]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/riscv/include/asm/io.h
RISC-V: io.h: type fixes for warnings
[mirror_ubuntu-bionic-kernel.git] / arch / riscv / include / asm / io.h
1 /*
2 * {read,write}{b,w,l,q} based on arch/arm64/include/asm/io.h
3 * which was based on arch/arm/include/io.h
4 *
5 * Copyright (C) 1996-2000 Russell King
6 * Copyright (C) 2012 ARM Ltd.
7 * Copyright (C) 2014 Regents of the University of California
8 *
9 * This program is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU General Public License
11 * as published by the Free Software Foundation, version 2.
12 *
13 * This program is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 * GNU General Public License for more details.
17 */
18
19 #ifndef _ASM_RISCV_IO_H
20 #define _ASM_RISCV_IO_H
21
22 #include <linux/types.h>
23
24 #ifdef CONFIG_MMU
25
26 extern void __iomem *ioremap(phys_addr_t offset, unsigned long size);
27
28 /*
29 * The RISC-V ISA doesn't yet specify how to query or modify PMAs, so we can't
30 * change the properties of memory regions. This should be fixed by the
31 * upcoming platform spec.
32 */
33 #define ioremap_nocache(addr, size) ioremap((addr), (size))
34 #define ioremap_wc(addr, size) ioremap((addr), (size))
35 #define ioremap_wt(addr, size) ioremap((addr), (size))
36
37 extern void iounmap(volatile void __iomem *addr);
38
39 #endif /* CONFIG_MMU */
40
41 /* Generic IO read/write. These perform native-endian accesses. */
42 #define __raw_writeb __raw_writeb
43 static inline void __raw_writeb(u8 val, volatile void __iomem *addr)
44 {
45 asm volatile("sb %0, 0(%1)" : : "r" (val), "r" (addr));
46 }
47
48 #define __raw_writew __raw_writew
49 static inline void __raw_writew(u16 val, volatile void __iomem *addr)
50 {
51 asm volatile("sh %0, 0(%1)" : : "r" (val), "r" (addr));
52 }
53
54 #define __raw_writel __raw_writel
55 static inline void __raw_writel(u32 val, volatile void __iomem *addr)
56 {
57 asm volatile("sw %0, 0(%1)" : : "r" (val), "r" (addr));
58 }
59
60 #ifdef CONFIG_64BIT
61 #define __raw_writeq __raw_writeq
62 static inline void __raw_writeq(u64 val, volatile void __iomem *addr)
63 {
64 asm volatile("sd %0, 0(%1)" : : "r" (val), "r" (addr));
65 }
66 #endif
67
68 #define __raw_readb __raw_readb
69 static inline u8 __raw_readb(const volatile void __iomem *addr)
70 {
71 u8 val;
72
73 asm volatile("lb %0, 0(%1)" : "=r" (val) : "r" (addr));
74 return val;
75 }
76
77 #define __raw_readw __raw_readw
78 static inline u16 __raw_readw(const volatile void __iomem *addr)
79 {
80 u16 val;
81
82 asm volatile("lh %0, 0(%1)" : "=r" (val) : "r" (addr));
83 return val;
84 }
85
86 #define __raw_readl __raw_readl
87 static inline u32 __raw_readl(const volatile void __iomem *addr)
88 {
89 u32 val;
90
91 asm volatile("lw %0, 0(%1)" : "=r" (val) : "r" (addr));
92 return val;
93 }
94
95 #ifdef CONFIG_64BIT
96 #define __raw_readq __raw_readq
97 static inline u64 __raw_readq(const volatile void __iomem *addr)
98 {
99 u64 val;
100
101 asm volatile("ld %0, 0(%1)" : "=r" (val) : "r" (addr));
102 return val;
103 }
104 #endif
105
106 /*
107 * FIXME: I'm flip-flopping on whether or not we should keep this or enforce
108 * the ordering with I/O on spinlocks like PowerPC does. The worry is that
109 * drivers won't get this correct, but I also don't want to introduce a fence
110 * into the lock code that otherwise only uses AMOs (and is essentially defined
111 * by the ISA to be correct). For now I'm leaving this here: "o,w" is
112 * sufficient to ensure that all writes to the device have completed before the
113 * write to the spinlock is allowed to commit. I surmised this from reading
114 * "ACQUIRES VS I/O ACCESSES" in memory-barriers.txt.
115 */
116 #define mmiowb() __asm__ __volatile__ ("fence o,w" : : : "memory");
117
118 /*
119 * Unordered I/O memory access primitives. These are even more relaxed than
120 * the relaxed versions, as they don't even order accesses between successive
121 * operations to the I/O regions.
122 */
123 #define readb_cpu(c) ({ u8 __r = __raw_readb(c); __r; })
124 #define readw_cpu(c) ({ u16 __r = le16_to_cpu((__force __le16)__raw_readw(c)); __r; })
125 #define readl_cpu(c) ({ u32 __r = le32_to_cpu((__force __le32)__raw_readl(c)); __r; })
126
127 #define writeb_cpu(v,c) ((void)__raw_writeb((v),(c)))
128 #define writew_cpu(v,c) ((void)__raw_writew((__force u16)cpu_to_le16(v),(c)))
129 #define writel_cpu(v,c) ((void)__raw_writel((__force u32)cpu_to_le32(v),(c)))
130
131 #ifdef CONFIG_64BIT
132 #define readq_cpu(c) ({ u64 __r = le64_to_cpu((__force __le64)__raw_readq(c)); __r; })
133 #define writeq_cpu(v,c) ((void)__raw_writeq((__force u64)cpu_to_le64(v),(c)))
134 #endif
135
136 /*
137 * Relaxed I/O memory access primitives. These follow the Device memory
138 * ordering rules but do not guarantee any ordering relative to Normal memory
139 * accesses. These are defined to order the indicated access (either a read or
140 * write) with all other I/O memory accesses. Since the platform specification
141 * defines that all I/O regions are strongly ordered on channel 2, no explicit
142 * fences are required to enforce this ordering.
143 */
144 /* FIXME: These are now the same as asm-generic */
145 #define __io_rbr() do {} while (0)
146 #define __io_rar() do {} while (0)
147 #define __io_rbw() do {} while (0)
148 #define __io_raw() do {} while (0)
149
150 #define readb_relaxed(c) ({ u8 __v; __io_rbr(); __v = readb_cpu(c); __io_rar(); __v; })
151 #define readw_relaxed(c) ({ u16 __v; __io_rbr(); __v = readw_cpu(c); __io_rar(); __v; })
152 #define readl_relaxed(c) ({ u32 __v; __io_rbr(); __v = readl_cpu(c); __io_rar(); __v; })
153
154 #define writeb_relaxed(v,c) ({ __io_rbw(); writeb_cpu((v),(c)); __io_raw(); })
155 #define writew_relaxed(v,c) ({ __io_rbw(); writew_cpu((v),(c)); __io_raw(); })
156 #define writel_relaxed(v,c) ({ __io_rbw(); writel_cpu((v),(c)); __io_raw(); })
157
158 #ifdef CONFIG_64BIT
159 #define readq_relaxed(c) ({ u64 __v; __io_rbr(); __v = readq_cpu(c); __io_rar(); __v; })
160 #define writeq_relaxed(v,c) ({ __io_rbw(); writeq_cpu((v),(c)); __io_raw(); })
161 #endif
162
163 /*
164 * I/O memory access primitives. Reads are ordered relative to any
165 * following Normal memory access. Writes are ordered relative to any prior
166 * Normal memory access. The memory barriers here are necessary as RISC-V
167 * doesn't define any ordering between the memory space and the I/O space.
168 */
169 #define __io_br() do {} while (0)
170 #define __io_ar() __asm__ __volatile__ ("fence i,r" : : : "memory");
171 #define __io_bw() __asm__ __volatile__ ("fence w,o" : : : "memory");
172 #define __io_aw() do {} while (0)
173
174 #define readb(c) ({ u8 __v; __io_br(); __v = readb_cpu(c); __io_ar(); __v; })
175 #define readw(c) ({ u16 __v; __io_br(); __v = readw_cpu(c); __io_ar(); __v; })
176 #define readl(c) ({ u32 __v; __io_br(); __v = readl_cpu(c); __io_ar(); __v; })
177
178 #define writeb(v,c) ({ __io_bw(); writeb_cpu((v),(c)); __io_aw(); })
179 #define writew(v,c) ({ __io_bw(); writew_cpu((v),(c)); __io_aw(); })
180 #define writel(v,c) ({ __io_bw(); writel_cpu((v),(c)); __io_aw(); })
181
182 #ifdef CONFIG_64BIT
183 #define readq(c) ({ u64 __v; __io_br(); __v = readq_cpu(c); __io_ar(); __v; })
184 #define writeq(v,c) ({ __io_bw(); writeq_cpu((v),(c)); __io_aw(); })
185 #endif
186
187 /*
188 * Emulation routines for the port-mapped IO space used by some PCI drivers.
189 * These are defined as being "fully synchronous", but also "not guaranteed to
190 * be fully ordered with respect to other memory and I/O operations". We're
191 * going to be on the safe side here and just make them:
192 * - Fully ordered WRT each other, by bracketing them with two fences. The
193 * outer set contains both I/O so inX is ordered with outX, while the inner just
194 * needs the type of the access (I for inX and O for outX).
195 * - Ordered in the same manner as readX/writeX WRT memory by subsuming their
196 * fences.
197 * - Ordered WRT timer reads, so udelay and friends don't get elided by the
198 * implementation.
199 * Note that there is no way to actually enforce that outX is a non-posted
200 * operation on RISC-V, but hopefully the timer ordering constraint is
201 * sufficient to ensure this works sanely on controllers that support I/O
202 * writes.
203 */
204 #define __io_pbr() __asm__ __volatile__ ("fence io,i" : : : "memory");
205 #define __io_par() __asm__ __volatile__ ("fence i,ior" : : : "memory");
206 #define __io_pbw() __asm__ __volatile__ ("fence iow,o" : : : "memory");
207 #define __io_paw() __asm__ __volatile__ ("fence o,io" : : : "memory");
208
209 #define inb(c) ({ u8 __v; __io_pbr(); __v = readb_cpu((void*)(PCI_IOBASE + (c))); __io_par(); __v; })
210 #define inw(c) ({ u16 __v; __io_pbr(); __v = readw_cpu((void*)(PCI_IOBASE + (c))); __io_par(); __v; })
211 #define inl(c) ({ u32 __v; __io_pbr(); __v = readl_cpu((void*)(PCI_IOBASE + (c))); __io_par(); __v; })
212
213 #define outb(v,c) ({ __io_pbw(); writeb_cpu((v),(void*)(PCI_IOBASE + (c))); __io_paw(); })
214 #define outw(v,c) ({ __io_pbw(); writew_cpu((v),(void*)(PCI_IOBASE + (c))); __io_paw(); })
215 #define outl(v,c) ({ __io_pbw(); writel_cpu((v),(void*)(PCI_IOBASE + (c))); __io_paw(); })
216
217 #ifdef CONFIG_64BIT
218 #define inq(c) ({ u64 __v; __io_pbr(); __v = readq_cpu((void*)(c)); __io_par(); __v; })
219 #define outq(v,c) ({ __io_pbw(); writeq_cpu((v),(void*)(c)); __io_paw(); })
220 #endif
221
222 /*
223 * Accesses from a single hart to a single I/O address must be ordered. This
224 * allows us to use the raw read macros, but we still need to fence before and
225 * after the block to ensure ordering WRT other macros. These are defined to
226 * perform host-endian accesses so we use __raw instead of __cpu.
227 */
228 #define __io_reads_ins(port, ctype, len, bfence, afence) \
229 static inline void __ ## port ## len(const volatile void __iomem *addr, \
230 void *buffer, \
231 unsigned int count) \
232 { \
233 bfence; \
234 if (count) { \
235 ctype *buf = buffer; \
236 \
237 do { \
238 ctype x = __raw_read ## len(addr); \
239 *buf++ = x; \
240 } while (--count); \
241 } \
242 afence; \
243 }
244
245 #define __io_writes_outs(port, ctype, len, bfence, afence) \
246 static inline void __ ## port ## len(volatile void __iomem *addr, \
247 const void *buffer, \
248 unsigned int count) \
249 { \
250 bfence; \
251 if (count) { \
252 const ctype *buf = buffer; \
253 \
254 do { \
255 __raw_writeq(*buf++, addr); \
256 } while (--count); \
257 } \
258 afence; \
259 }
260
261 __io_reads_ins(reads, u8, b, __io_br(), __io_ar())
262 __io_reads_ins(reads, u16, w, __io_br(), __io_ar())
263 __io_reads_ins(reads, u32, l, __io_br(), __io_ar())
264 #define readsb(addr, buffer, count) __readsb(addr, buffer, count)
265 #define readsw(addr, buffer, count) __readsw(addr, buffer, count)
266 #define readsl(addr, buffer, count) __readsl(addr, buffer, count)
267
268 __io_reads_ins(ins, u8, b, __io_pbr(), __io_par())
269 __io_reads_ins(ins, u16, w, __io_pbr(), __io_par())
270 __io_reads_ins(ins, u32, l, __io_pbr(), __io_par())
271 #define insb(addr, buffer, count) __insb((void __iomem *)(long)addr, buffer, count)
272 #define insw(addr, buffer, count) __insw((void __iomem *)(long)addr, buffer, count)
273 #define insl(addr, buffer, count) __insl((void __iomem *)(long)addr, buffer, count)
274
275 __io_writes_outs(writes, u8, b, __io_bw(), __io_aw())
276 __io_writes_outs(writes, u16, w, __io_bw(), __io_aw())
277 __io_writes_outs(writes, u32, l, __io_bw(), __io_aw())
278 #define writesb(addr, buffer, count) __writesb(addr, buffer, count)
279 #define writesw(addr, buffer, count) __writesw(addr, buffer, count)
280 #define writesl(addr, buffer, count) __writesl(addr, buffer, count)
281
282 __io_writes_outs(outs, u8, b, __io_pbw(), __io_paw())
283 __io_writes_outs(outs, u16, w, __io_pbw(), __io_paw())
284 __io_writes_outs(outs, u32, l, __io_pbw(), __io_paw())
285 #define outsb(addr, buffer, count) __outsb((void __iomem *)(long)addr, buffer, count)
286 #define outsw(addr, buffer, count) __outsw((void __iomem *)(long)addr, buffer, count)
287 #define outsl(addr, buffer, count) __outsl((void __iomem *)(long)addr, buffer, count)
288
289 #ifdef CONFIG_64BIT
290 __io_reads_ins(reads, u64, q, __io_br(), __io_ar())
291 #define readsq(addr, buffer, count) __readsq(addr, buffer, count)
292
293 __io_reads_ins(ins, u64, q, __io_pbr(), __io_par())
294 #define insq(addr, buffer, count) __insq((void __iomem *)addr, buffer, count)
295
296 __io_writes_outs(writes, u64, q, __io_bw(), __io_aw())
297 #define writesq(addr, buffer, count) __writesq(addr, buffer, count)
298
299 __io_writes_outs(outs, u64, q, __io_pbr(), __io_paw())
300 #define outsq(addr, buffer, count) __outsq((void __iomem *)addr, buffer, count)
301 #endif
302
303 #include <asm-generic/io.h>
304
305 #endif /* _ASM_RISCV_IO_H */