unlocking
305 * and re-enabling preemption.
306 */
307 return 1;
308 }
309
310 /*
311 * Called after single-stepping. p->addr is the address of the
312 * instruction whose first byte has been replaced by the "breakpoint"
313 * instruction. To avoid the SMP problems that can occur when we
314 * temporarily put back the original opcode to single-step, we
315 * single-stepped a copy of the instruction. The address of this
316 * copy is p->ainsn.insn.
317 */
318 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
319 {
320 int ret;
321 unsigned int insn = *p->ainsn.insn;
322
323 regs->nip = (unsigned long)p->addr;
324 ret = emulate_step(regs, insn);
325 if (ret == 0)
326 regs->nip = (unsigned long)p->addr + 4;
327 }
328
329 static inline int post_kprobe_handler(struct pt_regs *regs)
330 {
331 struct kprobe *cur = kprobe_running();
332 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
333
334 if (!cur)
335 return 0;
336
337 if ((kcb->kprobe_status != KPROBE_REENTER) && cur->post_handler) {
338 kcb->kprobe_status = KPROBE_HIT_SSDONE;
339 cur->post_handler(cur, regs, 0);
340 }
341
342 resume_execution(cur, regs);
343 regs->msr |= kcb->kprobe_saved_msr;
344
345 /*Restore back the original saved kprobes variables and continue. */
346 if (kcb->kprobe_status == KPROBE_REENTER) {
347 restore_previous_kprobe(kcb);
348 goto out;
349 }
350 reset_current_kprobe();
351 unlock_kprobes();
352 out:
353 preempt_enable_no_resched();
354
355 /*
356 * if somebody else is singlestepping across a probe point, msr
357 * will have SE set, in which case, continue the remaining processing
358 * of do_debug, as if this is not a probe hit.
359 */
360 if (regs->msr & MSR_SE)
361 return 0;
362
363 return 1;
364 }
365
366 /* Interrupts disabled, kprobe_lock held. */
367 static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
368 {
369 struct kprobe *cur = kprobe_running();
370 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
371
372 if (cur->fault_handler && cur->fault_handler(cur, regs, trapnr))
373 return 1;
374
375 if (kcb->kprobe_status & KPROBE_HIT_SS) {
376 resume_execution(cur, regs);
377 regs->msr &= ~MSR_SE;
378 regs->msr |= kcb->kprobe_saved_msr;
379
380 reset_current_kprobe();
381 unlock_kprobes();
382 preempt_enable_no_resched();
383 }
384 return 0;
385 }
386
387 /*
388 * Wrapper routine to for handling exceptions.
389 */
390 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
391 unsigned long val, void *data)
392 {
393 struct die_args *args = (struct die_args *)data;
394 int ret = NOTIFY_DONE;
395
396 /*
397 * Interrupts are not disabled here. We need to disable
398 * preemption, because kprobe_running() uses smp_processor_id().
399 */
400 preempt_disable();
401 switch (val) {
402 case DIE_BPT:
403 if (kprobe_handler(args->regs))
404 ret = NOTIFY_STOP;
405 break;
406 case DIE_SSTEP:
407 if (post_kprobe_handler(args->regs))
408 ret = NOTIFY_STOP;
409 break;
410 case DIE_PAGE_FAULT:
411 if (kprobe_running() &&
412 kprobe_fault_handler(args->regs, args->trapnr))
413 ret = NOTIFY_STOP;
414 break;
415 default:
416 break;
417 }
418 preempt_enable_no_resched();
419 return ret;
420 }
421
422 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
423 {
424 struct jprobe *jp = container_of(p, struct jprobe, kp);
425 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
426
427 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
428
429 /* setup return addr to the jprobe handler routine */
430 regs->nip = (unsigned long)(((func_descr_t *)jp->entry)->entry);
431 regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
432
433 return 1;
434 }
435
436 void __kprobes jprobe_return(void)
437 {
438 asm volatile("trap" ::: "memory");
439 }
440
441 void __kprobes jprobe_return_end(void)
442 {
443 };
444
445 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
446 {
447 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
448
449 /*
450 * FIXME - we should ideally be validating that we got here 'cos
451 * of the "trap" in jprobe_return() above, before restoring the
452 * saved regs...
453 */
454 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
455 return 1;
456 }
457
458 static struct kprobe trampoline_p = {
459 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
460 .pre_handler = trampoline_probe_handler
461 };
462
463 int __init arch_init_kprobes(void)
464 {
465 return register_kprobe(&trampoline_p);
466 }