]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/ppc64/kernel/kprobes.c
Merge branch 'for-linus' of master.kernel.org:/pub/scm/linux/kernel/git/roland/infiniband
[mirror_ubuntu-zesty-kernel.git] / arch / ppc64 / kernel / kprobes.c
1 /*
2 * Kernel Probes (KProbes)
3 * arch/ppc64/kernel/kprobes.c
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation; either version 2 of the License, or
8 * (at your option) any later version.
9 *
10 * This program is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program; if not, write to the Free Software
17 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
18 *
19 * Copyright (C) IBM Corporation, 2002, 2004
20 *
21 * 2002-Oct Created by Vamsi Krishna S <vamsi_krishna@in.ibm.com> Kernel
22 * Probes initial implementation ( includes contributions from
23 * Rusty Russell).
24 * 2004-July Suparna Bhattacharya <suparna@in.ibm.com> added jumper probes
25 * interface to access function arguments.
26 * 2004-Nov Ananth N Mavinakayanahalli <ananth@in.ibm.com> kprobes port
27 * for PPC64
28 */
29
30 #include <linux/config.h>
31 #include <linux/kprobes.h>
32 #include <linux/ptrace.h>
33 #include <linux/spinlock.h>
34 #include <linux/preempt.h>
35 #include <asm/cacheflush.h>
36 #include <asm/kdebug.h>
37 #include <asm/sstep.h>
38
39 static DECLARE_MUTEX(kprobe_mutex);
40
41 static struct kprobe *current_kprobe;
42 static unsigned long kprobe_status, kprobe_saved_msr;
43 static struct kprobe *kprobe_prev;
44 static unsigned long kprobe_status_prev, kprobe_saved_msr_prev;
45 static struct pt_regs jprobe_saved_regs;
46
47 int __kprobes arch_prepare_kprobe(struct kprobe *p)
48 {
49 int ret = 0;
50 kprobe_opcode_t insn = *p->addr;
51
52 if ((unsigned long)p->addr & 0x03) {
53 printk("Attempt to register kprobe at an unaligned address\n");
54 ret = -EINVAL;
55 } else if (IS_MTMSRD(insn) || IS_RFID(insn)) {
56 printk("Cannot register a kprobe on rfid or mtmsrd\n");
57 ret = -EINVAL;
58 }
59
60 /* insn must be on a special executable page on ppc64 */
61 if (!ret) {
62 down(&kprobe_mutex);
63 p->ainsn.insn = get_insn_slot();
64 up(&kprobe_mutex);
65 if (!p->ainsn.insn)
66 ret = -ENOMEM;
67 }
68 return ret;
69 }
70
71 void __kprobes arch_copy_kprobe(struct kprobe *p)
72 {
73 memcpy(p->ainsn.insn, p->addr, MAX_INSN_SIZE * sizeof(kprobe_opcode_t));
74 p->opcode = *p->addr;
75 }
76
77 void __kprobes arch_arm_kprobe(struct kprobe *p)
78 {
79 *p->addr = BREAKPOINT_INSTRUCTION;
80 flush_icache_range((unsigned long) p->addr,
81 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
82 }
83
84 void __kprobes arch_disarm_kprobe(struct kprobe *p)
85 {
86 *p->addr = p->opcode;
87 flush_icache_range((unsigned long) p->addr,
88 (unsigned long) p->addr + sizeof(kprobe_opcode_t));
89 }
90
91 void __kprobes arch_remove_kprobe(struct kprobe *p)
92 {
93 down(&kprobe_mutex);
94 free_insn_slot(p->ainsn.insn);
95 up(&kprobe_mutex);
96 }
97
98 static inline void prepare_singlestep(struct kprobe *p, struct pt_regs *regs)
99 {
100 kprobe_opcode_t insn = *p->ainsn.insn;
101
102 regs->msr |= MSR_SE;
103
104 /* single step inline if it is a trap variant */
105 if (is_trap(insn))
106 regs->nip = (unsigned long)p->addr;
107 else
108 regs->nip = (unsigned long)p->ainsn.insn;
109 }
110
111 static inline void save_previous_kprobe(void)
112 {
113 kprobe_prev = current_kprobe;
114 kprobe_status_prev = kprobe_status;
115 kprobe_saved_msr_prev = kprobe_saved_msr;
116 }
117
118 static inline void restore_previous_kprobe(void)
119 {
120 current_kprobe = kprobe_prev;
121 kprobe_status = kprobe_status_prev;
122 kprobe_saved_msr = kprobe_saved_msr_prev;
123 }
124
125 void __kprobes arch_prepare_kretprobe(struct kretprobe *rp,
126 struct pt_regs *regs)
127 {
128 struct kretprobe_instance *ri;
129
130 if ((ri = get_free_rp_inst(rp)) != NULL) {
131 ri->rp = rp;
132 ri->task = current;
133 ri->ret_addr = (kprobe_opcode_t *)regs->link;
134
135 /* Replace the return addr with trampoline addr */
136 regs->link = (unsigned long)kretprobe_trampoline;
137 add_rp_inst(ri);
138 } else {
139 rp->nmissed++;
140 }
141 }
142
143 static inline int kprobe_handler(struct pt_regs *regs)
144 {
145 struct kprobe *p;
146 int ret = 0;
147 unsigned int *addr = (unsigned int *)regs->nip;
148
149 /* Check we're not actually recursing */
150 if (kprobe_running()) {
151 /* We *are* holding lock here, so this is safe.
152 Disarm the probe we just hit, and ignore it. */
153 p = get_kprobe(addr);
154 if (p) {
155 kprobe_opcode_t insn = *p->ainsn.insn;
156 if (kprobe_status == KPROBE_HIT_SS &&
157 is_trap(insn)) {
158 regs->msr &= ~MSR_SE;
159 regs->msr |= kprobe_saved_msr;
160 unlock_kprobes();
161 goto no_kprobe;
162 }
163 /* We have reentered the kprobe_handler(), since
164 * another probe was hit while within the handler.
165 * We here save the original kprobes variables and
166 * just single step on the instruction of the new probe
167 * without calling any user handlers.
168 */
169 save_previous_kprobe();
170 current_kprobe = p;
171 kprobe_saved_msr = regs->msr;
172 p->nmissed++;
173 prepare_singlestep(p, regs);
174 kprobe_status = KPROBE_REENTER;
175 return 1;
176 } else {
177 p = current_kprobe;
178 if (p->break_handler && p->break_handler(p, regs)) {
179 goto ss_probe;
180 }
181 }
182 /* If it's not ours, can't be delete race, (we hold lock). */
183 goto no_kprobe;
184 }
185
186 lock_kprobes();
187 p = get_kprobe(addr);
188 if (!p) {
189 unlock_kprobes();
190 if (*addr != BREAKPOINT_INSTRUCTION) {
191 /*
192 * PowerPC has multiple variants of the "trap"
193 * instruction. If the current instruction is a
194 * trap variant, it could belong to someone else
195 */
196 kprobe_opcode_t cur_insn = *addr;
197 if (is_trap(cur_insn))
198 goto no_kprobe;
199 /*
200 * The breakpoint instruction was removed right
201 * after we hit it. Another cpu has removed
202 * either a probepoint or a debugger breakpoint
203 * at this address. In either case, no further
204 * handling of this interrupt is appropriate.
205 */
206 ret = 1;
207 }
208 /* Not one of ours: let kernel handle it */
209 goto no_kprobe;
210 }
211
212 kprobe_status = KPROBE_HIT_ACTIVE;
213 current_kprobe = p;
214 kprobe_saved_msr = regs->msr;
215 if (p->pre_handler && p->pre_handler(p, regs))
216 /* handler has already set things up, so skip ss setup */
217 return 1;
218
219 ss_probe:
220 prepare_singlestep(p, regs);
221 kprobe_status = KPROBE_HIT_SS;
222 /*
223 * This preempt_disable() matches the preempt_enable_no_resched()
224 * in post_kprobe_handler().
225 */
226 preempt_disable();
227 return 1;
228
229 no_kprobe:
230 return ret;
231 }
232
233 /*
234 * Function return probe trampoline:
235 * - init_kprobes() establishes a probepoint here
236 * - When the probed function returns, this probe
237 * causes the handlers to fire
238 */
239 void kretprobe_trampoline_holder(void)
240 {
241 asm volatile(".global kretprobe_trampoline\n"
242 "kretprobe_trampoline:\n"
243 "nop\n");
244 }
245
246 /*
247 * Called when the probe at kretprobe trampoline is hit
248 */
249 int __kprobes trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
250 {
251 struct kretprobe_instance *ri = NULL;
252 struct hlist_head *head;
253 struct hlist_node *node, *tmp;
254 unsigned long orig_ret_address = 0;
255 unsigned long trampoline_address =(unsigned long)&kretprobe_trampoline;
256
257 head = kretprobe_inst_table_head(current);
258
259 /*
260 * It is possible to have multiple instances associated with a given
261 * task either because an multiple functions in the call path
262 * have a return probe installed on them, and/or more then one return
263 * return probe was registered for a target function.
264 *
265 * We can handle this because:
266 * - instances are always inserted at the head of the list
267 * - when multiple return probes are registered for the same
268 * function, the first instance's ret_addr will point to the
269 * real return address, and all the rest will point to
270 * kretprobe_trampoline
271 */
272 hlist_for_each_entry_safe(ri, node, tmp, head, hlist) {
273 if (ri->task != current)
274 /* another task is sharing our hash bucket */
275 continue;
276
277 if (ri->rp && ri->rp->handler)
278 ri->rp->handler(ri, regs);
279
280 orig_ret_address = (unsigned long)ri->ret_addr;
281 recycle_rp_inst(ri);
282
283 if (orig_ret_address != trampoline_address)
284 /*
285 * This is the real return address. Any other
286 * instances associated with this task are for
287 * other calls deeper on the call stack
288 */
289 break;
290 }
291
292 BUG_ON(!orig_ret_address || (orig_ret_address == trampoline_address));
293 regs->nip = orig_ret_address;
294
295 unlock_kprobes();
296
297 /*
298 * By returning a non-zero value, we are telling
299 * kprobe_handler() that we have handled unlocking
300 * and re-enabling preemption.
301 */
302 return 1;
303 }
304
305 /*
306 * Called after single-stepping. p->addr is the address of the
307 * instruction whose first byte has been replaced by the "breakpoint"
308 * instruction. To avoid the SMP problems that can occur when we
309 * temporarily put back the original opcode to single-step, we
310 * single-stepped a copy of the instruction. The address of this
311 * copy is p->ainsn.insn.
312 */
313 static void __kprobes resume_execution(struct kprobe *p, struct pt_regs *regs)
314 {
315 int ret;
316 unsigned int insn = *p->ainsn.insn;
317
318 regs->nip = (unsigned long)p->addr;
319 ret = emulate_step(regs, insn);
320 if (ret == 0)
321 regs->nip = (unsigned long)p->addr + 4;
322 }
323
324 static inline int post_kprobe_handler(struct pt_regs *regs)
325 {
326 if (!kprobe_running())
327 return 0;
328
329 if ((kprobe_status != KPROBE_REENTER) && current_kprobe->post_handler) {
330 kprobe_status = KPROBE_HIT_SSDONE;
331 current_kprobe->post_handler(current_kprobe, regs, 0);
332 }
333
334 resume_execution(current_kprobe, regs);
335 regs->msr |= kprobe_saved_msr;
336
337 /*Restore back the original saved kprobes variables and continue. */
338 if (kprobe_status == KPROBE_REENTER) {
339 restore_previous_kprobe();
340 goto out;
341 }
342 unlock_kprobes();
343 out:
344 preempt_enable_no_resched();
345
346 /*
347 * if somebody else is singlestepping across a probe point, msr
348 * will have SE set, in which case, continue the remaining processing
349 * of do_debug, as if this is not a probe hit.
350 */
351 if (regs->msr & MSR_SE)
352 return 0;
353
354 return 1;
355 }
356
357 /* Interrupts disabled, kprobe_lock held. */
358 static inline int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
359 {
360 if (current_kprobe->fault_handler
361 && current_kprobe->fault_handler(current_kprobe, regs, trapnr))
362 return 1;
363
364 if (kprobe_status & KPROBE_HIT_SS) {
365 resume_execution(current_kprobe, regs);
366 regs->msr &= ~MSR_SE;
367 regs->msr |= kprobe_saved_msr;
368
369 unlock_kprobes();
370 preempt_enable_no_resched();
371 }
372 return 0;
373 }
374
375 /*
376 * Wrapper routine to for handling exceptions.
377 */
378 int __kprobes kprobe_exceptions_notify(struct notifier_block *self,
379 unsigned long val, void *data)
380 {
381 struct die_args *args = (struct die_args *)data;
382 int ret = NOTIFY_DONE;
383
384 /*
385 * Interrupts are not disabled here. We need to disable
386 * preemption, because kprobe_running() uses smp_processor_id().
387 */
388 preempt_disable();
389 switch (val) {
390 case DIE_BPT:
391 if (kprobe_handler(args->regs))
392 ret = NOTIFY_STOP;
393 break;
394 case DIE_SSTEP:
395 if (post_kprobe_handler(args->regs))
396 ret = NOTIFY_STOP;
397 break;
398 case DIE_GPF:
399 case DIE_PAGE_FAULT:
400 if (kprobe_running() &&
401 kprobe_fault_handler(args->regs, args->trapnr))
402 ret = NOTIFY_STOP;
403 break;
404 default:
405 break;
406 }
407 preempt_enable_no_resched();
408 return ret;
409 }
410
411 int __kprobes setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
412 {
413 struct jprobe *jp = container_of(p, struct jprobe, kp);
414
415 memcpy(&jprobe_saved_regs, regs, sizeof(struct pt_regs));
416
417 /* setup return addr to the jprobe handler routine */
418 regs->nip = (unsigned long)(((func_descr_t *)jp->entry)->entry);
419 regs->gpr[2] = (unsigned long)(((func_descr_t *)jp->entry)->toc);
420
421 return 1;
422 }
423
424 void __kprobes jprobe_return(void)
425 {
426 asm volatile("trap" ::: "memory");
427 }
428
429 void __kprobes jprobe_return_end(void)
430 {
431 };
432
433 int __kprobes longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
434 {
435 /*
436 * FIXME - we should ideally be validating that we got here 'cos
437 * of the "trap" in jprobe_return() above, before restoring the
438 * saved regs...
439 */
440 memcpy(regs, &jprobe_saved_regs, sizeof(struct pt_regs));
441 return 1;
442 }
443
444 static struct kprobe trampoline_p = {
445 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
446 .pre_handler = trampoline_probe_handler
447 };
448
449 int __init arch_init_kprobes(void)
450 {
451 return register_kprobe(&trampoline_p);
452 }