]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/s390/crypto/aes_s390.c
Merge branch 'linux-next' of git://git.open-osd.org/linux-open-osd
[mirror_ubuntu-artful-kernel.git] / arch / s390 / crypto / aes_s390.c
1 /*
2 * Cryptographic API.
3 *
4 * s390 implementation of the AES Cipher Algorithm.
5 *
6 * s390 Version:
7 * Copyright IBM Corp. 2005, 2007
8 * Author(s): Jan Glauber (jang@de.ibm.com)
9 * Sebastian Siewior (sebastian@breakpoint.cc> SW-Fallback
10 *
11 * Derived from "crypto/aes_generic.c"
12 *
13 * This program is free software; you can redistribute it and/or modify it
14 * under the terms of the GNU General Public License as published by the Free
15 * Software Foundation; either version 2 of the License, or (at your option)
16 * any later version.
17 *
18 */
19
20 #define KMSG_COMPONENT "aes_s390"
21 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
22
23 #include <crypto/aes.h>
24 #include <crypto/algapi.h>
25 #include <linux/err.h>
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include "crypt_s390.h"
29
30 #define AES_KEYLEN_128 1
31 #define AES_KEYLEN_192 2
32 #define AES_KEYLEN_256 4
33
34 static u8 *ctrblk;
35 static char keylen_flag;
36
37 struct s390_aes_ctx {
38 u8 iv[AES_BLOCK_SIZE];
39 u8 key[AES_MAX_KEY_SIZE];
40 long enc;
41 long dec;
42 int key_len;
43 union {
44 struct crypto_blkcipher *blk;
45 struct crypto_cipher *cip;
46 } fallback;
47 };
48
49 struct pcc_param {
50 u8 key[32];
51 u8 tweak[16];
52 u8 block[16];
53 u8 bit[16];
54 u8 xts[16];
55 };
56
57 struct s390_xts_ctx {
58 u8 key[32];
59 u8 xts_param[16];
60 struct pcc_param pcc;
61 long enc;
62 long dec;
63 int key_len;
64 struct crypto_blkcipher *fallback;
65 };
66
67 /*
68 * Check if the key_len is supported by the HW.
69 * Returns 0 if it is, a positive number if it is not and software fallback is
70 * required or a negative number in case the key size is not valid
71 */
72 static int need_fallback(unsigned int key_len)
73 {
74 switch (key_len) {
75 case 16:
76 if (!(keylen_flag & AES_KEYLEN_128))
77 return 1;
78 break;
79 case 24:
80 if (!(keylen_flag & AES_KEYLEN_192))
81 return 1;
82 break;
83 case 32:
84 if (!(keylen_flag & AES_KEYLEN_256))
85 return 1;
86 break;
87 default:
88 return -1;
89 break;
90 }
91 return 0;
92 }
93
94 static int setkey_fallback_cip(struct crypto_tfm *tfm, const u8 *in_key,
95 unsigned int key_len)
96 {
97 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
98 int ret;
99
100 sctx->fallback.cip->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
101 sctx->fallback.cip->base.crt_flags |= (tfm->crt_flags &
102 CRYPTO_TFM_REQ_MASK);
103
104 ret = crypto_cipher_setkey(sctx->fallback.cip, in_key, key_len);
105 if (ret) {
106 tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
107 tfm->crt_flags |= (sctx->fallback.cip->base.crt_flags &
108 CRYPTO_TFM_RES_MASK);
109 }
110 return ret;
111 }
112
113 static int aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
114 unsigned int key_len)
115 {
116 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
117 u32 *flags = &tfm->crt_flags;
118 int ret;
119
120 ret = need_fallback(key_len);
121 if (ret < 0) {
122 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
123 return -EINVAL;
124 }
125
126 sctx->key_len = key_len;
127 if (!ret) {
128 memcpy(sctx->key, in_key, key_len);
129 return 0;
130 }
131
132 return setkey_fallback_cip(tfm, in_key, key_len);
133 }
134
135 static void aes_encrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
136 {
137 const struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
138
139 if (unlikely(need_fallback(sctx->key_len))) {
140 crypto_cipher_encrypt_one(sctx->fallback.cip, out, in);
141 return;
142 }
143
144 switch (sctx->key_len) {
145 case 16:
146 crypt_s390_km(KM_AES_128_ENCRYPT, &sctx->key, out, in,
147 AES_BLOCK_SIZE);
148 break;
149 case 24:
150 crypt_s390_km(KM_AES_192_ENCRYPT, &sctx->key, out, in,
151 AES_BLOCK_SIZE);
152 break;
153 case 32:
154 crypt_s390_km(KM_AES_256_ENCRYPT, &sctx->key, out, in,
155 AES_BLOCK_SIZE);
156 break;
157 }
158 }
159
160 static void aes_decrypt(struct crypto_tfm *tfm, u8 *out, const u8 *in)
161 {
162 const struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
163
164 if (unlikely(need_fallback(sctx->key_len))) {
165 crypto_cipher_decrypt_one(sctx->fallback.cip, out, in);
166 return;
167 }
168
169 switch (sctx->key_len) {
170 case 16:
171 crypt_s390_km(KM_AES_128_DECRYPT, &sctx->key, out, in,
172 AES_BLOCK_SIZE);
173 break;
174 case 24:
175 crypt_s390_km(KM_AES_192_DECRYPT, &sctx->key, out, in,
176 AES_BLOCK_SIZE);
177 break;
178 case 32:
179 crypt_s390_km(KM_AES_256_DECRYPT, &sctx->key, out, in,
180 AES_BLOCK_SIZE);
181 break;
182 }
183 }
184
185 static int fallback_init_cip(struct crypto_tfm *tfm)
186 {
187 const char *name = tfm->__crt_alg->cra_name;
188 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
189
190 sctx->fallback.cip = crypto_alloc_cipher(name, 0,
191 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK);
192
193 if (IS_ERR(sctx->fallback.cip)) {
194 pr_err("Allocating AES fallback algorithm %s failed\n",
195 name);
196 return PTR_ERR(sctx->fallback.cip);
197 }
198
199 return 0;
200 }
201
202 static void fallback_exit_cip(struct crypto_tfm *tfm)
203 {
204 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
205
206 crypto_free_cipher(sctx->fallback.cip);
207 sctx->fallback.cip = NULL;
208 }
209
210 static struct crypto_alg aes_alg = {
211 .cra_name = "aes",
212 .cra_driver_name = "aes-s390",
213 .cra_priority = CRYPT_S390_PRIORITY,
214 .cra_flags = CRYPTO_ALG_TYPE_CIPHER |
215 CRYPTO_ALG_NEED_FALLBACK,
216 .cra_blocksize = AES_BLOCK_SIZE,
217 .cra_ctxsize = sizeof(struct s390_aes_ctx),
218 .cra_module = THIS_MODULE,
219 .cra_init = fallback_init_cip,
220 .cra_exit = fallback_exit_cip,
221 .cra_u = {
222 .cipher = {
223 .cia_min_keysize = AES_MIN_KEY_SIZE,
224 .cia_max_keysize = AES_MAX_KEY_SIZE,
225 .cia_setkey = aes_set_key,
226 .cia_encrypt = aes_encrypt,
227 .cia_decrypt = aes_decrypt,
228 }
229 }
230 };
231
232 static int setkey_fallback_blk(struct crypto_tfm *tfm, const u8 *key,
233 unsigned int len)
234 {
235 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
236 unsigned int ret;
237
238 sctx->fallback.blk->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
239 sctx->fallback.blk->base.crt_flags |= (tfm->crt_flags &
240 CRYPTO_TFM_REQ_MASK);
241
242 ret = crypto_blkcipher_setkey(sctx->fallback.blk, key, len);
243 if (ret) {
244 tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
245 tfm->crt_flags |= (sctx->fallback.blk->base.crt_flags &
246 CRYPTO_TFM_RES_MASK);
247 }
248 return ret;
249 }
250
251 static int fallback_blk_dec(struct blkcipher_desc *desc,
252 struct scatterlist *dst, struct scatterlist *src,
253 unsigned int nbytes)
254 {
255 unsigned int ret;
256 struct crypto_blkcipher *tfm;
257 struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
258
259 tfm = desc->tfm;
260 desc->tfm = sctx->fallback.blk;
261
262 ret = crypto_blkcipher_decrypt_iv(desc, dst, src, nbytes);
263
264 desc->tfm = tfm;
265 return ret;
266 }
267
268 static int fallback_blk_enc(struct blkcipher_desc *desc,
269 struct scatterlist *dst, struct scatterlist *src,
270 unsigned int nbytes)
271 {
272 unsigned int ret;
273 struct crypto_blkcipher *tfm;
274 struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
275
276 tfm = desc->tfm;
277 desc->tfm = sctx->fallback.blk;
278
279 ret = crypto_blkcipher_encrypt_iv(desc, dst, src, nbytes);
280
281 desc->tfm = tfm;
282 return ret;
283 }
284
285 static int ecb_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
286 unsigned int key_len)
287 {
288 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
289 int ret;
290
291 ret = need_fallback(key_len);
292 if (ret > 0) {
293 sctx->key_len = key_len;
294 return setkey_fallback_blk(tfm, in_key, key_len);
295 }
296
297 switch (key_len) {
298 case 16:
299 sctx->enc = KM_AES_128_ENCRYPT;
300 sctx->dec = KM_AES_128_DECRYPT;
301 break;
302 case 24:
303 sctx->enc = KM_AES_192_ENCRYPT;
304 sctx->dec = KM_AES_192_DECRYPT;
305 break;
306 case 32:
307 sctx->enc = KM_AES_256_ENCRYPT;
308 sctx->dec = KM_AES_256_DECRYPT;
309 break;
310 }
311
312 return aes_set_key(tfm, in_key, key_len);
313 }
314
315 static int ecb_aes_crypt(struct blkcipher_desc *desc, long func, void *param,
316 struct blkcipher_walk *walk)
317 {
318 int ret = blkcipher_walk_virt(desc, walk);
319 unsigned int nbytes;
320
321 while ((nbytes = walk->nbytes)) {
322 /* only use complete blocks */
323 unsigned int n = nbytes & ~(AES_BLOCK_SIZE - 1);
324 u8 *out = walk->dst.virt.addr;
325 u8 *in = walk->src.virt.addr;
326
327 ret = crypt_s390_km(func, param, out, in, n);
328 BUG_ON((ret < 0) || (ret != n));
329
330 nbytes &= AES_BLOCK_SIZE - 1;
331 ret = blkcipher_walk_done(desc, walk, nbytes);
332 }
333
334 return ret;
335 }
336
337 static int ecb_aes_encrypt(struct blkcipher_desc *desc,
338 struct scatterlist *dst, struct scatterlist *src,
339 unsigned int nbytes)
340 {
341 struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
342 struct blkcipher_walk walk;
343
344 if (unlikely(need_fallback(sctx->key_len)))
345 return fallback_blk_enc(desc, dst, src, nbytes);
346
347 blkcipher_walk_init(&walk, dst, src, nbytes);
348 return ecb_aes_crypt(desc, sctx->enc, sctx->key, &walk);
349 }
350
351 static int ecb_aes_decrypt(struct blkcipher_desc *desc,
352 struct scatterlist *dst, struct scatterlist *src,
353 unsigned int nbytes)
354 {
355 struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
356 struct blkcipher_walk walk;
357
358 if (unlikely(need_fallback(sctx->key_len)))
359 return fallback_blk_dec(desc, dst, src, nbytes);
360
361 blkcipher_walk_init(&walk, dst, src, nbytes);
362 return ecb_aes_crypt(desc, sctx->dec, sctx->key, &walk);
363 }
364
365 static int fallback_init_blk(struct crypto_tfm *tfm)
366 {
367 const char *name = tfm->__crt_alg->cra_name;
368 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
369
370 sctx->fallback.blk = crypto_alloc_blkcipher(name, 0,
371 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK);
372
373 if (IS_ERR(sctx->fallback.blk)) {
374 pr_err("Allocating AES fallback algorithm %s failed\n",
375 name);
376 return PTR_ERR(sctx->fallback.blk);
377 }
378
379 return 0;
380 }
381
382 static void fallback_exit_blk(struct crypto_tfm *tfm)
383 {
384 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
385
386 crypto_free_blkcipher(sctx->fallback.blk);
387 sctx->fallback.blk = NULL;
388 }
389
390 static struct crypto_alg ecb_aes_alg = {
391 .cra_name = "ecb(aes)",
392 .cra_driver_name = "ecb-aes-s390",
393 .cra_priority = CRYPT_S390_COMPOSITE_PRIORITY,
394 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
395 CRYPTO_ALG_NEED_FALLBACK,
396 .cra_blocksize = AES_BLOCK_SIZE,
397 .cra_ctxsize = sizeof(struct s390_aes_ctx),
398 .cra_type = &crypto_blkcipher_type,
399 .cra_module = THIS_MODULE,
400 .cra_init = fallback_init_blk,
401 .cra_exit = fallback_exit_blk,
402 .cra_u = {
403 .blkcipher = {
404 .min_keysize = AES_MIN_KEY_SIZE,
405 .max_keysize = AES_MAX_KEY_SIZE,
406 .setkey = ecb_aes_set_key,
407 .encrypt = ecb_aes_encrypt,
408 .decrypt = ecb_aes_decrypt,
409 }
410 }
411 };
412
413 static int cbc_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
414 unsigned int key_len)
415 {
416 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
417 int ret;
418
419 ret = need_fallback(key_len);
420 if (ret > 0) {
421 sctx->key_len = key_len;
422 return setkey_fallback_blk(tfm, in_key, key_len);
423 }
424
425 switch (key_len) {
426 case 16:
427 sctx->enc = KMC_AES_128_ENCRYPT;
428 sctx->dec = KMC_AES_128_DECRYPT;
429 break;
430 case 24:
431 sctx->enc = KMC_AES_192_ENCRYPT;
432 sctx->dec = KMC_AES_192_DECRYPT;
433 break;
434 case 32:
435 sctx->enc = KMC_AES_256_ENCRYPT;
436 sctx->dec = KMC_AES_256_DECRYPT;
437 break;
438 }
439
440 return aes_set_key(tfm, in_key, key_len);
441 }
442
443 static int cbc_aes_crypt(struct blkcipher_desc *desc, long func, void *param,
444 struct blkcipher_walk *walk)
445 {
446 int ret = blkcipher_walk_virt(desc, walk);
447 unsigned int nbytes = walk->nbytes;
448
449 if (!nbytes)
450 goto out;
451
452 memcpy(param, walk->iv, AES_BLOCK_SIZE);
453 do {
454 /* only use complete blocks */
455 unsigned int n = nbytes & ~(AES_BLOCK_SIZE - 1);
456 u8 *out = walk->dst.virt.addr;
457 u8 *in = walk->src.virt.addr;
458
459 ret = crypt_s390_kmc(func, param, out, in, n);
460 BUG_ON((ret < 0) || (ret != n));
461
462 nbytes &= AES_BLOCK_SIZE - 1;
463 ret = blkcipher_walk_done(desc, walk, nbytes);
464 } while ((nbytes = walk->nbytes));
465 memcpy(walk->iv, param, AES_BLOCK_SIZE);
466
467 out:
468 return ret;
469 }
470
471 static int cbc_aes_encrypt(struct blkcipher_desc *desc,
472 struct scatterlist *dst, struct scatterlist *src,
473 unsigned int nbytes)
474 {
475 struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
476 struct blkcipher_walk walk;
477
478 if (unlikely(need_fallback(sctx->key_len)))
479 return fallback_blk_enc(desc, dst, src, nbytes);
480
481 blkcipher_walk_init(&walk, dst, src, nbytes);
482 return cbc_aes_crypt(desc, sctx->enc, sctx->iv, &walk);
483 }
484
485 static int cbc_aes_decrypt(struct blkcipher_desc *desc,
486 struct scatterlist *dst, struct scatterlist *src,
487 unsigned int nbytes)
488 {
489 struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
490 struct blkcipher_walk walk;
491
492 if (unlikely(need_fallback(sctx->key_len)))
493 return fallback_blk_dec(desc, dst, src, nbytes);
494
495 blkcipher_walk_init(&walk, dst, src, nbytes);
496 return cbc_aes_crypt(desc, sctx->dec, sctx->iv, &walk);
497 }
498
499 static struct crypto_alg cbc_aes_alg = {
500 .cra_name = "cbc(aes)",
501 .cra_driver_name = "cbc-aes-s390",
502 .cra_priority = CRYPT_S390_COMPOSITE_PRIORITY,
503 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
504 CRYPTO_ALG_NEED_FALLBACK,
505 .cra_blocksize = AES_BLOCK_SIZE,
506 .cra_ctxsize = sizeof(struct s390_aes_ctx),
507 .cra_type = &crypto_blkcipher_type,
508 .cra_module = THIS_MODULE,
509 .cra_init = fallback_init_blk,
510 .cra_exit = fallback_exit_blk,
511 .cra_u = {
512 .blkcipher = {
513 .min_keysize = AES_MIN_KEY_SIZE,
514 .max_keysize = AES_MAX_KEY_SIZE,
515 .ivsize = AES_BLOCK_SIZE,
516 .setkey = cbc_aes_set_key,
517 .encrypt = cbc_aes_encrypt,
518 .decrypt = cbc_aes_decrypt,
519 }
520 }
521 };
522
523 static int xts_fallback_setkey(struct crypto_tfm *tfm, const u8 *key,
524 unsigned int len)
525 {
526 struct s390_xts_ctx *xts_ctx = crypto_tfm_ctx(tfm);
527 unsigned int ret;
528
529 xts_ctx->fallback->base.crt_flags &= ~CRYPTO_TFM_REQ_MASK;
530 xts_ctx->fallback->base.crt_flags |= (tfm->crt_flags &
531 CRYPTO_TFM_REQ_MASK);
532
533 ret = crypto_blkcipher_setkey(xts_ctx->fallback, key, len);
534 if (ret) {
535 tfm->crt_flags &= ~CRYPTO_TFM_RES_MASK;
536 tfm->crt_flags |= (xts_ctx->fallback->base.crt_flags &
537 CRYPTO_TFM_RES_MASK);
538 }
539 return ret;
540 }
541
542 static int xts_fallback_decrypt(struct blkcipher_desc *desc,
543 struct scatterlist *dst, struct scatterlist *src,
544 unsigned int nbytes)
545 {
546 struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(desc->tfm);
547 struct crypto_blkcipher *tfm;
548 unsigned int ret;
549
550 tfm = desc->tfm;
551 desc->tfm = xts_ctx->fallback;
552
553 ret = crypto_blkcipher_decrypt_iv(desc, dst, src, nbytes);
554
555 desc->tfm = tfm;
556 return ret;
557 }
558
559 static int xts_fallback_encrypt(struct blkcipher_desc *desc,
560 struct scatterlist *dst, struct scatterlist *src,
561 unsigned int nbytes)
562 {
563 struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(desc->tfm);
564 struct crypto_blkcipher *tfm;
565 unsigned int ret;
566
567 tfm = desc->tfm;
568 desc->tfm = xts_ctx->fallback;
569
570 ret = crypto_blkcipher_encrypt_iv(desc, dst, src, nbytes);
571
572 desc->tfm = tfm;
573 return ret;
574 }
575
576 static int xts_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
577 unsigned int key_len)
578 {
579 struct s390_xts_ctx *xts_ctx = crypto_tfm_ctx(tfm);
580 u32 *flags = &tfm->crt_flags;
581
582 switch (key_len) {
583 case 32:
584 xts_ctx->enc = KM_XTS_128_ENCRYPT;
585 xts_ctx->dec = KM_XTS_128_DECRYPT;
586 memcpy(xts_ctx->key + 16, in_key, 16);
587 memcpy(xts_ctx->pcc.key + 16, in_key + 16, 16);
588 break;
589 case 48:
590 xts_ctx->enc = 0;
591 xts_ctx->dec = 0;
592 xts_fallback_setkey(tfm, in_key, key_len);
593 break;
594 case 64:
595 xts_ctx->enc = KM_XTS_256_ENCRYPT;
596 xts_ctx->dec = KM_XTS_256_DECRYPT;
597 memcpy(xts_ctx->key, in_key, 32);
598 memcpy(xts_ctx->pcc.key, in_key + 32, 32);
599 break;
600 default:
601 *flags |= CRYPTO_TFM_RES_BAD_KEY_LEN;
602 return -EINVAL;
603 }
604 xts_ctx->key_len = key_len;
605 return 0;
606 }
607
608 static int xts_aes_crypt(struct blkcipher_desc *desc, long func,
609 struct s390_xts_ctx *xts_ctx,
610 struct blkcipher_walk *walk)
611 {
612 unsigned int offset = (xts_ctx->key_len >> 1) & 0x10;
613 int ret = blkcipher_walk_virt(desc, walk);
614 unsigned int nbytes = walk->nbytes;
615 unsigned int n;
616 u8 *in, *out;
617 void *param;
618
619 if (!nbytes)
620 goto out;
621
622 memset(xts_ctx->pcc.block, 0, sizeof(xts_ctx->pcc.block));
623 memset(xts_ctx->pcc.bit, 0, sizeof(xts_ctx->pcc.bit));
624 memset(xts_ctx->pcc.xts, 0, sizeof(xts_ctx->pcc.xts));
625 memcpy(xts_ctx->pcc.tweak, walk->iv, sizeof(xts_ctx->pcc.tweak));
626 param = xts_ctx->pcc.key + offset;
627 ret = crypt_s390_pcc(func, param);
628 BUG_ON(ret < 0);
629
630 memcpy(xts_ctx->xts_param, xts_ctx->pcc.xts, 16);
631 param = xts_ctx->key + offset;
632 do {
633 /* only use complete blocks */
634 n = nbytes & ~(AES_BLOCK_SIZE - 1);
635 out = walk->dst.virt.addr;
636 in = walk->src.virt.addr;
637
638 ret = crypt_s390_km(func, param, out, in, n);
639 BUG_ON(ret < 0 || ret != n);
640
641 nbytes &= AES_BLOCK_SIZE - 1;
642 ret = blkcipher_walk_done(desc, walk, nbytes);
643 } while ((nbytes = walk->nbytes));
644 out:
645 return ret;
646 }
647
648 static int xts_aes_encrypt(struct blkcipher_desc *desc,
649 struct scatterlist *dst, struct scatterlist *src,
650 unsigned int nbytes)
651 {
652 struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(desc->tfm);
653 struct blkcipher_walk walk;
654
655 if (unlikely(xts_ctx->key_len == 48))
656 return xts_fallback_encrypt(desc, dst, src, nbytes);
657
658 blkcipher_walk_init(&walk, dst, src, nbytes);
659 return xts_aes_crypt(desc, xts_ctx->enc, xts_ctx, &walk);
660 }
661
662 static int xts_aes_decrypt(struct blkcipher_desc *desc,
663 struct scatterlist *dst, struct scatterlist *src,
664 unsigned int nbytes)
665 {
666 struct s390_xts_ctx *xts_ctx = crypto_blkcipher_ctx(desc->tfm);
667 struct blkcipher_walk walk;
668
669 if (unlikely(xts_ctx->key_len == 48))
670 return xts_fallback_decrypt(desc, dst, src, nbytes);
671
672 blkcipher_walk_init(&walk, dst, src, nbytes);
673 return xts_aes_crypt(desc, xts_ctx->dec, xts_ctx, &walk);
674 }
675
676 static int xts_fallback_init(struct crypto_tfm *tfm)
677 {
678 const char *name = tfm->__crt_alg->cra_name;
679 struct s390_xts_ctx *xts_ctx = crypto_tfm_ctx(tfm);
680
681 xts_ctx->fallback = crypto_alloc_blkcipher(name, 0,
682 CRYPTO_ALG_ASYNC | CRYPTO_ALG_NEED_FALLBACK);
683
684 if (IS_ERR(xts_ctx->fallback)) {
685 pr_err("Allocating XTS fallback algorithm %s failed\n",
686 name);
687 return PTR_ERR(xts_ctx->fallback);
688 }
689 return 0;
690 }
691
692 static void xts_fallback_exit(struct crypto_tfm *tfm)
693 {
694 struct s390_xts_ctx *xts_ctx = crypto_tfm_ctx(tfm);
695
696 crypto_free_blkcipher(xts_ctx->fallback);
697 xts_ctx->fallback = NULL;
698 }
699
700 static struct crypto_alg xts_aes_alg = {
701 .cra_name = "xts(aes)",
702 .cra_driver_name = "xts-aes-s390",
703 .cra_priority = CRYPT_S390_COMPOSITE_PRIORITY,
704 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER |
705 CRYPTO_ALG_NEED_FALLBACK,
706 .cra_blocksize = AES_BLOCK_SIZE,
707 .cra_ctxsize = sizeof(struct s390_xts_ctx),
708 .cra_type = &crypto_blkcipher_type,
709 .cra_module = THIS_MODULE,
710 .cra_init = xts_fallback_init,
711 .cra_exit = xts_fallback_exit,
712 .cra_u = {
713 .blkcipher = {
714 .min_keysize = 2 * AES_MIN_KEY_SIZE,
715 .max_keysize = 2 * AES_MAX_KEY_SIZE,
716 .ivsize = AES_BLOCK_SIZE,
717 .setkey = xts_aes_set_key,
718 .encrypt = xts_aes_encrypt,
719 .decrypt = xts_aes_decrypt,
720 }
721 }
722 };
723
724 static int ctr_aes_set_key(struct crypto_tfm *tfm, const u8 *in_key,
725 unsigned int key_len)
726 {
727 struct s390_aes_ctx *sctx = crypto_tfm_ctx(tfm);
728
729 switch (key_len) {
730 case 16:
731 sctx->enc = KMCTR_AES_128_ENCRYPT;
732 sctx->dec = KMCTR_AES_128_DECRYPT;
733 break;
734 case 24:
735 sctx->enc = KMCTR_AES_192_ENCRYPT;
736 sctx->dec = KMCTR_AES_192_DECRYPT;
737 break;
738 case 32:
739 sctx->enc = KMCTR_AES_256_ENCRYPT;
740 sctx->dec = KMCTR_AES_256_DECRYPT;
741 break;
742 }
743
744 return aes_set_key(tfm, in_key, key_len);
745 }
746
747 static int ctr_aes_crypt(struct blkcipher_desc *desc, long func,
748 struct s390_aes_ctx *sctx, struct blkcipher_walk *walk)
749 {
750 int ret = blkcipher_walk_virt_block(desc, walk, AES_BLOCK_SIZE);
751 unsigned int i, n, nbytes;
752 u8 buf[AES_BLOCK_SIZE];
753 u8 *out, *in;
754
755 if (!walk->nbytes)
756 return ret;
757
758 memcpy(ctrblk, walk->iv, AES_BLOCK_SIZE);
759 while ((nbytes = walk->nbytes) >= AES_BLOCK_SIZE) {
760 out = walk->dst.virt.addr;
761 in = walk->src.virt.addr;
762 while (nbytes >= AES_BLOCK_SIZE) {
763 /* only use complete blocks, max. PAGE_SIZE */
764 n = (nbytes > PAGE_SIZE) ? PAGE_SIZE :
765 nbytes & ~(AES_BLOCK_SIZE - 1);
766 for (i = AES_BLOCK_SIZE; i < n; i += AES_BLOCK_SIZE) {
767 memcpy(ctrblk + i, ctrblk + i - AES_BLOCK_SIZE,
768 AES_BLOCK_SIZE);
769 crypto_inc(ctrblk + i, AES_BLOCK_SIZE);
770 }
771 ret = crypt_s390_kmctr(func, sctx->key, out, in, n, ctrblk);
772 BUG_ON(ret < 0 || ret != n);
773 if (n > AES_BLOCK_SIZE)
774 memcpy(ctrblk, ctrblk + n - AES_BLOCK_SIZE,
775 AES_BLOCK_SIZE);
776 crypto_inc(ctrblk, AES_BLOCK_SIZE);
777 out += n;
778 in += n;
779 nbytes -= n;
780 }
781 ret = blkcipher_walk_done(desc, walk, nbytes);
782 }
783 /*
784 * final block may be < AES_BLOCK_SIZE, copy only nbytes
785 */
786 if (nbytes) {
787 out = walk->dst.virt.addr;
788 in = walk->src.virt.addr;
789 ret = crypt_s390_kmctr(func, sctx->key, buf, in,
790 AES_BLOCK_SIZE, ctrblk);
791 BUG_ON(ret < 0 || ret != AES_BLOCK_SIZE);
792 memcpy(out, buf, nbytes);
793 crypto_inc(ctrblk, AES_BLOCK_SIZE);
794 ret = blkcipher_walk_done(desc, walk, 0);
795 }
796 memcpy(walk->iv, ctrblk, AES_BLOCK_SIZE);
797 return ret;
798 }
799
800 static int ctr_aes_encrypt(struct blkcipher_desc *desc,
801 struct scatterlist *dst, struct scatterlist *src,
802 unsigned int nbytes)
803 {
804 struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
805 struct blkcipher_walk walk;
806
807 blkcipher_walk_init(&walk, dst, src, nbytes);
808 return ctr_aes_crypt(desc, sctx->enc, sctx, &walk);
809 }
810
811 static int ctr_aes_decrypt(struct blkcipher_desc *desc,
812 struct scatterlist *dst, struct scatterlist *src,
813 unsigned int nbytes)
814 {
815 struct s390_aes_ctx *sctx = crypto_blkcipher_ctx(desc->tfm);
816 struct blkcipher_walk walk;
817
818 blkcipher_walk_init(&walk, dst, src, nbytes);
819 return ctr_aes_crypt(desc, sctx->dec, sctx, &walk);
820 }
821
822 static struct crypto_alg ctr_aes_alg = {
823 .cra_name = "ctr(aes)",
824 .cra_driver_name = "ctr-aes-s390",
825 .cra_priority = CRYPT_S390_COMPOSITE_PRIORITY,
826 .cra_flags = CRYPTO_ALG_TYPE_BLKCIPHER,
827 .cra_blocksize = 1,
828 .cra_ctxsize = sizeof(struct s390_aes_ctx),
829 .cra_type = &crypto_blkcipher_type,
830 .cra_module = THIS_MODULE,
831 .cra_u = {
832 .blkcipher = {
833 .min_keysize = AES_MIN_KEY_SIZE,
834 .max_keysize = AES_MAX_KEY_SIZE,
835 .ivsize = AES_BLOCK_SIZE,
836 .setkey = ctr_aes_set_key,
837 .encrypt = ctr_aes_encrypt,
838 .decrypt = ctr_aes_decrypt,
839 }
840 }
841 };
842
843 static int __init aes_s390_init(void)
844 {
845 int ret;
846
847 if (crypt_s390_func_available(KM_AES_128_ENCRYPT, CRYPT_S390_MSA))
848 keylen_flag |= AES_KEYLEN_128;
849 if (crypt_s390_func_available(KM_AES_192_ENCRYPT, CRYPT_S390_MSA))
850 keylen_flag |= AES_KEYLEN_192;
851 if (crypt_s390_func_available(KM_AES_256_ENCRYPT, CRYPT_S390_MSA))
852 keylen_flag |= AES_KEYLEN_256;
853
854 if (!keylen_flag)
855 return -EOPNOTSUPP;
856
857 /* z9 109 and z9 BC/EC only support 128 bit key length */
858 if (keylen_flag == AES_KEYLEN_128)
859 pr_info("AES hardware acceleration is only available for"
860 " 128-bit keys\n");
861
862 ret = crypto_register_alg(&aes_alg);
863 if (ret)
864 goto aes_err;
865
866 ret = crypto_register_alg(&ecb_aes_alg);
867 if (ret)
868 goto ecb_aes_err;
869
870 ret = crypto_register_alg(&cbc_aes_alg);
871 if (ret)
872 goto cbc_aes_err;
873
874 if (crypt_s390_func_available(KM_XTS_128_ENCRYPT,
875 CRYPT_S390_MSA | CRYPT_S390_MSA4) &&
876 crypt_s390_func_available(KM_XTS_256_ENCRYPT,
877 CRYPT_S390_MSA | CRYPT_S390_MSA4)) {
878 ret = crypto_register_alg(&xts_aes_alg);
879 if (ret)
880 goto xts_aes_err;
881 }
882
883 if (crypt_s390_func_available(KMCTR_AES_128_ENCRYPT,
884 CRYPT_S390_MSA | CRYPT_S390_MSA4) &&
885 crypt_s390_func_available(KMCTR_AES_192_ENCRYPT,
886 CRYPT_S390_MSA | CRYPT_S390_MSA4) &&
887 crypt_s390_func_available(KMCTR_AES_256_ENCRYPT,
888 CRYPT_S390_MSA | CRYPT_S390_MSA4)) {
889 ctrblk = (u8 *) __get_free_page(GFP_KERNEL);
890 if (!ctrblk) {
891 ret = -ENOMEM;
892 goto ctr_aes_err;
893 }
894 ret = crypto_register_alg(&ctr_aes_alg);
895 if (ret) {
896 free_page((unsigned long) ctrblk);
897 goto ctr_aes_err;
898 }
899 }
900
901 out:
902 return ret;
903
904 ctr_aes_err:
905 crypto_unregister_alg(&xts_aes_alg);
906 xts_aes_err:
907 crypto_unregister_alg(&cbc_aes_alg);
908 cbc_aes_err:
909 crypto_unregister_alg(&ecb_aes_alg);
910 ecb_aes_err:
911 crypto_unregister_alg(&aes_alg);
912 aes_err:
913 goto out;
914 }
915
916 static void __exit aes_s390_fini(void)
917 {
918 crypto_unregister_alg(&ctr_aes_alg);
919 free_page((unsigned long) ctrblk);
920 crypto_unregister_alg(&xts_aes_alg);
921 crypto_unregister_alg(&cbc_aes_alg);
922 crypto_unregister_alg(&ecb_aes_alg);
923 crypto_unregister_alg(&aes_alg);
924 }
925
926 module_init(aes_s390_init);
927 module_exit(aes_s390_fini);
928
929 MODULE_ALIAS("aes-all");
930
931 MODULE_DESCRIPTION("Rijndael (AES) Cipher Algorithm");
932 MODULE_LICENSE("GPL");