]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/s390/include/asm/pgtable.h
s390/mm: properly clear _PAGE_NOEXEC bit when it is not supported
[mirror_ubuntu-bionic-kernel.git] / arch / s390 / include / asm / pgtable.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * S390 version
4 * Copyright IBM Corp. 1999, 2000
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (weigand@de.ibm.com)
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 *
9 * Derived from "include/asm-i386/pgtable.h"
10 */
11
12 #ifndef _ASM_S390_PGTABLE_H
13 #define _ASM_S390_PGTABLE_H
14
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/page-flags.h>
18 #include <linux/radix-tree.h>
19 #include <linux/atomic.h>
20 #include <asm/bug.h>
21 #include <asm/page.h>
22
23 extern pgd_t swapper_pg_dir[];
24 extern void paging_init(void);
25
26 enum {
27 PG_DIRECT_MAP_4K = 0,
28 PG_DIRECT_MAP_1M,
29 PG_DIRECT_MAP_2G,
30 PG_DIRECT_MAP_MAX
31 };
32
33 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
34
35 static inline void update_page_count(int level, long count)
36 {
37 if (IS_ENABLED(CONFIG_PROC_FS))
38 atomic_long_add(count, &direct_pages_count[level]);
39 }
40
41 struct seq_file;
42 void arch_report_meminfo(struct seq_file *m);
43
44 /*
45 * The S390 doesn't have any external MMU info: the kernel page
46 * tables contain all the necessary information.
47 */
48 #define update_mmu_cache(vma, address, ptep) do { } while (0)
49 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
50
51 /*
52 * ZERO_PAGE is a global shared page that is always zero; used
53 * for zero-mapped memory areas etc..
54 */
55
56 extern unsigned long empty_zero_page;
57 extern unsigned long zero_page_mask;
58
59 #define ZERO_PAGE(vaddr) \
60 (virt_to_page((void *)(empty_zero_page + \
61 (((unsigned long)(vaddr)) &zero_page_mask))))
62 #define __HAVE_COLOR_ZERO_PAGE
63
64 /* TODO: s390 cannot support io_remap_pfn_range... */
65
66 #define FIRST_USER_ADDRESS 0UL
67
68 #define pte_ERROR(e) \
69 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
70 #define pmd_ERROR(e) \
71 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
72 #define pud_ERROR(e) \
73 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
74 #define p4d_ERROR(e) \
75 printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e))
76 #define pgd_ERROR(e) \
77 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
78
79 /*
80 * The vmalloc and module area will always be on the topmost area of the
81 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
82 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
83 * modules will reside. That makes sure that inter module branches always
84 * happen without trampolines and in addition the placement within a 2GB frame
85 * is branch prediction unit friendly.
86 */
87 extern unsigned long VMALLOC_START;
88 extern unsigned long VMALLOC_END;
89 extern struct page *vmemmap;
90
91 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
92
93 extern unsigned long MODULES_VADDR;
94 extern unsigned long MODULES_END;
95 #define MODULES_VADDR MODULES_VADDR
96 #define MODULES_END MODULES_END
97 #define MODULES_LEN (1UL << 31)
98
99 static inline int is_module_addr(void *addr)
100 {
101 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
102 if (addr < (void *)MODULES_VADDR)
103 return 0;
104 if (addr > (void *)MODULES_END)
105 return 0;
106 return 1;
107 }
108
109 /*
110 * A 64 bit pagetable entry of S390 has following format:
111 * | PFRA |0IPC| OS |
112 * 0000000000111111111122222222223333333333444444444455555555556666
113 * 0123456789012345678901234567890123456789012345678901234567890123
114 *
115 * I Page-Invalid Bit: Page is not available for address-translation
116 * P Page-Protection Bit: Store access not possible for page
117 * C Change-bit override: HW is not required to set change bit
118 *
119 * A 64 bit segmenttable entry of S390 has following format:
120 * | P-table origin | TT
121 * 0000000000111111111122222222223333333333444444444455555555556666
122 * 0123456789012345678901234567890123456789012345678901234567890123
123 *
124 * I Segment-Invalid Bit: Segment is not available for address-translation
125 * C Common-Segment Bit: Segment is not private (PoP 3-30)
126 * P Page-Protection Bit: Store access not possible for page
127 * TT Type 00
128 *
129 * A 64 bit region table entry of S390 has following format:
130 * | S-table origin | TF TTTL
131 * 0000000000111111111122222222223333333333444444444455555555556666
132 * 0123456789012345678901234567890123456789012345678901234567890123
133 *
134 * I Segment-Invalid Bit: Segment is not available for address-translation
135 * TT Type 01
136 * TF
137 * TL Table length
138 *
139 * The 64 bit regiontable origin of S390 has following format:
140 * | region table origon | DTTL
141 * 0000000000111111111122222222223333333333444444444455555555556666
142 * 0123456789012345678901234567890123456789012345678901234567890123
143 *
144 * X Space-Switch event:
145 * G Segment-Invalid Bit:
146 * P Private-Space Bit:
147 * S Storage-Alteration:
148 * R Real space
149 * TL Table-Length:
150 *
151 * A storage key has the following format:
152 * | ACC |F|R|C|0|
153 * 0 3 4 5 6 7
154 * ACC: access key
155 * F : fetch protection bit
156 * R : referenced bit
157 * C : changed bit
158 */
159
160 /* Hardware bits in the page table entry */
161 #define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
162 #define _PAGE_PROTECT 0x200 /* HW read-only bit */
163 #define _PAGE_INVALID 0x400 /* HW invalid bit */
164 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
165
166 /* Software bits in the page table entry */
167 #define _PAGE_PRESENT 0x001 /* SW pte present bit */
168 #define _PAGE_YOUNG 0x004 /* SW pte young bit */
169 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
170 #define _PAGE_READ 0x010 /* SW pte read bit */
171 #define _PAGE_WRITE 0x020 /* SW pte write bit */
172 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
173 #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
174 #define __HAVE_ARCH_PTE_SPECIAL
175
176 #ifdef CONFIG_MEM_SOFT_DIRTY
177 #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
178 #else
179 #define _PAGE_SOFT_DIRTY 0x000
180 #endif
181
182 /* Set of bits not changed in pte_modify */
183 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
184 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
185
186 /*
187 * handle_pte_fault uses pte_present and pte_none to find out the pte type
188 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
189 * distinguish present from not-present ptes. It is changed only with the page
190 * table lock held.
191 *
192 * The following table gives the different possible bit combinations for
193 * the pte hardware and software bits in the last 12 bits of a pte
194 * (. unassigned bit, x don't care, t swap type):
195 *
196 * 842100000000
197 * 000084210000
198 * 000000008421
199 * .IR.uswrdy.p
200 * empty .10.00000000
201 * swap .11..ttttt.0
202 * prot-none, clean, old .11.xx0000.1
203 * prot-none, clean, young .11.xx0001.1
204 * prot-none, dirty, old .11.xx0010.1
205 * prot-none, dirty, young .11.xx0011.1
206 * read-only, clean, old .11.xx0100.1
207 * read-only, clean, young .01.xx0101.1
208 * read-only, dirty, old .11.xx0110.1
209 * read-only, dirty, young .01.xx0111.1
210 * read-write, clean, old .11.xx1100.1
211 * read-write, clean, young .01.xx1101.1
212 * read-write, dirty, old .10.xx1110.1
213 * read-write, dirty, young .00.xx1111.1
214 * HW-bits: R read-only, I invalid
215 * SW-bits: p present, y young, d dirty, r read, w write, s special,
216 * u unused, l large
217 *
218 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
219 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
220 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
221 */
222
223 /* Bits in the segment/region table address-space-control-element */
224 #define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */
225 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
226 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
227 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
228 #define _ASCE_REAL_SPACE 0x20 /* real space control */
229 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
230 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
231 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
232 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
233 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
234 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
235
236 /* Bits in the region table entry */
237 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
238 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
239 #define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
240 #define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
241 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
242 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
243 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
244 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
245 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
246 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
247
248 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
249 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
250 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
251 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
252 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
253 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
254
255 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
256 #define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
257 #define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
258 #define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
259 #define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
260 #define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
261
262 #ifdef CONFIG_MEM_SOFT_DIRTY
263 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
264 #else
265 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
266 #endif
267
268 #define _REGION_ENTRY_BITS 0xfffffffffffff22fUL
269 #define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe2fUL
270
271 /* Bits in the segment table entry */
272 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
273 #define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
274 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
275 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */
276 #define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */
277 #define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */
278 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
279
280 #define _SEGMENT_ENTRY (0)
281 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
282
283 #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
284 #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
285 #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
286 #define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
287 #define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
288
289 #ifdef CONFIG_MEM_SOFT_DIRTY
290 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
291 #else
292 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
293 #endif
294
295 #define _CRST_ENTRIES 2048 /* number of region/segment table entries */
296 #define _PAGE_ENTRIES 256 /* number of page table entries */
297
298 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
299 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
300
301 #define _REGION1_SHIFT 53
302 #define _REGION2_SHIFT 42
303 #define _REGION3_SHIFT 31
304 #define _SEGMENT_SHIFT 20
305
306 #define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT)
307 #define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT)
308 #define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT)
309 #define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT)
310 #define _PAGE_INDEX (0xffUL << _PAGE_SHIFT)
311
312 #define _REGION1_SIZE (1UL << _REGION1_SHIFT)
313 #define _REGION2_SIZE (1UL << _REGION2_SHIFT)
314 #define _REGION3_SIZE (1UL << _REGION3_SHIFT)
315 #define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT)
316
317 #define _REGION1_MASK (~(_REGION1_SIZE - 1))
318 #define _REGION2_MASK (~(_REGION2_SIZE - 1))
319 #define _REGION3_MASK (~(_REGION3_SIZE - 1))
320 #define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1))
321
322 #define PMD_SHIFT _SEGMENT_SHIFT
323 #define PUD_SHIFT _REGION3_SHIFT
324 #define P4D_SHIFT _REGION2_SHIFT
325 #define PGDIR_SHIFT _REGION1_SHIFT
326
327 #define PMD_SIZE _SEGMENT_SIZE
328 #define PUD_SIZE _REGION3_SIZE
329 #define P4D_SIZE _REGION2_SIZE
330 #define PGDIR_SIZE _REGION1_SIZE
331
332 #define PMD_MASK _SEGMENT_MASK
333 #define PUD_MASK _REGION3_MASK
334 #define P4D_MASK _REGION2_MASK
335 #define PGDIR_MASK _REGION1_MASK
336
337 #define PTRS_PER_PTE _PAGE_ENTRIES
338 #define PTRS_PER_PMD _CRST_ENTRIES
339 #define PTRS_PER_PUD _CRST_ENTRIES
340 #define PTRS_PER_P4D _CRST_ENTRIES
341 #define PTRS_PER_PGD _CRST_ENTRIES
342
343 /*
344 * Segment table and region3 table entry encoding
345 * (R = read-only, I = invalid, y = young bit):
346 * dy..R...I...wr
347 * prot-none, clean, old 00..1...1...00
348 * prot-none, clean, young 01..1...1...00
349 * prot-none, dirty, old 10..1...1...00
350 * prot-none, dirty, young 11..1...1...00
351 * read-only, clean, old 00..1...1...01
352 * read-only, clean, young 01..1...0...01
353 * read-only, dirty, old 10..1...1...01
354 * read-only, dirty, young 11..1...0...01
355 * read-write, clean, old 00..1...1...11
356 * read-write, clean, young 01..1...0...11
357 * read-write, dirty, old 10..0...1...11
358 * read-write, dirty, young 11..0...0...11
359 * The segment table origin is used to distinguish empty (origin==0) from
360 * read-write, old segment table entries (origin!=0)
361 * HW-bits: R read-only, I invalid
362 * SW-bits: y young, d dirty, r read, w write
363 */
364
365 /* Page status table bits for virtualization */
366 #define PGSTE_ACC_BITS 0xf000000000000000UL
367 #define PGSTE_FP_BIT 0x0800000000000000UL
368 #define PGSTE_PCL_BIT 0x0080000000000000UL
369 #define PGSTE_HR_BIT 0x0040000000000000UL
370 #define PGSTE_HC_BIT 0x0020000000000000UL
371 #define PGSTE_GR_BIT 0x0004000000000000UL
372 #define PGSTE_GC_BIT 0x0002000000000000UL
373 #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
374 #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
375 #define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
376
377 /* Guest Page State used for virtualization */
378 #define _PGSTE_GPS_ZERO 0x0000000080000000UL
379 #define _PGSTE_GPS_NODAT 0x0000000040000000UL
380 #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
381 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
382 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
383 #define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
384 #define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
385
386 /*
387 * A user page table pointer has the space-switch-event bit, the
388 * private-space-control bit and the storage-alteration-event-control
389 * bit set. A kernel page table pointer doesn't need them.
390 */
391 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
392 _ASCE_ALT_EVENT)
393
394 /*
395 * Page protection definitions.
396 */
397 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
398 #define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
399 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
400 #define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
401 _PAGE_INVALID | _PAGE_PROTECT)
402 #define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
403 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
404 #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
405 _PAGE_INVALID | _PAGE_PROTECT)
406
407 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
408 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
409 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
410 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
411 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
412 _PAGE_PROTECT | _PAGE_NOEXEC)
413 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
414 _PAGE_YOUNG | _PAGE_DIRTY)
415
416 /*
417 * On s390 the page table entry has an invalid bit and a read-only bit.
418 * Read permission implies execute permission and write permission
419 * implies read permission.
420 */
421 /*xwr*/
422 #define __P000 PAGE_NONE
423 #define __P001 PAGE_RO
424 #define __P010 PAGE_RO
425 #define __P011 PAGE_RO
426 #define __P100 PAGE_RX
427 #define __P101 PAGE_RX
428 #define __P110 PAGE_RX
429 #define __P111 PAGE_RX
430
431 #define __S000 PAGE_NONE
432 #define __S001 PAGE_RO
433 #define __S010 PAGE_RW
434 #define __S011 PAGE_RW
435 #define __S100 PAGE_RX
436 #define __S101 PAGE_RX
437 #define __S110 PAGE_RWX
438 #define __S111 PAGE_RWX
439
440 /*
441 * Segment entry (large page) protection definitions.
442 */
443 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
444 _SEGMENT_ENTRY_PROTECT)
445 #define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \
446 _SEGMENT_ENTRY_READ | \
447 _SEGMENT_ENTRY_NOEXEC)
448 #define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \
449 _SEGMENT_ENTRY_READ)
450 #define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \
451 _SEGMENT_ENTRY_WRITE | \
452 _SEGMENT_ENTRY_NOEXEC)
453 #define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \
454 _SEGMENT_ENTRY_WRITE)
455 #define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
456 _SEGMENT_ENTRY_LARGE | \
457 _SEGMENT_ENTRY_READ | \
458 _SEGMENT_ENTRY_WRITE | \
459 _SEGMENT_ENTRY_YOUNG | \
460 _SEGMENT_ENTRY_DIRTY | \
461 _SEGMENT_ENTRY_NOEXEC)
462 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
463 _SEGMENT_ENTRY_LARGE | \
464 _SEGMENT_ENTRY_READ | \
465 _SEGMENT_ENTRY_YOUNG | \
466 _SEGMENT_ENTRY_PROTECT | \
467 _SEGMENT_ENTRY_NOEXEC)
468
469 /*
470 * Region3 entry (large page) protection definitions.
471 */
472
473 #define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
474 _REGION3_ENTRY_LARGE | \
475 _REGION3_ENTRY_READ | \
476 _REGION3_ENTRY_WRITE | \
477 _REGION3_ENTRY_YOUNG | \
478 _REGION3_ENTRY_DIRTY | \
479 _REGION_ENTRY_NOEXEC)
480 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
481 _REGION3_ENTRY_LARGE | \
482 _REGION3_ENTRY_READ | \
483 _REGION3_ENTRY_YOUNG | \
484 _REGION_ENTRY_PROTECT | \
485 _REGION_ENTRY_NOEXEC)
486
487 static inline bool mm_p4d_folded(struct mm_struct *mm)
488 {
489 return mm->context.asce_limit <= _REGION1_SIZE;
490 }
491 #define mm_p4d_folded(mm) mm_p4d_folded(mm)
492
493 static inline bool mm_pud_folded(struct mm_struct *mm)
494 {
495 return mm->context.asce_limit <= _REGION2_SIZE;
496 }
497 #define mm_pud_folded(mm) mm_pud_folded(mm)
498
499 static inline bool mm_pmd_folded(struct mm_struct *mm)
500 {
501 return mm->context.asce_limit <= _REGION3_SIZE;
502 }
503 #define mm_pmd_folded(mm) mm_pmd_folded(mm)
504
505 static inline int mm_has_pgste(struct mm_struct *mm)
506 {
507 #ifdef CONFIG_PGSTE
508 if (unlikely(mm->context.has_pgste))
509 return 1;
510 #endif
511 return 0;
512 }
513
514 static inline int mm_alloc_pgste(struct mm_struct *mm)
515 {
516 #ifdef CONFIG_PGSTE
517 if (unlikely(mm->context.alloc_pgste))
518 return 1;
519 #endif
520 return 0;
521 }
522
523 /*
524 * In the case that a guest uses storage keys
525 * faults should no longer be backed by zero pages
526 */
527 #define mm_forbids_zeropage mm_has_pgste
528 static inline int mm_use_skey(struct mm_struct *mm)
529 {
530 #ifdef CONFIG_PGSTE
531 if (mm->context.use_skey)
532 return 1;
533 #endif
534 return 0;
535 }
536
537 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
538 {
539 register unsigned long reg2 asm("2") = old;
540 register unsigned long reg3 asm("3") = new;
541 unsigned long address = (unsigned long)ptr | 1;
542
543 asm volatile(
544 " csp %0,%3"
545 : "+d" (reg2), "+m" (*ptr)
546 : "d" (reg3), "d" (address)
547 : "cc");
548 }
549
550 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
551 {
552 register unsigned long reg2 asm("2") = old;
553 register unsigned long reg3 asm("3") = new;
554 unsigned long address = (unsigned long)ptr | 1;
555
556 asm volatile(
557 " .insn rre,0xb98a0000,%0,%3"
558 : "+d" (reg2), "+m" (*ptr)
559 : "d" (reg3), "d" (address)
560 : "cc");
561 }
562
563 #define CRDTE_DTT_PAGE 0x00UL
564 #define CRDTE_DTT_SEGMENT 0x10UL
565 #define CRDTE_DTT_REGION3 0x14UL
566 #define CRDTE_DTT_REGION2 0x18UL
567 #define CRDTE_DTT_REGION1 0x1cUL
568
569 static inline void crdte(unsigned long old, unsigned long new,
570 unsigned long table, unsigned long dtt,
571 unsigned long address, unsigned long asce)
572 {
573 register unsigned long reg2 asm("2") = old;
574 register unsigned long reg3 asm("3") = new;
575 register unsigned long reg4 asm("4") = table | dtt;
576 register unsigned long reg5 asm("5") = address;
577
578 asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
579 : "+d" (reg2)
580 : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
581 : "memory", "cc");
582 }
583
584 /*
585 * pgd/p4d/pud/pmd/pte query functions
586 */
587 static inline int pgd_folded(pgd_t pgd)
588 {
589 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
590 }
591
592 static inline int pgd_present(pgd_t pgd)
593 {
594 if (pgd_folded(pgd))
595 return 1;
596 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
597 }
598
599 static inline int pgd_none(pgd_t pgd)
600 {
601 if (pgd_folded(pgd))
602 return 0;
603 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
604 }
605
606 static inline int pgd_bad(pgd_t pgd)
607 {
608 /*
609 * With dynamic page table levels the pgd can be a region table
610 * entry or a segment table entry. Check for the bit that are
611 * invalid for either table entry.
612 */
613 unsigned long mask =
614 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
615 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
616 return (pgd_val(pgd) & mask) != 0;
617 }
618
619 static inline int p4d_folded(p4d_t p4d)
620 {
621 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
622 }
623
624 static inline int p4d_present(p4d_t p4d)
625 {
626 if (p4d_folded(p4d))
627 return 1;
628 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
629 }
630
631 static inline int p4d_none(p4d_t p4d)
632 {
633 if (p4d_folded(p4d))
634 return 0;
635 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
636 }
637
638 static inline unsigned long p4d_pfn(p4d_t p4d)
639 {
640 unsigned long origin_mask;
641
642 origin_mask = _REGION_ENTRY_ORIGIN;
643 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
644 }
645
646 static inline int pud_folded(pud_t pud)
647 {
648 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
649 }
650
651 static inline int pud_present(pud_t pud)
652 {
653 if (pud_folded(pud))
654 return 1;
655 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
656 }
657
658 static inline int pud_none(pud_t pud)
659 {
660 if (pud_folded(pud))
661 return 0;
662 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
663 }
664
665 static inline int pud_large(pud_t pud)
666 {
667 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
668 return 0;
669 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
670 }
671
672 static inline unsigned long pud_pfn(pud_t pud)
673 {
674 unsigned long origin_mask;
675
676 origin_mask = _REGION_ENTRY_ORIGIN;
677 if (pud_large(pud))
678 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
679 return (pud_val(pud) & origin_mask) >> PAGE_SHIFT;
680 }
681
682 static inline int pmd_large(pmd_t pmd)
683 {
684 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
685 }
686
687 static inline int pmd_bad(pmd_t pmd)
688 {
689 if (pmd_large(pmd))
690 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
691 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
692 }
693
694 static inline int pud_bad(pud_t pud)
695 {
696 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
697 return pmd_bad(__pmd(pud_val(pud)));
698 if (pud_large(pud))
699 return (pud_val(pud) & ~_REGION_ENTRY_BITS_LARGE) != 0;
700 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
701 }
702
703 static inline int p4d_bad(p4d_t p4d)
704 {
705 if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
706 return pud_bad(__pud(p4d_val(p4d)));
707 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
708 }
709
710 static inline int pmd_present(pmd_t pmd)
711 {
712 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
713 }
714
715 static inline int pmd_none(pmd_t pmd)
716 {
717 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
718 }
719
720 static inline unsigned long pmd_pfn(pmd_t pmd)
721 {
722 unsigned long origin_mask;
723
724 origin_mask = _SEGMENT_ENTRY_ORIGIN;
725 if (pmd_large(pmd))
726 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
727 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
728 }
729
730 #define pmd_write pmd_write
731 static inline int pmd_write(pmd_t pmd)
732 {
733 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
734 }
735
736 static inline int pmd_dirty(pmd_t pmd)
737 {
738 int dirty = 1;
739 if (pmd_large(pmd))
740 dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
741 return dirty;
742 }
743
744 static inline int pmd_young(pmd_t pmd)
745 {
746 int young = 1;
747 if (pmd_large(pmd))
748 young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
749 return young;
750 }
751
752 static inline int pte_present(pte_t pte)
753 {
754 /* Bit pattern: (pte & 0x001) == 0x001 */
755 return (pte_val(pte) & _PAGE_PRESENT) != 0;
756 }
757
758 static inline int pte_none(pte_t pte)
759 {
760 /* Bit pattern: pte == 0x400 */
761 return pte_val(pte) == _PAGE_INVALID;
762 }
763
764 static inline int pte_swap(pte_t pte)
765 {
766 /* Bit pattern: (pte & 0x201) == 0x200 */
767 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
768 == _PAGE_PROTECT;
769 }
770
771 static inline int pte_special(pte_t pte)
772 {
773 return (pte_val(pte) & _PAGE_SPECIAL);
774 }
775
776 #define __HAVE_ARCH_PTE_SAME
777 static inline int pte_same(pte_t a, pte_t b)
778 {
779 return pte_val(a) == pte_val(b);
780 }
781
782 #ifdef CONFIG_NUMA_BALANCING
783 static inline int pte_protnone(pte_t pte)
784 {
785 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
786 }
787
788 static inline int pmd_protnone(pmd_t pmd)
789 {
790 /* pmd_large(pmd) implies pmd_present(pmd) */
791 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
792 }
793 #endif
794
795 static inline int pte_soft_dirty(pte_t pte)
796 {
797 return pte_val(pte) & _PAGE_SOFT_DIRTY;
798 }
799 #define pte_swp_soft_dirty pte_soft_dirty
800
801 static inline pte_t pte_mksoft_dirty(pte_t pte)
802 {
803 pte_val(pte) |= _PAGE_SOFT_DIRTY;
804 return pte;
805 }
806 #define pte_swp_mksoft_dirty pte_mksoft_dirty
807
808 static inline pte_t pte_clear_soft_dirty(pte_t pte)
809 {
810 pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
811 return pte;
812 }
813 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
814
815 static inline int pmd_soft_dirty(pmd_t pmd)
816 {
817 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
818 }
819
820 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
821 {
822 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
823 return pmd;
824 }
825
826 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
827 {
828 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
829 return pmd;
830 }
831
832 /*
833 * query functions pte_write/pte_dirty/pte_young only work if
834 * pte_present() is true. Undefined behaviour if not..
835 */
836 static inline int pte_write(pte_t pte)
837 {
838 return (pte_val(pte) & _PAGE_WRITE) != 0;
839 }
840
841 static inline int pte_dirty(pte_t pte)
842 {
843 return (pte_val(pte) & _PAGE_DIRTY) != 0;
844 }
845
846 static inline int pte_young(pte_t pte)
847 {
848 return (pte_val(pte) & _PAGE_YOUNG) != 0;
849 }
850
851 #define __HAVE_ARCH_PTE_UNUSED
852 static inline int pte_unused(pte_t pte)
853 {
854 return pte_val(pte) & _PAGE_UNUSED;
855 }
856
857 /*
858 * pgd/pmd/pte modification functions
859 */
860
861 static inline void pgd_clear(pgd_t *pgd)
862 {
863 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
864 pgd_val(*pgd) = _REGION1_ENTRY_EMPTY;
865 }
866
867 static inline void p4d_clear(p4d_t *p4d)
868 {
869 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
870 p4d_val(*p4d) = _REGION2_ENTRY_EMPTY;
871 }
872
873 static inline void pud_clear(pud_t *pud)
874 {
875 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
876 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
877 }
878
879 static inline void pmd_clear(pmd_t *pmdp)
880 {
881 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
882 }
883
884 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
885 {
886 pte_val(*ptep) = _PAGE_INVALID;
887 }
888
889 /*
890 * The following pte modification functions only work if
891 * pte_present() is true. Undefined behaviour if not..
892 */
893 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
894 {
895 pte_val(pte) &= _PAGE_CHG_MASK;
896 pte_val(pte) |= pgprot_val(newprot);
897 /*
898 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
899 * has the invalid bit set, clear it again for readable, young pages
900 */
901 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
902 pte_val(pte) &= ~_PAGE_INVALID;
903 /*
904 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
905 * protection bit set, clear it again for writable, dirty pages
906 */
907 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
908 pte_val(pte) &= ~_PAGE_PROTECT;
909 return pte;
910 }
911
912 static inline pte_t pte_wrprotect(pte_t pte)
913 {
914 pte_val(pte) &= ~_PAGE_WRITE;
915 pte_val(pte) |= _PAGE_PROTECT;
916 return pte;
917 }
918
919 static inline pte_t pte_mkwrite(pte_t pte)
920 {
921 pte_val(pte) |= _PAGE_WRITE;
922 if (pte_val(pte) & _PAGE_DIRTY)
923 pte_val(pte) &= ~_PAGE_PROTECT;
924 return pte;
925 }
926
927 static inline pte_t pte_mkclean(pte_t pte)
928 {
929 pte_val(pte) &= ~_PAGE_DIRTY;
930 pte_val(pte) |= _PAGE_PROTECT;
931 return pte;
932 }
933
934 static inline pte_t pte_mkdirty(pte_t pte)
935 {
936 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
937 if (pte_val(pte) & _PAGE_WRITE)
938 pte_val(pte) &= ~_PAGE_PROTECT;
939 return pte;
940 }
941
942 static inline pte_t pte_mkold(pte_t pte)
943 {
944 pte_val(pte) &= ~_PAGE_YOUNG;
945 pte_val(pte) |= _PAGE_INVALID;
946 return pte;
947 }
948
949 static inline pte_t pte_mkyoung(pte_t pte)
950 {
951 pte_val(pte) |= _PAGE_YOUNG;
952 if (pte_val(pte) & _PAGE_READ)
953 pte_val(pte) &= ~_PAGE_INVALID;
954 return pte;
955 }
956
957 static inline pte_t pte_mkspecial(pte_t pte)
958 {
959 pte_val(pte) |= _PAGE_SPECIAL;
960 return pte;
961 }
962
963 #ifdef CONFIG_HUGETLB_PAGE
964 static inline pte_t pte_mkhuge(pte_t pte)
965 {
966 pte_val(pte) |= _PAGE_LARGE;
967 return pte;
968 }
969 #endif
970
971 #define IPTE_GLOBAL 0
972 #define IPTE_LOCAL 1
973
974 #define IPTE_NODAT 0x400
975 #define IPTE_GUEST_ASCE 0x800
976
977 static inline void __ptep_ipte(unsigned long address, pte_t *ptep,
978 unsigned long opt, unsigned long asce,
979 int local)
980 {
981 unsigned long pto = (unsigned long) ptep;
982
983 if (__builtin_constant_p(opt) && opt == 0) {
984 /* Invalidation + TLB flush for the pte */
985 asm volatile(
986 " .insn rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
987 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
988 [m4] "i" (local));
989 return;
990 }
991
992 /* Invalidate ptes with options + TLB flush of the ptes */
993 opt = opt | (asce & _ASCE_ORIGIN);
994 asm volatile(
995 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
996 : [r2] "+a" (address), [r3] "+a" (opt)
997 : [r1] "a" (pto), [m4] "i" (local) : "memory");
998 }
999
1000 static inline void __ptep_ipte_range(unsigned long address, int nr,
1001 pte_t *ptep, int local)
1002 {
1003 unsigned long pto = (unsigned long) ptep;
1004
1005 /* Invalidate a range of ptes + TLB flush of the ptes */
1006 do {
1007 asm volatile(
1008 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1009 : [r2] "+a" (address), [r3] "+a" (nr)
1010 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1011 } while (nr != 255);
1012 }
1013
1014 /*
1015 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1016 * both clear the TLB for the unmapped pte. The reason is that
1017 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1018 * to modify an active pte. The sequence is
1019 * 1) ptep_get_and_clear
1020 * 2) set_pte_at
1021 * 3) flush_tlb_range
1022 * On s390 the tlb needs to get flushed with the modification of the pte
1023 * if the pte is active. The only way how this can be implemented is to
1024 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1025 * is a nop.
1026 */
1027 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1028 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1029
1030 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1031 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1032 unsigned long addr, pte_t *ptep)
1033 {
1034 pte_t pte = *ptep;
1035
1036 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1037 return pte_young(pte);
1038 }
1039
1040 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1041 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1042 unsigned long address, pte_t *ptep)
1043 {
1044 return ptep_test_and_clear_young(vma, address, ptep);
1045 }
1046
1047 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1048 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1049 unsigned long addr, pte_t *ptep)
1050 {
1051 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1052 }
1053
1054 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1055 pte_t ptep_modify_prot_start(struct mm_struct *, unsigned long, pte_t *);
1056 void ptep_modify_prot_commit(struct mm_struct *, unsigned long, pte_t *, pte_t);
1057
1058 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1059 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1060 unsigned long addr, pte_t *ptep)
1061 {
1062 return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1063 }
1064
1065 /*
1066 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1067 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1068 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1069 * cannot be accessed while the batched unmap is running. In this case
1070 * full==1 and a simple pte_clear is enough. See tlb.h.
1071 */
1072 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1073 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1074 unsigned long addr,
1075 pte_t *ptep, int full)
1076 {
1077 if (full) {
1078 pte_t pte = *ptep;
1079 *ptep = __pte(_PAGE_INVALID);
1080 return pte;
1081 }
1082 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1083 }
1084
1085 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1086 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1087 unsigned long addr, pte_t *ptep)
1088 {
1089 pte_t pte = *ptep;
1090
1091 if (pte_write(pte))
1092 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1093 }
1094
1095 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1096 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1097 unsigned long addr, pte_t *ptep,
1098 pte_t entry, int dirty)
1099 {
1100 if (pte_same(*ptep, entry))
1101 return 0;
1102 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1103 return 1;
1104 }
1105
1106 /*
1107 * Additional functions to handle KVM guest page tables
1108 */
1109 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1110 pte_t *ptep, pte_t entry);
1111 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1112 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1113 pte_t *ptep, unsigned long bits);
1114 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1115 pte_t *ptep, int prot, unsigned long bit);
1116 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1117 pte_t *ptep , int reset);
1118 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1119 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1120 pte_t *sptep, pte_t *tptep, pte_t pte);
1121 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1122
1123 bool test_and_clear_guest_dirty(struct mm_struct *mm, unsigned long address);
1124 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1125 unsigned char key, bool nq);
1126 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1127 unsigned char key, unsigned char *oldkey,
1128 bool nq, bool mr, bool mc);
1129 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1130 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1131 unsigned char *key);
1132
1133 int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1134 unsigned long bits, unsigned long value);
1135 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1136 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1137 unsigned long *oldpte, unsigned long *oldpgste);
1138
1139 /*
1140 * Certain architectures need to do special things when PTEs
1141 * within a page table are directly modified. Thus, the following
1142 * hook is made available.
1143 */
1144 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1145 pte_t *ptep, pte_t entry)
1146 {
1147 if (pte_present(entry))
1148 pte_val(entry) &= ~_PAGE_UNUSED;
1149 if (mm_has_pgste(mm))
1150 ptep_set_pte_at(mm, addr, ptep, entry);
1151 else
1152 *ptep = entry;
1153 }
1154
1155 /*
1156 * Conversion functions: convert a page and protection to a page entry,
1157 * and a page entry and page directory to the page they refer to.
1158 */
1159 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1160 {
1161 pte_t __pte;
1162 pte_val(__pte) = physpage + pgprot_val(pgprot);
1163 if (!MACHINE_HAS_NX)
1164 pte_val(__pte) &= ~_PAGE_NOEXEC;
1165 return pte_mkyoung(__pte);
1166 }
1167
1168 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1169 {
1170 unsigned long physpage = page_to_phys(page);
1171 pte_t __pte = mk_pte_phys(physpage, pgprot);
1172
1173 if (pte_write(__pte) && PageDirty(page))
1174 __pte = pte_mkdirty(__pte);
1175 return __pte;
1176 }
1177
1178 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1179 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1180 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1181 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1182 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1183
1184 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1185 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1186
1187 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1188 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1189 #define p4d_deref(pud) (p4d_val(pud) & _REGION_ENTRY_ORIGIN)
1190 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1191
1192 static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
1193 {
1194 p4d_t *p4d = (p4d_t *) pgd;
1195
1196 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
1197 p4d = (p4d_t *) pgd_deref(*pgd);
1198 return p4d + p4d_index(address);
1199 }
1200
1201 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
1202 {
1203 pud_t *pud = (pud_t *) p4d;
1204
1205 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1206 pud = (pud_t *) p4d_deref(*p4d);
1207 return pud + pud_index(address);
1208 }
1209
1210 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1211 {
1212 pmd_t *pmd = (pmd_t *) pud;
1213
1214 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1215 pmd = (pmd_t *) pud_deref(*pud);
1216 return pmd + pmd_index(address);
1217 }
1218
1219 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1220 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1221 #define pte_page(x) pfn_to_page(pte_pfn(x))
1222
1223 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1224 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1225 #define p4d_page(pud) pfn_to_page(p4d_pfn(p4d))
1226
1227 /* Find an entry in the lowest level page table.. */
1228 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1229 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1230 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1231 #define pte_unmap(pte) do { } while (0)
1232
1233 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1234 {
1235 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1236 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1237 return pmd;
1238 }
1239
1240 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1241 {
1242 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1243 if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1244 return pmd;
1245 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1246 return pmd;
1247 }
1248
1249 static inline pmd_t pmd_mkclean(pmd_t pmd)
1250 {
1251 if (pmd_large(pmd)) {
1252 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1253 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1254 }
1255 return pmd;
1256 }
1257
1258 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1259 {
1260 if (pmd_large(pmd)) {
1261 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
1262 _SEGMENT_ENTRY_SOFT_DIRTY;
1263 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1264 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1265 }
1266 return pmd;
1267 }
1268
1269 static inline pud_t pud_wrprotect(pud_t pud)
1270 {
1271 pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1272 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1273 return pud;
1274 }
1275
1276 static inline pud_t pud_mkwrite(pud_t pud)
1277 {
1278 pud_val(pud) |= _REGION3_ENTRY_WRITE;
1279 if (pud_large(pud) && !(pud_val(pud) & _REGION3_ENTRY_DIRTY))
1280 return pud;
1281 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1282 return pud;
1283 }
1284
1285 static inline pud_t pud_mkclean(pud_t pud)
1286 {
1287 if (pud_large(pud)) {
1288 pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1289 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1290 }
1291 return pud;
1292 }
1293
1294 static inline pud_t pud_mkdirty(pud_t pud)
1295 {
1296 if (pud_large(pud)) {
1297 pud_val(pud) |= _REGION3_ENTRY_DIRTY |
1298 _REGION3_ENTRY_SOFT_DIRTY;
1299 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1300 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1301 }
1302 return pud;
1303 }
1304
1305 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1306 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1307 {
1308 /*
1309 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1310 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1311 */
1312 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1313 return pgprot_val(SEGMENT_NONE);
1314 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1315 return pgprot_val(SEGMENT_RO);
1316 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1317 return pgprot_val(SEGMENT_RX);
1318 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1319 return pgprot_val(SEGMENT_RW);
1320 return pgprot_val(SEGMENT_RWX);
1321 }
1322
1323 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1324 {
1325 if (pmd_large(pmd)) {
1326 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1327 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1328 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1329 }
1330 return pmd;
1331 }
1332
1333 static inline pmd_t pmd_mkold(pmd_t pmd)
1334 {
1335 if (pmd_large(pmd)) {
1336 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1337 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1338 }
1339 return pmd;
1340 }
1341
1342 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1343 {
1344 if (pmd_large(pmd)) {
1345 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1346 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1347 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1348 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1349 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1350 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1351 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1352 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1353 return pmd;
1354 }
1355 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1356 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1357 return pmd;
1358 }
1359
1360 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1361 {
1362 pmd_t __pmd;
1363 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1364 return __pmd;
1365 }
1366
1367 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1368
1369 static inline void __pmdp_csp(pmd_t *pmdp)
1370 {
1371 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1372 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1373 }
1374
1375 #define IDTE_GLOBAL 0
1376 #define IDTE_LOCAL 1
1377
1378 #define IDTE_PTOA 0x0800
1379 #define IDTE_NODAT 0x1000
1380 #define IDTE_GUEST_ASCE 0x2000
1381
1382 static inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1383 unsigned long opt, unsigned long asce,
1384 int local)
1385 {
1386 unsigned long sto;
1387
1388 sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t);
1389 if (__builtin_constant_p(opt) && opt == 0) {
1390 /* flush without guest asce */
1391 asm volatile(
1392 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1393 : "+m" (*pmdp)
1394 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1395 [m4] "i" (local)
1396 : "cc" );
1397 } else {
1398 /* flush with guest asce */
1399 asm volatile(
1400 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1401 : "+m" (*pmdp)
1402 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1403 [r3] "a" (asce), [m4] "i" (local)
1404 : "cc" );
1405 }
1406 }
1407
1408 static inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1409 unsigned long opt, unsigned long asce,
1410 int local)
1411 {
1412 unsigned long r3o;
1413
1414 r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t);
1415 r3o |= _ASCE_TYPE_REGION3;
1416 if (__builtin_constant_p(opt) && opt == 0) {
1417 /* flush without guest asce */
1418 asm volatile(
1419 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1420 : "+m" (*pudp)
1421 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1422 [m4] "i" (local)
1423 : "cc");
1424 } else {
1425 /* flush with guest asce */
1426 asm volatile(
1427 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1428 : "+m" (*pudp)
1429 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1430 [r3] "a" (asce), [m4] "i" (local)
1431 : "cc" );
1432 }
1433 }
1434
1435 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1436 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1437 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1438
1439 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1440
1441 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1442 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1443 pgtable_t pgtable);
1444
1445 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1446 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1447
1448 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1449 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1450 unsigned long addr, pmd_t *pmdp,
1451 pmd_t entry, int dirty)
1452 {
1453 VM_BUG_ON(addr & ~HPAGE_MASK);
1454
1455 entry = pmd_mkyoung(entry);
1456 if (dirty)
1457 entry = pmd_mkdirty(entry);
1458 if (pmd_val(*pmdp) == pmd_val(entry))
1459 return 0;
1460 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1461 return 1;
1462 }
1463
1464 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1465 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1466 unsigned long addr, pmd_t *pmdp)
1467 {
1468 pmd_t pmd = *pmdp;
1469
1470 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1471 return pmd_young(pmd);
1472 }
1473
1474 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1475 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1476 unsigned long addr, pmd_t *pmdp)
1477 {
1478 VM_BUG_ON(addr & ~HPAGE_MASK);
1479 return pmdp_test_and_clear_young(vma, addr, pmdp);
1480 }
1481
1482 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1483 pmd_t *pmdp, pmd_t entry)
1484 {
1485 if (!MACHINE_HAS_NX)
1486 pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1487 *pmdp = entry;
1488 }
1489
1490 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1491 {
1492 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1493 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1494 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1495 return pmd;
1496 }
1497
1498 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1499 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1500 unsigned long addr, pmd_t *pmdp)
1501 {
1502 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1503 }
1504
1505 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1506 static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1507 unsigned long addr,
1508 pmd_t *pmdp, int full)
1509 {
1510 if (full) {
1511 pmd_t pmd = *pmdp;
1512 *pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
1513 return pmd;
1514 }
1515 return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1516 }
1517
1518 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1519 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1520 unsigned long addr, pmd_t *pmdp)
1521 {
1522 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1523 }
1524
1525 #define __HAVE_ARCH_PMDP_INVALIDATE
1526 static inline void pmdp_invalidate(struct vm_area_struct *vma,
1527 unsigned long addr, pmd_t *pmdp)
1528 {
1529 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1530
1531 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1532 }
1533
1534 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1535 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1536 unsigned long addr, pmd_t *pmdp)
1537 {
1538 pmd_t pmd = *pmdp;
1539
1540 if (pmd_write(pmd))
1541 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1542 }
1543
1544 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1545 unsigned long address,
1546 pmd_t *pmdp)
1547 {
1548 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1549 }
1550 #define pmdp_collapse_flush pmdp_collapse_flush
1551
1552 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1553 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1554
1555 static inline int pmd_trans_huge(pmd_t pmd)
1556 {
1557 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1558 }
1559
1560 #define has_transparent_hugepage has_transparent_hugepage
1561 static inline int has_transparent_hugepage(void)
1562 {
1563 return MACHINE_HAS_EDAT1 ? 1 : 0;
1564 }
1565 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1566
1567 /*
1568 * 64 bit swap entry format:
1569 * A page-table entry has some bits we have to treat in a special way.
1570 * Bits 52 and bit 55 have to be zero, otherwise a specification
1571 * exception will occur instead of a page translation exception. The
1572 * specification exception has the bad habit not to store necessary
1573 * information in the lowcore.
1574 * Bits 54 and 63 are used to indicate the page type.
1575 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1576 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1577 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1578 * for the offset.
1579 * | offset |01100|type |00|
1580 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1581 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1582 */
1583
1584 #define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1585 #define __SWP_OFFSET_SHIFT 12
1586 #define __SWP_TYPE_MASK ((1UL << 5) - 1)
1587 #define __SWP_TYPE_SHIFT 2
1588
1589 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1590 {
1591 pte_t pte;
1592
1593 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1594 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1595 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1596 return pte;
1597 }
1598
1599 static inline unsigned long __swp_type(swp_entry_t entry)
1600 {
1601 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1602 }
1603
1604 static inline unsigned long __swp_offset(swp_entry_t entry)
1605 {
1606 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1607 }
1608
1609 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1610 {
1611 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1612 }
1613
1614 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1615 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1616
1617 #define kern_addr_valid(addr) (1)
1618
1619 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1620 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1621 extern int s390_enable_sie(void);
1622 extern int s390_enable_skey(void);
1623 extern void s390_reset_cmma(struct mm_struct *mm);
1624
1625 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1626 #define HAVE_ARCH_UNMAPPED_AREA
1627 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1628
1629 /*
1630 * No page table caches to initialise
1631 */
1632 static inline void pgtable_cache_init(void) { }
1633 static inline void check_pgt_cache(void) { }
1634
1635 #include <asm-generic/pgtable.h>
1636
1637 #endif /* _S390_PAGE_H */