]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/ppc64/kernel/kprobes.c
Merge /pub/scm/linux/kernel/git/torvalds/linux-2.6
[mirror_ubuntu-zesty-kernel.git] / arch / ppc64 / kernel / kprobes.c
1 /*
2 * Kernel Probes (KProbes)
3 * arch/ppc64/kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation ( includes contributions from
23 * Rusty Russell).
24 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
25 * interface to access function arguments.
26 * 2004-Nov Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
27 * for PPC64
28 */
29
30 #include <linux/config.h>
31 #include <linux/kprobes.h>
32 #include <linux/ptrace.h>
33 #include <linux/spinlock.h>
34 #include <linux/preempt.h>
35 #include <asm/cacheflush.h>
36 #include <asm/kdebug.h>
37 #include <asm/sstep.h>
38
39 static DECLARE_MUTEX(kprobe_mutex);
40
41 static struct kprobe *current_kprobe;
42 static unsigned long kprobe_status, kprobe_saved_msr;
43 static struct kprobe *kprobe_prev;
44 static unsigned long kprobe_status_prev, kprobe_saved_msr_prev;
45 static struct pt_regs jprobe_saved_regs;
46
47 int arch_prepare_kprobe(struct kprobe *p)
48 {
49 int ret = 0;
50 kprobe_opcode_t insn = *p->addr;
51
52 if ((unsigned long)p->addr & 0x03) {
53 printk("Attempt to register kprobe at an unaligned address\n");
54 ret = -EINVAL;
55 } else if (IS_MTMSRD(insn) || IS_RFID(insn)) {
56 printk("Cannot register a kprobe on rfid or mtmsrd\n");
57 ret = -EINVAL;
58 }
59
60 /* insn must be on a special executable page on ppc64 */
61 if (!ret) {
62 up(&kprobe_mutex);
63 p->ainsn.insn = get_insn_slot();
64 down(&kprobe_mutex);
65 if (!p->ainsn.insn)
66 ret = -ENOMEM;
67 }
68 return ret;
69 }
70
71 void arch_copy_kprobe(struct kprobe *p)
72 {
73 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
74 p->opcode = *p->addr;
75 }
76
77 void arch_arm_kprobe(struct kprobe *p)
78 {
79 *p->addr = BREAKPOINT_INSTRUCTION;
80 flush_icache_range((unsigned long) p->addr,
81 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
82 }
83
84 void arch_disarm_kprobe(struct kprobe *p)
85 {
86 *p->addr = p->opcode;
87 flush_icache_range((unsigned long) p->addr,
88 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
89 }
90
91 void arch_remove_kprobe(struct kprobe *p)
92 {
93 up(&kprobe_mutex);
94 free_insn_slot(p->ainsn.insn);
95 down(&kprobe_mutex);
96 }
97
98 static inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
99 {
100 kprobe_opcode_t insn = *p->ainsn.insn;
101
102 regs->msr |= MSR_SE;
103
104 /* single step inline if it is a trap variant */
105 if (IS_TW(insn) || IS_TD(insn) || IS_TWI(insn) || IS_TDI(insn))
106 regs->nip = (unsigned long)p->addr;
107 else
108 regs->nip = (unsigned long)p->ainsn.insn;
109 }
110
111 static inline void save_previous_kprobe(void)
112 {
113 kprobe_prev = current_kprobe;
114 kprobe_status_prev = kprobe_status;
115 kprobe_saved_msr_prev = kprobe_saved_msr;
116 }
117
118 static inline void restore_previous_kprobe(void)
119 {
120 current_kprobe = kprobe_prev;
121 kprobe_status = kprobe_status_prev;
122 kprobe_saved_msr = kprobe_saved_msr_prev;
123 }
124
125 void arch_prepare_kretprobe(struct kretprobe *rp, struct pt_regs *regs)
126 {
127 struct kretprobe_instance *ri;
128
129 if ((ri = get_free_rp_inst(rp)) != NULL) {
130 ri->rp = rp;
131 ri->task = current;
132 ri->ret_addr = (kprobe_opcode_t *)regs->link;
133
134 /* Replace the return addr with trampoline addr */
135 regs->link = (unsigned long)kretprobe_trampoline;
136 add_rp_inst(ri);
137 } else {
138 rp->nmissed++;
139 }
140 }
141
142 static inline int kprobe_handler(struct pt_regs *regs)
143 {
144 struct kprobe *p;
145 int ret = 0;
146 unsigned int *addr = (unsigned int *)regs->nip;
147
148 /* Check we're not actually recursing */
149 if (kprobe_running()) {
150 /* We *are* holding lock here, so this is safe.
151 Disarm the probe we just hit, and ignore it. */
152 p = get_kprobe(addr);
153 if (p) {
154 if (kprobe_status == KPROBE_HIT_SS) {
155 regs->msr &= ~MSR_SE;
156 regs->msr |= kprobe_saved_msr;
157 unlock_kprobes();
158 goto no_kprobe;
159 }
160 /* We have reentered the kprobe_handler(), since
161 * another probe was hit while within the handler.
162 * We here save the original kprobes variables and
163 * just single step on the instruction of the new probe
164 * without calling any user handlers.
165 */
166 save_previous_kprobe();
167 current_kprobe = p;
168 kprobe_saved_msr = regs->msr;
169 p->nmissed++;
170 prepare_singlestep(p, regs);
171 kprobe_status = KPROBE_REENTER;
172 return 1;
173 } else {
174 p = current_kprobe;
175 if (p->break_handler && p->break_handler(p, regs)) {
176 goto ss_probe;
177 }
178 }
179 /* If it's not ours, can't be delete race, (we hold lock). */
180 goto no_kprobe;
181 }
182
183 lock_kprobes();
184 p = get_kprobe(addr);
185 if (!p) {
186 unlock_kprobes();
187 if (*addr != BREAKPOINT_INSTRUCTION) {
188 /*
189 * PowerPC has multiple variants of the "trap"
190 * instruction. If the current instruction is a
191 * trap variant, it could belong to someone else
192 */
193 kprobe_opcode_t cur_insn = *addr;
194 if (IS_TW(cur_insn) || IS_TD(cur_insn) ||
195 IS_TWI(cur_insn) || IS_TDI(cur_insn))
196 goto no_kprobe;
197 /*
198 * The breakpoint instruction was removed right
199 * after we hit it. Another cpu has removed
200 * either a probepoint or a debugger breakpoint
201 * at this address. In either case, no further
202 * handling of this interrupt is appropriate.
203 */
204 ret = 1;
205 }
206 /* Not one of ours: let kernel handle it */
207 goto no_kprobe;
208 }
209
210 kprobe_status = KPROBE_HIT_ACTIVE;
211 current_kprobe = p;
212 kprobe_saved_msr = regs->msr;
213 if (p->pre_handler && p->pre_handler(p, regs))
214 /* handler has already set things up, so skip ss setup */
215 return 1;
216
217 ss_probe:
218 prepare_singlestep(p, regs);
219 kprobe_status = KPROBE_HIT_SS;
220 /*
221 * This preempt_disable() matches the preempt_enable_no_resched()
222 * in post_kprobe_handler().
223 */
224 preempt_disable();
225 return 1;
226
227 no_kprobe:
228 return ret;
229 }
230
231 /*
232 * Function return probe trampoline:
233 * - init_kprobes() establishes a probepoint here
234 * - When the probed function returns, this probe
235 * causes the handlers to fire
236 */
237 void kretprobe_trampoline_holder(void)
238 {
239 asm volatile(".global kretprobe_trampoline\n"
240 "kretprobe_trampoline:\n"
241 "nop\n");
242 }
243
244 /*
245 * Called when the probe at kretprobe trampoline is hit
246 */
247 int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
248 {
249 struct kretprobe_instance *ri = NULL;
250 struct hlist_head *head;
251 struct hlist_node *node, *tmp;
252 unsigned long orig_ret_address = 0;
253 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
254
255 head = kretprobe_inst_table_head(current);
256
257 /*
258 * It is possible to have multiple instances associated with a given
259 * task either because an multiple functions in the call path
260 * have a return probe installed on them, and/or more then one return
261 * return probe was registered for a target function.
262 *
263 * We can handle this because:
264 * - instances are always inserted at the head of the list
265 * - when multiple return probes are registered for the same
266 * function, the first instance's ret_addr will point to the
267 * real return address, and all the rest will point to
268 * kretprobe_trampoline
269 */
270 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
271 if (ri->task != current)
272 /* another task is sharing our hash bucket */
273 continue;
274
275 if (ri->rp && ri->rp->handler)
276 ri->rp->handler(ri, regs);
277
278 orig_ret_address = (unsigned long)ri->ret_addr;
279 recycle_rp_inst(ri);
280
281 if (orig_ret_address != trampoline_address)
282 /*
283 * This is the real return address. Any other
284 * instances associated with this task are for
285 * other calls deeper on the call stack
286 */
287 break;
288 }
289
290 BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
291 regs->nip = orig_ret_address;
292
293 unlock_kprobes();
294
295 /*
296 * By returning a non-zero value, we are telling
297 * kprobe_handler() that we have handled unlocking
298 * and re-enabling preemption.
299 */
300 return 1;
301 }
302
303 /*
304 * Called after single-stepping. p->addr is the address of the
305 * instruction whose first byte has been replaced by the "breakpoint"
306 * instruction. To avoid the SMP problems that can occur when we
307 * temporarily put back the original opcode to single-step, we
308 * single-stepped a copy of the instruction. The address of this
309 * copy is p->ainsn.insn.
310 */
311 static void resume_execution(struct kprobe *p, struct pt_regs *regs)
312 {
313 int ret;
314 unsigned int insn = *p->ainsn.insn;
315
316 regs->nip = (unsigned long)p->addr;
317 ret = emulate_step(regs, insn);
318 if (ret == 0)
319 regs->nip = (unsigned long)p->addr + 4;
320 }
321
322 static inline int post_kprobe_handler(struct pt_regs *regs)
323 {
324 if (!kprobe_running())
325 return 0;
326
327 if ((kprobe_status != KPROBE_REENTER) && current_kprobe->post_handler) {
328 kprobe_status = KPROBE_HIT_SSDONE;
329 current_kprobe->post_handler(current_kprobe, regs, 0);
330 }
331
332 resume_execution(current_kprobe, regs);
333 regs->msr |= kprobe_saved_msr;
334
335 /*Restore back the original saved kprobes variables and continue. */
336 if (kprobe_status == KPROBE_REENTER) {
337 restore_previous_kprobe();
338 goto out;
339 }
340 unlock_kprobes();
341 out:
342 preempt_enable_no_resched();
343
344 /*
345 * if somebody else is singlestepping across a probe point, msr
346 * will have SE set, in which case, continue the remaining processing
347 * of do_debug, as if this is not a probe hit.
348 */
349 if (regs->msr & MSR_SE)
350 return 0;
351
352 return 1;
353 }
354
355 /* Interrupts disabled, kprobe_lock held. */
356 static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
357 {
358 if (current_kprobe->fault_handler
359 && current_kprobe->fault_handler(current_kprobe, regs, trapnr))
360 return 1;
361
362 if (kprobe_status & KPROBE_HIT_SS) {
363 resume_execution(current_kprobe, regs);
364 regs->msr &= ~MSR_SE;
365 regs->msr |= kprobe_saved_msr;
366
367 unlock_kprobes();
368 preempt_enable_no_resched();
369 }
370 return 0;
371 }
372
373 /*
374 * Wrapper routine to for handling exceptions.
375 */
376 int kprobe_exceptions_notify(struct notifier_block *self, unsigned long val,
377 void *data)
378 {
379 struct die_args *args = (struct die_args *)data;
380 int ret = NOTIFY_DONE;
381
382 /*
383 * Interrupts are not disabled here. We need to disable
384 * preemption, because kprobe_running() uses smp_processor_id().
385 */
386 preempt_disable();
387 switch (val) {
388 case DIE_BPT:
389 if (kprobe_handler(args->regs))
390 ret = NOTIFY_STOP;
391 break;
392 case DIE_SSTEP:
393 if (post_kprobe_handler(args->regs))
394 ret = NOTIFY_STOP;
395 break;
396 case DIE_GPF:
397 case DIE_PAGE_FAULT:
398 if (kprobe_running() &&
399 kprobe_fault_handler(args->regs, args->trapnr))
400 ret = NOTIFY_STOP;
401 break;
402 default:
403 break;
404 }
405 preempt_enable();
406 return ret;
407 }
408
409 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
410 {
411 struct jprobe *jp = container_of(p, struct jprobe, kp);
412
413 memcpy(&jprobe_saved_regs, regs, sizeof(struct pt_regs));
414
415 /* setup return addr to the jprobe handler routine */
416 regs->nip = (unsigned long)(((func_descr_t *)jp->entry)->entry);
417 regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
418
419 return 1;
420 }
421
422 void jprobe_return(void)
423 {
424 asm volatile("trap" ::: "memory");
425 }
426
427 void jprobe_return_end(void)
428 {
429 };
430
431 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
432 {
433 /*
434 * FIXME - we should ideally be validating that we got here 'cos
435 * of the "trap" in jprobe_return() above, before restoring the
436 * saved regs...
437 */
438 memcpy(regs, &jprobe_saved_regs, sizeof(struct pt_regs));
439 return 1;
440 }
441
442 static struct kprobe trampoline_p = {
443 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
444 .pre_handler = trampoline_probe_handler
445 };
446
447 int __init arch_init_kprobes(void)
448 {
449 return register_kprobe(&trampoline_p);
450 }