]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/ppc64/kernel/rtas-proc.c
Linux-2.6.12-rc2
[mirror_ubuntu-artful-kernel.git] / arch / ppc64 / kernel / rtas-proc.c
1 /*
2 * arch/ppc64/kernel/rtas-proc.c
3 * Copyright (C) 2000 Tilmann Bitterberg
4 * (tilmann@bitterberg.de)
5 *
6 * RTAS (Runtime Abstraction Services) stuff
7 * Intention is to provide a clean user interface
8 * to use the RTAS.
9 *
10 * TODO:
11 * Split off a header file and maybe move it to a different
12 * location. Write Documentation on what the /proc/rtas/ entries
13 * actually do.
14 */
15
16 #include <linux/errno.h>
17 #include <linux/sched.h>
18 #include <linux/proc_fs.h>
19 #include <linux/stat.h>
20 #include <linux/ctype.h>
21 #include <linux/time.h>
22 #include <linux/string.h>
23 #include <linux/init.h>
24 #include <linux/seq_file.h>
25 #include <linux/bitops.h>
26
27 #include <asm/uaccess.h>
28 #include <asm/processor.h>
29 #include <asm/io.h>
30 #include <asm/prom.h>
31 #include <asm/rtas.h>
32 #include <asm/machdep.h> /* for ppc_md */
33 #include <asm/time.h>
34 #include <asm/systemcfg.h>
35
36 /* Token for Sensors */
37 #define KEY_SWITCH 0x0001
38 #define ENCLOSURE_SWITCH 0x0002
39 #define THERMAL_SENSOR 0x0003
40 #define LID_STATUS 0x0004
41 #define POWER_SOURCE 0x0005
42 #define BATTERY_VOLTAGE 0x0006
43 #define BATTERY_REMAINING 0x0007
44 #define BATTERY_PERCENTAGE 0x0008
45 #define EPOW_SENSOR 0x0009
46 #define BATTERY_CYCLESTATE 0x000a
47 #define BATTERY_CHARGING 0x000b
48
49 /* IBM specific sensors */
50 #define IBM_SURVEILLANCE 0x2328 /* 9000 */
51 #define IBM_FANRPM 0x2329 /* 9001 */
52 #define IBM_VOLTAGE 0x232a /* 9002 */
53 #define IBM_DRCONNECTOR 0x232b /* 9003 */
54 #define IBM_POWERSUPPLY 0x232c /* 9004 */
55
56 /* Status return values */
57 #define SENSOR_CRITICAL_HIGH 13
58 #define SENSOR_WARNING_HIGH 12
59 #define SENSOR_NORMAL 11
60 #define SENSOR_WARNING_LOW 10
61 #define SENSOR_CRITICAL_LOW 9
62 #define SENSOR_SUCCESS 0
63 #define SENSOR_HW_ERROR -1
64 #define SENSOR_BUSY -2
65 #define SENSOR_NOT_EXIST -3
66 #define SENSOR_DR_ENTITY -9000
67
68 /* Location Codes */
69 #define LOC_SCSI_DEV_ADDR 'A'
70 #define LOC_SCSI_DEV_LOC 'B'
71 #define LOC_CPU 'C'
72 #define LOC_DISKETTE 'D'
73 #define LOC_ETHERNET 'E'
74 #define LOC_FAN 'F'
75 #define LOC_GRAPHICS 'G'
76 /* reserved / not used 'H' */
77 #define LOC_IO_ADAPTER 'I'
78 /* reserved / not used 'J' */
79 #define LOC_KEYBOARD 'K'
80 #define LOC_LCD 'L'
81 #define LOC_MEMORY 'M'
82 #define LOC_NV_MEMORY 'N'
83 #define LOC_MOUSE 'O'
84 #define LOC_PLANAR 'P'
85 #define LOC_OTHER_IO 'Q'
86 #define LOC_PARALLEL 'R'
87 #define LOC_SERIAL 'S'
88 #define LOC_DEAD_RING 'T'
89 #define LOC_RACKMOUNTED 'U' /* for _u_nit is rack mounted */
90 #define LOC_VOLTAGE 'V'
91 #define LOC_SWITCH_ADAPTER 'W'
92 #define LOC_OTHER 'X'
93 #define LOC_FIRMWARE 'Y'
94 #define LOC_SCSI 'Z'
95
96 /* Tokens for indicators */
97 #define TONE_FREQUENCY 0x0001 /* 0 - 1000 (HZ)*/
98 #define TONE_VOLUME 0x0002 /* 0 - 100 (%) */
99 #define SYSTEM_POWER_STATE 0x0003
100 #define WARNING_LIGHT 0x0004
101 #define DISK_ACTIVITY_LIGHT 0x0005
102 #define HEX_DISPLAY_UNIT 0x0006
103 #define BATTERY_WARNING_TIME 0x0007
104 #define CONDITION_CYCLE_REQUEST 0x0008
105 #define SURVEILLANCE_INDICATOR 0x2328 /* 9000 */
106 #define DR_ACTION 0x2329 /* 9001 */
107 #define DR_INDICATOR 0x232a /* 9002 */
108 /* 9003 - 9004: Vendor specific */
109 /* 9006 - 9999: Vendor specific */
110
111 /* other */
112 #define MAX_SENSORS 17 /* I only know of 17 sensors */
113 #define MAX_LINELENGTH 256
114 #define SENSOR_PREFIX "ibm,sensor-"
115 #define cel_to_fahr(x) ((x*9/5)+32)
116
117
118 /* Globals */
119 static struct rtas_sensors sensors;
120 static struct device_node *rtas_node = NULL;
121 static unsigned long power_on_time = 0; /* Save the time the user set */
122 static char progress_led[MAX_LINELENGTH];
123
124 static unsigned long rtas_tone_frequency = 1000;
125 static unsigned long rtas_tone_volume = 0;
126
127 /* ****************STRUCTS******************************************* */
128 struct individual_sensor {
129 unsigned int token;
130 unsigned int quant;
131 };
132
133 struct rtas_sensors {
134 struct individual_sensor sensor[MAX_SENSORS];
135 unsigned int quant;
136 };
137
138 /* ****************************************************************** */
139 /* Declarations */
140 static int ppc_rtas_sensors_show(struct seq_file *m, void *v);
141 static int ppc_rtas_clock_show(struct seq_file *m, void *v);
142 static ssize_t ppc_rtas_clock_write(struct file *file,
143 const char __user *buf, size_t count, loff_t *ppos);
144 static int ppc_rtas_progress_show(struct seq_file *m, void *v);
145 static ssize_t ppc_rtas_progress_write(struct file *file,
146 const char __user *buf, size_t count, loff_t *ppos);
147 static int ppc_rtas_poweron_show(struct seq_file *m, void *v);
148 static ssize_t ppc_rtas_poweron_write(struct file *file,
149 const char __user *buf, size_t count, loff_t *ppos);
150
151 static ssize_t ppc_rtas_tone_freq_write(struct file *file,
152 const char __user *buf, size_t count, loff_t *ppos);
153 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v);
154 static ssize_t ppc_rtas_tone_volume_write(struct file *file,
155 const char __user *buf, size_t count, loff_t *ppos);
156 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v);
157 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v);
158
159 static int sensors_open(struct inode *inode, struct file *file)
160 {
161 return single_open(file, ppc_rtas_sensors_show, NULL);
162 }
163
164 struct file_operations ppc_rtas_sensors_operations = {
165 .open = sensors_open,
166 .read = seq_read,
167 .llseek = seq_lseek,
168 .release = single_release,
169 };
170
171 static int poweron_open(struct inode *inode, struct file *file)
172 {
173 return single_open(file, ppc_rtas_poweron_show, NULL);
174 }
175
176 struct file_operations ppc_rtas_poweron_operations = {
177 .open = poweron_open,
178 .read = seq_read,
179 .llseek = seq_lseek,
180 .write = ppc_rtas_poweron_write,
181 .release = single_release,
182 };
183
184 static int progress_open(struct inode *inode, struct file *file)
185 {
186 return single_open(file, ppc_rtas_progress_show, NULL);
187 }
188
189 struct file_operations ppc_rtas_progress_operations = {
190 .open = progress_open,
191 .read = seq_read,
192 .llseek = seq_lseek,
193 .write = ppc_rtas_progress_write,
194 .release = single_release,
195 };
196
197 static int clock_open(struct inode *inode, struct file *file)
198 {
199 return single_open(file, ppc_rtas_clock_show, NULL);
200 }
201
202 struct file_operations ppc_rtas_clock_operations = {
203 .open = clock_open,
204 .read = seq_read,
205 .llseek = seq_lseek,
206 .write = ppc_rtas_clock_write,
207 .release = single_release,
208 };
209
210 static int tone_freq_open(struct inode *inode, struct file *file)
211 {
212 return single_open(file, ppc_rtas_tone_freq_show, NULL);
213 }
214
215 struct file_operations ppc_rtas_tone_freq_operations = {
216 .open = tone_freq_open,
217 .read = seq_read,
218 .llseek = seq_lseek,
219 .write = ppc_rtas_tone_freq_write,
220 .release = single_release,
221 };
222
223 static int tone_volume_open(struct inode *inode, struct file *file)
224 {
225 return single_open(file, ppc_rtas_tone_volume_show, NULL);
226 }
227
228 struct file_operations ppc_rtas_tone_volume_operations = {
229 .open = tone_volume_open,
230 .read = seq_read,
231 .llseek = seq_lseek,
232 .write = ppc_rtas_tone_volume_write,
233 .release = single_release,
234 };
235
236 static int rmo_buf_open(struct inode *inode, struct file *file)
237 {
238 return single_open(file, ppc_rtas_rmo_buf_show, NULL);
239 }
240
241 struct file_operations ppc_rtas_rmo_buf_ops = {
242 .open = rmo_buf_open,
243 .read = seq_read,
244 .llseek = seq_lseek,
245 .release = single_release,
246 };
247
248 static int ppc_rtas_find_all_sensors(void);
249 static void ppc_rtas_process_sensor(struct seq_file *m,
250 struct individual_sensor *s, int state, int error, char *loc);
251 static char *ppc_rtas_process_error(int error);
252 static void get_location_code(struct seq_file *m,
253 struct individual_sensor *s, char *loc);
254 static void check_location_string(struct seq_file *m, char *c);
255 static void check_location(struct seq_file *m, char *c);
256
257 static int __init proc_rtas_init(void)
258 {
259 struct proc_dir_entry *entry;
260
261 if (!(systemcfg->platform & PLATFORM_PSERIES))
262 return 1;
263
264 rtas_node = of_find_node_by_name(NULL, "rtas");
265 if (rtas_node == NULL)
266 return 1;
267
268 entry = create_proc_entry("ppc64/rtas/progress", S_IRUGO|S_IWUSR, NULL);
269 if (entry)
270 entry->proc_fops = &ppc_rtas_progress_operations;
271
272 entry = create_proc_entry("ppc64/rtas/clock", S_IRUGO|S_IWUSR, NULL);
273 if (entry)
274 entry->proc_fops = &ppc_rtas_clock_operations;
275
276 entry = create_proc_entry("ppc64/rtas/poweron", S_IWUSR|S_IRUGO, NULL);
277 if (entry)
278 entry->proc_fops = &ppc_rtas_poweron_operations;
279
280 entry = create_proc_entry("ppc64/rtas/sensors", S_IRUGO, NULL);
281 if (entry)
282 entry->proc_fops = &ppc_rtas_sensors_operations;
283
284 entry = create_proc_entry("ppc64/rtas/frequency", S_IWUSR|S_IRUGO,
285 NULL);
286 if (entry)
287 entry->proc_fops = &ppc_rtas_tone_freq_operations;
288
289 entry = create_proc_entry("ppc64/rtas/volume", S_IWUSR|S_IRUGO, NULL);
290 if (entry)
291 entry->proc_fops = &ppc_rtas_tone_volume_operations;
292
293 entry = create_proc_entry("ppc64/rtas/rmo_buffer", S_IRUSR, NULL);
294 if (entry)
295 entry->proc_fops = &ppc_rtas_rmo_buf_ops;
296
297 return 0;
298 }
299
300 __initcall(proc_rtas_init);
301
302 static int parse_number(const char __user *p, size_t count, unsigned long *val)
303 {
304 char buf[40];
305 char *end;
306
307 if (count > 39)
308 return -EINVAL;
309
310 if (copy_from_user(buf, p, count))
311 return -EFAULT;
312
313 buf[count] = 0;
314
315 *val = simple_strtoul(buf, &end, 10);
316 if (*end && *end != '\n')
317 return -EINVAL;
318
319 return 0;
320 }
321
322 /* ****************************************************************** */
323 /* POWER-ON-TIME */
324 /* ****************************************************************** */
325 static ssize_t ppc_rtas_poweron_write(struct file *file,
326 const char __user *buf, size_t count, loff_t *ppos)
327 {
328 struct rtc_time tm;
329 unsigned long nowtime;
330 int error = parse_number(buf, count, &nowtime);
331 if (error)
332 return error;
333
334 power_on_time = nowtime; /* save the time */
335
336 to_tm(nowtime, &tm);
337
338 error = rtas_call(rtas_token("set-time-for-power-on"), 7, 1, NULL,
339 tm.tm_year, tm.tm_mon, tm.tm_mday,
340 tm.tm_hour, tm.tm_min, tm.tm_sec, 0 /* nano */);
341 if (error)
342 printk(KERN_WARNING "error: setting poweron time returned: %s\n",
343 ppc_rtas_process_error(error));
344 return count;
345 }
346 /* ****************************************************************** */
347 static int ppc_rtas_poweron_show(struct seq_file *m, void *v)
348 {
349 if (power_on_time == 0)
350 seq_printf(m, "Power on time not set\n");
351 else
352 seq_printf(m, "%lu\n",power_on_time);
353 return 0;
354 }
355
356 /* ****************************************************************** */
357 /* PROGRESS */
358 /* ****************************************************************** */
359 static ssize_t ppc_rtas_progress_write(struct file *file,
360 const char __user *buf, size_t count, loff_t *ppos)
361 {
362 unsigned long hex;
363
364 if (count >= MAX_LINELENGTH)
365 count = MAX_LINELENGTH -1;
366 if (copy_from_user(progress_led, buf, count)) { /* save the string */
367 return -EFAULT;
368 }
369 progress_led[count] = 0;
370
371 /* Lets see if the user passed hexdigits */
372 hex = simple_strtoul(progress_led, NULL, 10);
373
374 ppc_md.progress ((char *)progress_led, hex);
375 return count;
376
377 /* clear the line */
378 /* ppc_md.progress(" ", 0xffff);*/
379 }
380 /* ****************************************************************** */
381 static int ppc_rtas_progress_show(struct seq_file *m, void *v)
382 {
383 if (progress_led)
384 seq_printf(m, "%s\n", progress_led);
385 return 0;
386 }
387
388 /* ****************************************************************** */
389 /* CLOCK */
390 /* ****************************************************************** */
391 static ssize_t ppc_rtas_clock_write(struct file *file,
392 const char __user *buf, size_t count, loff_t *ppos)
393 {
394 struct rtc_time tm;
395 unsigned long nowtime;
396 int error = parse_number(buf, count, &nowtime);
397 if (error)
398 return error;
399
400 to_tm(nowtime, &tm);
401 error = rtas_call(rtas_token("set-time-of-day"), 7, 1, NULL,
402 tm.tm_year, tm.tm_mon, tm.tm_mday,
403 tm.tm_hour, tm.tm_min, tm.tm_sec, 0);
404 if (error)
405 printk(KERN_WARNING "error: setting the clock returned: %s\n",
406 ppc_rtas_process_error(error));
407 return count;
408 }
409 /* ****************************************************************** */
410 static int ppc_rtas_clock_show(struct seq_file *m, void *v)
411 {
412 int ret[8];
413 int error = rtas_call(rtas_token("get-time-of-day"), 0, 8, ret);
414
415 if (error) {
416 printk(KERN_WARNING "error: reading the clock returned: %s\n",
417 ppc_rtas_process_error(error));
418 seq_printf(m, "0");
419 } else {
420 unsigned int year, mon, day, hour, min, sec;
421 year = ret[0]; mon = ret[1]; day = ret[2];
422 hour = ret[3]; min = ret[4]; sec = ret[5];
423 seq_printf(m, "%lu\n",
424 mktime(year, mon, day, hour, min, sec));
425 }
426 return 0;
427 }
428
429 /* ****************************************************************** */
430 /* SENSOR STUFF */
431 /* ****************************************************************** */
432 static int ppc_rtas_sensors_show(struct seq_file *m, void *v)
433 {
434 int i,j;
435 int state, error;
436 int get_sensor_state = rtas_token("get-sensor-state");
437
438 seq_printf(m, "RTAS (RunTime Abstraction Services) Sensor Information\n");
439 seq_printf(m, "Sensor\t\tValue\t\tCondition\tLocation\n");
440 seq_printf(m, "********************************************************\n");
441
442 if (ppc_rtas_find_all_sensors() != 0) {
443 seq_printf(m, "\nNo sensors are available\n");
444 return 0;
445 }
446
447 for (i=0; i<sensors.quant; i++) {
448 struct individual_sensor *p = &sensors.sensor[i];
449 char rstr[64];
450 char *loc;
451 int llen, offs;
452
453 sprintf (rstr, SENSOR_PREFIX"%04d", p->token);
454 loc = (char *) get_property(rtas_node, rstr, &llen);
455
456 /* A sensor may have multiple instances */
457 for (j = 0, offs = 0; j <= p->quant; j++) {
458 error = rtas_call(get_sensor_state, 2, 2, &state,
459 p->token, j);
460
461 ppc_rtas_process_sensor(m, p, state, error, loc);
462 seq_putc(m, '\n');
463 if (loc) {
464 offs += strlen(loc) + 1;
465 loc += strlen(loc) + 1;
466 if (offs >= llen)
467 loc = NULL;
468 }
469 }
470 }
471 return 0;
472 }
473
474 /* ****************************************************************** */
475
476 static int ppc_rtas_find_all_sensors(void)
477 {
478 unsigned int *utmp;
479 int len, i;
480
481 utmp = (unsigned int *) get_property(rtas_node, "rtas-sensors", &len);
482 if (utmp == NULL) {
483 printk (KERN_ERR "error: could not get rtas-sensors\n");
484 return 1;
485 }
486
487 sensors.quant = len / 8; /* int + int */
488
489 for (i=0; i<sensors.quant; i++) {
490 sensors.sensor[i].token = *utmp++;
491 sensors.sensor[i].quant = *utmp++;
492 }
493 return 0;
494 }
495
496 /* ****************************************************************** */
497 /*
498 * Builds a string of what rtas returned
499 */
500 static char *ppc_rtas_process_error(int error)
501 {
502 switch (error) {
503 case SENSOR_CRITICAL_HIGH:
504 return "(critical high)";
505 case SENSOR_WARNING_HIGH:
506 return "(warning high)";
507 case SENSOR_NORMAL:
508 return "(normal)";
509 case SENSOR_WARNING_LOW:
510 return "(warning low)";
511 case SENSOR_CRITICAL_LOW:
512 return "(critical low)";
513 case SENSOR_SUCCESS:
514 return "(read ok)";
515 case SENSOR_HW_ERROR:
516 return "(hardware error)";
517 case SENSOR_BUSY:
518 return "(busy)";
519 case SENSOR_NOT_EXIST:
520 return "(non existent)";
521 case SENSOR_DR_ENTITY:
522 return "(dr entity removed)";
523 default:
524 return "(UNKNOWN)";
525 }
526 }
527
528 /* ****************************************************************** */
529 /*
530 * Builds a string out of what the sensor said
531 */
532
533 static void ppc_rtas_process_sensor(struct seq_file *m,
534 struct individual_sensor *s, int state, int error, char *loc)
535 {
536 /* Defined return vales */
537 const char * key_switch[] = { "Off\t", "Normal\t", "Secure\t",
538 "Maintenance" };
539 const char * enclosure_switch[] = { "Closed", "Open" };
540 const char * lid_status[] = { " ", "Open", "Closed" };
541 const char * power_source[] = { "AC\t", "Battery",
542 "AC & Battery" };
543 const char * battery_remaining[] = { "Very Low", "Low", "Mid", "High" };
544 const char * epow_sensor[] = {
545 "EPOW Reset", "Cooling warning", "Power warning",
546 "System shutdown", "System halt", "EPOW main enclosure",
547 "EPOW power off" };
548 const char * battery_cyclestate[] = { "None", "In progress",
549 "Requested" };
550 const char * battery_charging[] = { "Charging", "Discharching",
551 "No current flow" };
552 const char * ibm_drconnector[] = { "Empty", "Present", "Unusable",
553 "Exchange" };
554
555 int have_strings = 0;
556 int num_states = 0;
557 int temperature = 0;
558 int unknown = 0;
559
560 /* What kind of sensor do we have here? */
561
562 switch (s->token) {
563 case KEY_SWITCH:
564 seq_printf(m, "Key switch:\t");
565 num_states = sizeof(key_switch) / sizeof(char *);
566 if (state < num_states) {
567 seq_printf(m, "%s\t", key_switch[state]);
568 have_strings = 1;
569 }
570 break;
571 case ENCLOSURE_SWITCH:
572 seq_printf(m, "Enclosure switch:\t");
573 num_states = sizeof(enclosure_switch) / sizeof(char *);
574 if (state < num_states) {
575 seq_printf(m, "%s\t",
576 enclosure_switch[state]);
577 have_strings = 1;
578 }
579 break;
580 case THERMAL_SENSOR:
581 seq_printf(m, "Temp. (C/F):\t");
582 temperature = 1;
583 break;
584 case LID_STATUS:
585 seq_printf(m, "Lid status:\t");
586 num_states = sizeof(lid_status) / sizeof(char *);
587 if (state < num_states) {
588 seq_printf(m, "%s\t", lid_status[state]);
589 have_strings = 1;
590 }
591 break;
592 case POWER_SOURCE:
593 seq_printf(m, "Power source:\t");
594 num_states = sizeof(power_source) / sizeof(char *);
595 if (state < num_states) {
596 seq_printf(m, "%s\t",
597 power_source[state]);
598 have_strings = 1;
599 }
600 break;
601 case BATTERY_VOLTAGE:
602 seq_printf(m, "Battery voltage:\t");
603 break;
604 case BATTERY_REMAINING:
605 seq_printf(m, "Battery remaining:\t");
606 num_states = sizeof(battery_remaining) / sizeof(char *);
607 if (state < num_states)
608 {
609 seq_printf(m, "%s\t",
610 battery_remaining[state]);
611 have_strings = 1;
612 }
613 break;
614 case BATTERY_PERCENTAGE:
615 seq_printf(m, "Battery percentage:\t");
616 break;
617 case EPOW_SENSOR:
618 seq_printf(m, "EPOW Sensor:\t");
619 num_states = sizeof(epow_sensor) / sizeof(char *);
620 if (state < num_states) {
621 seq_printf(m, "%s\t", epow_sensor[state]);
622 have_strings = 1;
623 }
624 break;
625 case BATTERY_CYCLESTATE:
626 seq_printf(m, "Battery cyclestate:\t");
627 num_states = sizeof(battery_cyclestate) /
628 sizeof(char *);
629 if (state < num_states) {
630 seq_printf(m, "%s\t",
631 battery_cyclestate[state]);
632 have_strings = 1;
633 }
634 break;
635 case BATTERY_CHARGING:
636 seq_printf(m, "Battery Charging:\t");
637 num_states = sizeof(battery_charging) / sizeof(char *);
638 if (state < num_states) {
639 seq_printf(m, "%s\t",
640 battery_charging[state]);
641 have_strings = 1;
642 }
643 break;
644 case IBM_SURVEILLANCE:
645 seq_printf(m, "Surveillance:\t");
646 break;
647 case IBM_FANRPM:
648 seq_printf(m, "Fan (rpm):\t");
649 break;
650 case IBM_VOLTAGE:
651 seq_printf(m, "Voltage (mv):\t");
652 break;
653 case IBM_DRCONNECTOR:
654 seq_printf(m, "DR connector:\t");
655 num_states = sizeof(ibm_drconnector) / sizeof(char *);
656 if (state < num_states) {
657 seq_printf(m, "%s\t",
658 ibm_drconnector[state]);
659 have_strings = 1;
660 }
661 break;
662 case IBM_POWERSUPPLY:
663 seq_printf(m, "Powersupply:\t");
664 break;
665 default:
666 seq_printf(m, "Unknown sensor (type %d), ignoring it\n",
667 s->token);
668 unknown = 1;
669 have_strings = 1;
670 break;
671 }
672 if (have_strings == 0) {
673 if (temperature) {
674 seq_printf(m, "%4d /%4d\t", state, cel_to_fahr(state));
675 } else
676 seq_printf(m, "%10d\t", state);
677 }
678 if (unknown == 0) {
679 seq_printf(m, "%s\t", ppc_rtas_process_error(error));
680 get_location_code(m, s, loc);
681 }
682 }
683
684 /* ****************************************************************** */
685
686 static void check_location(struct seq_file *m, char *c)
687 {
688 switch (c[0]) {
689 case LOC_PLANAR:
690 seq_printf(m, "Planar #%c", c[1]);
691 break;
692 case LOC_CPU:
693 seq_printf(m, "CPU #%c", c[1]);
694 break;
695 case LOC_FAN:
696 seq_printf(m, "Fan #%c", c[1]);
697 break;
698 case LOC_RACKMOUNTED:
699 seq_printf(m, "Rack #%c", c[1]);
700 break;
701 case LOC_VOLTAGE:
702 seq_printf(m, "Voltage #%c", c[1]);
703 break;
704 case LOC_LCD:
705 seq_printf(m, "LCD #%c", c[1]);
706 break;
707 case '.':
708 seq_printf(m, "- %c", c[1]);
709 break;
710 default:
711 seq_printf(m, "Unknown location");
712 break;
713 }
714 }
715
716
717 /* ****************************************************************** */
718 /*
719 * Format:
720 * ${LETTER}${NUMBER}[[-/]${LETTER}${NUMBER} [ ... ] ]
721 * the '.' may be an abbrevation
722 */
723 static void check_location_string(struct seq_file *m, char *c)
724 {
725 while (*c) {
726 if (isalpha(*c) || *c == '.')
727 check_location(m, c);
728 else if (*c == '/' || *c == '-')
729 seq_printf(m, " at ");
730 c++;
731 }
732 }
733
734
735 /* ****************************************************************** */
736
737 static void get_location_code(struct seq_file *m, struct individual_sensor *s, char *loc)
738 {
739 if (!loc || !*loc) {
740 seq_printf(m, "---");/* does not have a location */
741 } else {
742 check_location_string(m, loc);
743 }
744 seq_putc(m, ' ');
745 }
746 /* ****************************************************************** */
747 /* INDICATORS - Tone Frequency */
748 /* ****************************************************************** */
749 static ssize_t ppc_rtas_tone_freq_write(struct file *file,
750 const char __user *buf, size_t count, loff_t *ppos)
751 {
752 unsigned long freq;
753 int error = parse_number(buf, count, &freq);
754 if (error)
755 return error;
756
757 rtas_tone_frequency = freq; /* save it for later */
758 error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
759 TONE_FREQUENCY, 0, freq);
760 if (error)
761 printk(KERN_WARNING "error: setting tone frequency returned: %s\n",
762 ppc_rtas_process_error(error));
763 return count;
764 }
765 /* ****************************************************************** */
766 static int ppc_rtas_tone_freq_show(struct seq_file *m, void *v)
767 {
768 seq_printf(m, "%lu\n", rtas_tone_frequency);
769 return 0;
770 }
771 /* ****************************************************************** */
772 /* INDICATORS - Tone Volume */
773 /* ****************************************************************** */
774 static ssize_t ppc_rtas_tone_volume_write(struct file *file,
775 const char __user *buf, size_t count, loff_t *ppos)
776 {
777 unsigned long volume;
778 int error = parse_number(buf, count, &volume);
779 if (error)
780 return error;
781
782 if (volume > 100)
783 volume = 100;
784
785 rtas_tone_volume = volume; /* save it for later */
786 error = rtas_call(rtas_token("set-indicator"), 3, 1, NULL,
787 TONE_VOLUME, 0, volume);
788 if (error)
789 printk(KERN_WARNING "error: setting tone volume returned: %s\n",
790 ppc_rtas_process_error(error));
791 return count;
792 }
793 /* ****************************************************************** */
794 static int ppc_rtas_tone_volume_show(struct seq_file *m, void *v)
795 {
796 seq_printf(m, "%lu\n", rtas_tone_volume);
797 return 0;
798 }
799
800 #define RMO_READ_BUF_MAX 30
801
802 /* RTAS Userspace access */
803 static int ppc_rtas_rmo_buf_show(struct seq_file *m, void *v)
804 {
805 seq_printf(m, "%016lx %x\n", rtas_rmo_buf, RTAS_RMOBUF_MAX);
806 return 0;
807 }