]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/s390/include/asm/pgtable.h
s390/mm: fix invalid __pa() usage in pfn_pXd() macros
[mirror_ubuntu-jammy-kernel.git] / arch / s390 / include / asm / pgtable.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 /*
3 * S390 version
4 * Copyright IBM Corp. 1999, 2000
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (weigand@de.ibm.com)
7 * Martin Schwidefsky (schwidefsky@de.ibm.com)
8 *
9 * Derived from "include/asm-i386/pgtable.h"
10 */
11
12 #ifndef _ASM_S390_PGTABLE_H
13 #define _ASM_S390_PGTABLE_H
14
15 #include <linux/sched.h>
16 #include <linux/mm_types.h>
17 #include <linux/page-flags.h>
18 #include <linux/radix-tree.h>
19 #include <linux/atomic.h>
20 #include <asm/bug.h>
21 #include <asm/page.h>
22 #include <asm/uv.h>
23
24 extern pgd_t swapper_pg_dir[];
25 extern void paging_init(void);
26 extern unsigned long s390_invalid_asce;
27
28 enum {
29 PG_DIRECT_MAP_4K = 0,
30 PG_DIRECT_MAP_1M,
31 PG_DIRECT_MAP_2G,
32 PG_DIRECT_MAP_MAX
33 };
34
35 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
36
37 static inline void update_page_count(int level, long count)
38 {
39 if (IS_ENABLED(CONFIG_PROC_FS))
40 atomic_long_add(count, &direct_pages_count[level]);
41 }
42
43 struct seq_file;
44 void arch_report_meminfo(struct seq_file *m);
45
46 /*
47 * The S390 doesn't have any external MMU info: the kernel page
48 * tables contain all the necessary information.
49 */
50 #define update_mmu_cache(vma, address, ptep) do { } while (0)
51 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
52
53 /*
54 * ZERO_PAGE is a global shared page that is always zero; used
55 * for zero-mapped memory areas etc..
56 */
57
58 extern unsigned long empty_zero_page;
59 extern unsigned long zero_page_mask;
60
61 #define ZERO_PAGE(vaddr) \
62 (virt_to_page((void *)(empty_zero_page + \
63 (((unsigned long)(vaddr)) &zero_page_mask))))
64 #define __HAVE_COLOR_ZERO_PAGE
65
66 /* TODO: s390 cannot support io_remap_pfn_range... */
67
68 #define FIRST_USER_ADDRESS 0UL
69
70 #define pte_ERROR(e) \
71 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
72 #define pmd_ERROR(e) \
73 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
74 #define pud_ERROR(e) \
75 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
76 #define p4d_ERROR(e) \
77 printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e))
78 #define pgd_ERROR(e) \
79 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
80
81 /*
82 * The vmalloc and module area will always be on the topmost area of the
83 * kernel mapping. 512GB are reserved for vmalloc by default.
84 * At the top of the vmalloc area a 2GB area is reserved where modules
85 * will reside. That makes sure that inter module branches always
86 * happen without trampolines and in addition the placement within a
87 * 2GB frame is branch prediction unit friendly.
88 */
89 extern unsigned long VMALLOC_START;
90 extern unsigned long VMALLOC_END;
91 #define VMALLOC_DEFAULT_SIZE ((512UL << 30) - MODULES_LEN)
92 extern struct page *vmemmap;
93 extern unsigned long vmemmap_size;
94
95 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
96
97 extern unsigned long MODULES_VADDR;
98 extern unsigned long MODULES_END;
99 #define MODULES_VADDR MODULES_VADDR
100 #define MODULES_END MODULES_END
101 #define MODULES_LEN (1UL << 31)
102
103 static inline int is_module_addr(void *addr)
104 {
105 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
106 if (addr < (void *)MODULES_VADDR)
107 return 0;
108 if (addr > (void *)MODULES_END)
109 return 0;
110 return 1;
111 }
112
113 /*
114 * A 64 bit pagetable entry of S390 has following format:
115 * | PFRA |0IPC| OS |
116 * 0000000000111111111122222222223333333333444444444455555555556666
117 * 0123456789012345678901234567890123456789012345678901234567890123
118 *
119 * I Page-Invalid Bit: Page is not available for address-translation
120 * P Page-Protection Bit: Store access not possible for page
121 * C Change-bit override: HW is not required to set change bit
122 *
123 * A 64 bit segmenttable entry of S390 has following format:
124 * | P-table origin | TT
125 * 0000000000111111111122222222223333333333444444444455555555556666
126 * 0123456789012345678901234567890123456789012345678901234567890123
127 *
128 * I Segment-Invalid Bit: Segment is not available for address-translation
129 * C Common-Segment Bit: Segment is not private (PoP 3-30)
130 * P Page-Protection Bit: Store access not possible for page
131 * TT Type 00
132 *
133 * A 64 bit region table entry of S390 has following format:
134 * | S-table origin | TF TTTL
135 * 0000000000111111111122222222223333333333444444444455555555556666
136 * 0123456789012345678901234567890123456789012345678901234567890123
137 *
138 * I Segment-Invalid Bit: Segment is not available for address-translation
139 * TT Type 01
140 * TF
141 * TL Table length
142 *
143 * The 64 bit regiontable origin of S390 has following format:
144 * | region table origon | DTTL
145 * 0000000000111111111122222222223333333333444444444455555555556666
146 * 0123456789012345678901234567890123456789012345678901234567890123
147 *
148 * X Space-Switch event:
149 * G Segment-Invalid Bit:
150 * P Private-Space Bit:
151 * S Storage-Alteration:
152 * R Real space
153 * TL Table-Length:
154 *
155 * A storage key has the following format:
156 * | ACC |F|R|C|0|
157 * 0 3 4 5 6 7
158 * ACC: access key
159 * F : fetch protection bit
160 * R : referenced bit
161 * C : changed bit
162 */
163
164 /* Hardware bits in the page table entry */
165 #define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
166 #define _PAGE_PROTECT 0x200 /* HW read-only bit */
167 #define _PAGE_INVALID 0x400 /* HW invalid bit */
168 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
169
170 /* Software bits in the page table entry */
171 #define _PAGE_PRESENT 0x001 /* SW pte present bit */
172 #define _PAGE_YOUNG 0x004 /* SW pte young bit */
173 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
174 #define _PAGE_READ 0x010 /* SW pte read bit */
175 #define _PAGE_WRITE 0x020 /* SW pte write bit */
176 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
177 #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
178
179 #ifdef CONFIG_MEM_SOFT_DIRTY
180 #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
181 #else
182 #define _PAGE_SOFT_DIRTY 0x000
183 #endif
184
185 /* Set of bits not changed in pte_modify */
186 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
187 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
188
189 /*
190 * handle_pte_fault uses pte_present and pte_none to find out the pte type
191 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
192 * distinguish present from not-present ptes. It is changed only with the page
193 * table lock held.
194 *
195 * The following table gives the different possible bit combinations for
196 * the pte hardware and software bits in the last 12 bits of a pte
197 * (. unassigned bit, x don't care, t swap type):
198 *
199 * 842100000000
200 * 000084210000
201 * 000000008421
202 * .IR.uswrdy.p
203 * empty .10.00000000
204 * swap .11..ttttt.0
205 * prot-none, clean, old .11.xx0000.1
206 * prot-none, clean, young .11.xx0001.1
207 * prot-none, dirty, old .11.xx0010.1
208 * prot-none, dirty, young .11.xx0011.1
209 * read-only, clean, old .11.xx0100.1
210 * read-only, clean, young .01.xx0101.1
211 * read-only, dirty, old .11.xx0110.1
212 * read-only, dirty, young .01.xx0111.1
213 * read-write, clean, old .11.xx1100.1
214 * read-write, clean, young .01.xx1101.1
215 * read-write, dirty, old .10.xx1110.1
216 * read-write, dirty, young .00.xx1111.1
217 * HW-bits: R read-only, I invalid
218 * SW-bits: p present, y young, d dirty, r read, w write, s special,
219 * u unused, l large
220 *
221 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
222 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
223 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
224 */
225
226 /* Bits in the segment/region table address-space-control-element */
227 #define _ASCE_ORIGIN ~0xfffUL/* region/segment table origin */
228 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
229 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
230 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
231 #define _ASCE_REAL_SPACE 0x20 /* real space control */
232 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
233 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
234 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
235 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
236 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
237 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
238
239 /* Bits in the region table entry */
240 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
241 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
242 #define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
243 #define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
244 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
245 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region table type mask */
246 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
247 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
248 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
249 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
250
251 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
252 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
253 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
254 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
255 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
256 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
257
258 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
259 #define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
260 #define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
261 #define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
262 #define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
263 #define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
264
265 #ifdef CONFIG_MEM_SOFT_DIRTY
266 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
267 #else
268 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
269 #endif
270
271 #define _REGION_ENTRY_BITS 0xfffffffffffff22fUL
272
273 /* Bits in the segment table entry */
274 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
275 #define _SEGMENT_ENTRY_HARDWARE_BITS 0xfffffffffffffe30UL
276 #define _SEGMENT_ENTRY_HARDWARE_BITS_LARGE 0xfffffffffff00730UL
277 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
278 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* page table origin */
279 #define _SEGMENT_ENTRY_PROTECT 0x200 /* segment protection bit */
280 #define _SEGMENT_ENTRY_NOEXEC 0x100 /* segment no-execute bit */
281 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
282 #define _SEGMENT_ENTRY_TYPE_MASK 0x0c /* segment table type mask */
283
284 #define _SEGMENT_ENTRY (0)
285 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
286
287 #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
288 #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
289 #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
290 #define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
291 #define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
292
293 #ifdef CONFIG_MEM_SOFT_DIRTY
294 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
295 #else
296 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
297 #endif
298
299 #define _CRST_ENTRIES 2048 /* number of region/segment table entries */
300 #define _PAGE_ENTRIES 256 /* number of page table entries */
301
302 #define _CRST_TABLE_SIZE (_CRST_ENTRIES * 8)
303 #define _PAGE_TABLE_SIZE (_PAGE_ENTRIES * 8)
304
305 #define _REGION1_SHIFT 53
306 #define _REGION2_SHIFT 42
307 #define _REGION3_SHIFT 31
308 #define _SEGMENT_SHIFT 20
309
310 #define _REGION1_INDEX (0x7ffUL << _REGION1_SHIFT)
311 #define _REGION2_INDEX (0x7ffUL << _REGION2_SHIFT)
312 #define _REGION3_INDEX (0x7ffUL << _REGION3_SHIFT)
313 #define _SEGMENT_INDEX (0x7ffUL << _SEGMENT_SHIFT)
314 #define _PAGE_INDEX (0xffUL << _PAGE_SHIFT)
315
316 #define _REGION1_SIZE (1UL << _REGION1_SHIFT)
317 #define _REGION2_SIZE (1UL << _REGION2_SHIFT)
318 #define _REGION3_SIZE (1UL << _REGION3_SHIFT)
319 #define _SEGMENT_SIZE (1UL << _SEGMENT_SHIFT)
320
321 #define _REGION1_MASK (~(_REGION1_SIZE - 1))
322 #define _REGION2_MASK (~(_REGION2_SIZE - 1))
323 #define _REGION3_MASK (~(_REGION3_SIZE - 1))
324 #define _SEGMENT_MASK (~(_SEGMENT_SIZE - 1))
325
326 #define PMD_SHIFT _SEGMENT_SHIFT
327 #define PUD_SHIFT _REGION3_SHIFT
328 #define P4D_SHIFT _REGION2_SHIFT
329 #define PGDIR_SHIFT _REGION1_SHIFT
330
331 #define PMD_SIZE _SEGMENT_SIZE
332 #define PUD_SIZE _REGION3_SIZE
333 #define P4D_SIZE _REGION2_SIZE
334 #define PGDIR_SIZE _REGION1_SIZE
335
336 #define PMD_MASK _SEGMENT_MASK
337 #define PUD_MASK _REGION3_MASK
338 #define P4D_MASK _REGION2_MASK
339 #define PGDIR_MASK _REGION1_MASK
340
341 #define PTRS_PER_PTE _PAGE_ENTRIES
342 #define PTRS_PER_PMD _CRST_ENTRIES
343 #define PTRS_PER_PUD _CRST_ENTRIES
344 #define PTRS_PER_P4D _CRST_ENTRIES
345 #define PTRS_PER_PGD _CRST_ENTRIES
346
347 #define MAX_PTRS_PER_P4D PTRS_PER_P4D
348
349 /*
350 * Segment table and region3 table entry encoding
351 * (R = read-only, I = invalid, y = young bit):
352 * dy..R...I...wr
353 * prot-none, clean, old 00..1...1...00
354 * prot-none, clean, young 01..1...1...00
355 * prot-none, dirty, old 10..1...1...00
356 * prot-none, dirty, young 11..1...1...00
357 * read-only, clean, old 00..1...1...01
358 * read-only, clean, young 01..1...0...01
359 * read-only, dirty, old 10..1...1...01
360 * read-only, dirty, young 11..1...0...01
361 * read-write, clean, old 00..1...1...11
362 * read-write, clean, young 01..1...0...11
363 * read-write, dirty, old 10..0...1...11
364 * read-write, dirty, young 11..0...0...11
365 * The segment table origin is used to distinguish empty (origin==0) from
366 * read-write, old segment table entries (origin!=0)
367 * HW-bits: R read-only, I invalid
368 * SW-bits: y young, d dirty, r read, w write
369 */
370
371 /* Page status table bits for virtualization */
372 #define PGSTE_ACC_BITS 0xf000000000000000UL
373 #define PGSTE_FP_BIT 0x0800000000000000UL
374 #define PGSTE_PCL_BIT 0x0080000000000000UL
375 #define PGSTE_HR_BIT 0x0040000000000000UL
376 #define PGSTE_HC_BIT 0x0020000000000000UL
377 #define PGSTE_GR_BIT 0x0004000000000000UL
378 #define PGSTE_GC_BIT 0x0002000000000000UL
379 #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
380 #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
381 #define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
382
383 /* Guest Page State used for virtualization */
384 #define _PGSTE_GPS_ZERO 0x0000000080000000UL
385 #define _PGSTE_GPS_NODAT 0x0000000040000000UL
386 #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
387 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
388 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
389 #define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
390 #define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
391
392 /*
393 * A user page table pointer has the space-switch-event bit, the
394 * private-space-control bit and the storage-alteration-event-control
395 * bit set. A kernel page table pointer doesn't need them.
396 */
397 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
398 _ASCE_ALT_EVENT)
399
400 /*
401 * Page protection definitions.
402 */
403 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
404 #define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
405 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
406 #define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
407 _PAGE_INVALID | _PAGE_PROTECT)
408 #define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
409 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
410 #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
411 _PAGE_INVALID | _PAGE_PROTECT)
412
413 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
414 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
415 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
416 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
417 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
418 _PAGE_PROTECT | _PAGE_NOEXEC)
419 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
420 _PAGE_YOUNG | _PAGE_DIRTY)
421
422 /*
423 * On s390 the page table entry has an invalid bit and a read-only bit.
424 * Read permission implies execute permission and write permission
425 * implies read permission.
426 */
427 /*xwr*/
428 #define __P000 PAGE_NONE
429 #define __P001 PAGE_RO
430 #define __P010 PAGE_RO
431 #define __P011 PAGE_RO
432 #define __P100 PAGE_RX
433 #define __P101 PAGE_RX
434 #define __P110 PAGE_RX
435 #define __P111 PAGE_RX
436
437 #define __S000 PAGE_NONE
438 #define __S001 PAGE_RO
439 #define __S010 PAGE_RW
440 #define __S011 PAGE_RW
441 #define __S100 PAGE_RX
442 #define __S101 PAGE_RX
443 #define __S110 PAGE_RWX
444 #define __S111 PAGE_RWX
445
446 /*
447 * Segment entry (large page) protection definitions.
448 */
449 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
450 _SEGMENT_ENTRY_PROTECT)
451 #define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \
452 _SEGMENT_ENTRY_READ | \
453 _SEGMENT_ENTRY_NOEXEC)
454 #define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \
455 _SEGMENT_ENTRY_READ)
456 #define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \
457 _SEGMENT_ENTRY_WRITE | \
458 _SEGMENT_ENTRY_NOEXEC)
459 #define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \
460 _SEGMENT_ENTRY_WRITE)
461 #define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
462 _SEGMENT_ENTRY_LARGE | \
463 _SEGMENT_ENTRY_READ | \
464 _SEGMENT_ENTRY_WRITE | \
465 _SEGMENT_ENTRY_YOUNG | \
466 _SEGMENT_ENTRY_DIRTY | \
467 _SEGMENT_ENTRY_NOEXEC)
468 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
469 _SEGMENT_ENTRY_LARGE | \
470 _SEGMENT_ENTRY_READ | \
471 _SEGMENT_ENTRY_YOUNG | \
472 _SEGMENT_ENTRY_PROTECT | \
473 _SEGMENT_ENTRY_NOEXEC)
474 #define SEGMENT_KERNEL_EXEC __pgprot(_SEGMENT_ENTRY | \
475 _SEGMENT_ENTRY_LARGE | \
476 _SEGMENT_ENTRY_READ | \
477 _SEGMENT_ENTRY_WRITE | \
478 _SEGMENT_ENTRY_YOUNG | \
479 _SEGMENT_ENTRY_DIRTY)
480
481 /*
482 * Region3 entry (large page) protection definitions.
483 */
484
485 #define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
486 _REGION3_ENTRY_LARGE | \
487 _REGION3_ENTRY_READ | \
488 _REGION3_ENTRY_WRITE | \
489 _REGION3_ENTRY_YOUNG | \
490 _REGION3_ENTRY_DIRTY | \
491 _REGION_ENTRY_NOEXEC)
492 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
493 _REGION3_ENTRY_LARGE | \
494 _REGION3_ENTRY_READ | \
495 _REGION3_ENTRY_YOUNG | \
496 _REGION_ENTRY_PROTECT | \
497 _REGION_ENTRY_NOEXEC)
498
499 static inline bool mm_p4d_folded(struct mm_struct *mm)
500 {
501 return mm->context.asce_limit <= _REGION1_SIZE;
502 }
503 #define mm_p4d_folded(mm) mm_p4d_folded(mm)
504
505 static inline bool mm_pud_folded(struct mm_struct *mm)
506 {
507 return mm->context.asce_limit <= _REGION2_SIZE;
508 }
509 #define mm_pud_folded(mm) mm_pud_folded(mm)
510
511 static inline bool mm_pmd_folded(struct mm_struct *mm)
512 {
513 return mm->context.asce_limit <= _REGION3_SIZE;
514 }
515 #define mm_pmd_folded(mm) mm_pmd_folded(mm)
516
517 static inline int mm_has_pgste(struct mm_struct *mm)
518 {
519 #ifdef CONFIG_PGSTE
520 if (unlikely(mm->context.has_pgste))
521 return 1;
522 #endif
523 return 0;
524 }
525
526 static inline int mm_is_protected(struct mm_struct *mm)
527 {
528 #ifdef CONFIG_PGSTE
529 if (unlikely(atomic_read(&mm->context.is_protected)))
530 return 1;
531 #endif
532 return 0;
533 }
534
535 static inline int mm_alloc_pgste(struct mm_struct *mm)
536 {
537 #ifdef CONFIG_PGSTE
538 if (unlikely(mm->context.alloc_pgste))
539 return 1;
540 #endif
541 return 0;
542 }
543
544 /*
545 * In the case that a guest uses storage keys
546 * faults should no longer be backed by zero pages
547 */
548 #define mm_forbids_zeropage mm_has_pgste
549 static inline int mm_uses_skeys(struct mm_struct *mm)
550 {
551 #ifdef CONFIG_PGSTE
552 if (mm->context.uses_skeys)
553 return 1;
554 #endif
555 return 0;
556 }
557
558 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
559 {
560 register unsigned long reg2 asm("2") = old;
561 register unsigned long reg3 asm("3") = new;
562 unsigned long address = (unsigned long)ptr | 1;
563
564 asm volatile(
565 " csp %0,%3"
566 : "+d" (reg2), "+m" (*ptr)
567 : "d" (reg3), "d" (address)
568 : "cc");
569 }
570
571 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
572 {
573 register unsigned long reg2 asm("2") = old;
574 register unsigned long reg3 asm("3") = new;
575 unsigned long address = (unsigned long)ptr | 1;
576
577 asm volatile(
578 " .insn rre,0xb98a0000,%0,%3"
579 : "+d" (reg2), "+m" (*ptr)
580 : "d" (reg3), "d" (address)
581 : "cc");
582 }
583
584 #define CRDTE_DTT_PAGE 0x00UL
585 #define CRDTE_DTT_SEGMENT 0x10UL
586 #define CRDTE_DTT_REGION3 0x14UL
587 #define CRDTE_DTT_REGION2 0x18UL
588 #define CRDTE_DTT_REGION1 0x1cUL
589
590 static inline void crdte(unsigned long old, unsigned long new,
591 unsigned long table, unsigned long dtt,
592 unsigned long address, unsigned long asce)
593 {
594 register unsigned long reg2 asm("2") = old;
595 register unsigned long reg3 asm("3") = new;
596 register unsigned long reg4 asm("4") = table | dtt;
597 register unsigned long reg5 asm("5") = address;
598
599 asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
600 : "+d" (reg2)
601 : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
602 : "memory", "cc");
603 }
604
605 /*
606 * pgd/p4d/pud/pmd/pte query functions
607 */
608 static inline int pgd_folded(pgd_t pgd)
609 {
610 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
611 }
612
613 static inline int pgd_present(pgd_t pgd)
614 {
615 if (pgd_folded(pgd))
616 return 1;
617 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
618 }
619
620 static inline int pgd_none(pgd_t pgd)
621 {
622 if (pgd_folded(pgd))
623 return 0;
624 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
625 }
626
627 static inline int pgd_bad(pgd_t pgd)
628 {
629 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1)
630 return 0;
631 return (pgd_val(pgd) & ~_REGION_ENTRY_BITS) != 0;
632 }
633
634 static inline unsigned long pgd_pfn(pgd_t pgd)
635 {
636 unsigned long origin_mask;
637
638 origin_mask = _REGION_ENTRY_ORIGIN;
639 return (pgd_val(pgd) & origin_mask) >> PAGE_SHIFT;
640 }
641
642 static inline int p4d_folded(p4d_t p4d)
643 {
644 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
645 }
646
647 static inline int p4d_present(p4d_t p4d)
648 {
649 if (p4d_folded(p4d))
650 return 1;
651 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
652 }
653
654 static inline int p4d_none(p4d_t p4d)
655 {
656 if (p4d_folded(p4d))
657 return 0;
658 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
659 }
660
661 static inline unsigned long p4d_pfn(p4d_t p4d)
662 {
663 unsigned long origin_mask;
664
665 origin_mask = _REGION_ENTRY_ORIGIN;
666 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
667 }
668
669 static inline int pud_folded(pud_t pud)
670 {
671 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
672 }
673
674 static inline int pud_present(pud_t pud)
675 {
676 if (pud_folded(pud))
677 return 1;
678 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
679 }
680
681 static inline int pud_none(pud_t pud)
682 {
683 if (pud_folded(pud))
684 return 0;
685 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
686 }
687
688 #define pud_leaf pud_large
689 static inline int pud_large(pud_t pud)
690 {
691 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
692 return 0;
693 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
694 }
695
696 #define pmd_leaf pmd_large
697 static inline int pmd_large(pmd_t pmd)
698 {
699 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
700 }
701
702 static inline int pmd_bad(pmd_t pmd)
703 {
704 if ((pmd_val(pmd) & _SEGMENT_ENTRY_TYPE_MASK) > 0 || pmd_large(pmd))
705 return 1;
706 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
707 }
708
709 static inline int pud_bad(pud_t pud)
710 {
711 unsigned long type = pud_val(pud) & _REGION_ENTRY_TYPE_MASK;
712
713 if (type > _REGION_ENTRY_TYPE_R3 || pud_large(pud))
714 return 1;
715 if (type < _REGION_ENTRY_TYPE_R3)
716 return 0;
717 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
718 }
719
720 static inline int p4d_bad(p4d_t p4d)
721 {
722 unsigned long type = p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK;
723
724 if (type > _REGION_ENTRY_TYPE_R2)
725 return 1;
726 if (type < _REGION_ENTRY_TYPE_R2)
727 return 0;
728 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
729 }
730
731 static inline int pmd_present(pmd_t pmd)
732 {
733 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
734 }
735
736 static inline int pmd_none(pmd_t pmd)
737 {
738 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
739 }
740
741 #define pmd_write pmd_write
742 static inline int pmd_write(pmd_t pmd)
743 {
744 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
745 }
746
747 #define pud_write pud_write
748 static inline int pud_write(pud_t pud)
749 {
750 return (pud_val(pud) & _REGION3_ENTRY_WRITE) != 0;
751 }
752
753 static inline int pmd_dirty(pmd_t pmd)
754 {
755 return (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
756 }
757
758 static inline int pmd_young(pmd_t pmd)
759 {
760 return (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
761 }
762
763 static inline int pte_present(pte_t pte)
764 {
765 /* Bit pattern: (pte & 0x001) == 0x001 */
766 return (pte_val(pte) & _PAGE_PRESENT) != 0;
767 }
768
769 static inline int pte_none(pte_t pte)
770 {
771 /* Bit pattern: pte == 0x400 */
772 return pte_val(pte) == _PAGE_INVALID;
773 }
774
775 static inline int pte_swap(pte_t pte)
776 {
777 /* Bit pattern: (pte & 0x201) == 0x200 */
778 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
779 == _PAGE_PROTECT;
780 }
781
782 static inline int pte_special(pte_t pte)
783 {
784 return (pte_val(pte) & _PAGE_SPECIAL);
785 }
786
787 #define __HAVE_ARCH_PTE_SAME
788 static inline int pte_same(pte_t a, pte_t b)
789 {
790 return pte_val(a) == pte_val(b);
791 }
792
793 #ifdef CONFIG_NUMA_BALANCING
794 static inline int pte_protnone(pte_t pte)
795 {
796 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
797 }
798
799 static inline int pmd_protnone(pmd_t pmd)
800 {
801 /* pmd_large(pmd) implies pmd_present(pmd) */
802 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
803 }
804 #endif
805
806 static inline int pte_soft_dirty(pte_t pte)
807 {
808 return pte_val(pte) & _PAGE_SOFT_DIRTY;
809 }
810 #define pte_swp_soft_dirty pte_soft_dirty
811
812 static inline pte_t pte_mksoft_dirty(pte_t pte)
813 {
814 pte_val(pte) |= _PAGE_SOFT_DIRTY;
815 return pte;
816 }
817 #define pte_swp_mksoft_dirty pte_mksoft_dirty
818
819 static inline pte_t pte_clear_soft_dirty(pte_t pte)
820 {
821 pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
822 return pte;
823 }
824 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
825
826 static inline int pmd_soft_dirty(pmd_t pmd)
827 {
828 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
829 }
830
831 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
832 {
833 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
834 return pmd;
835 }
836
837 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
838 {
839 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
840 return pmd;
841 }
842
843 /*
844 * query functions pte_write/pte_dirty/pte_young only work if
845 * pte_present() is true. Undefined behaviour if not..
846 */
847 static inline int pte_write(pte_t pte)
848 {
849 return (pte_val(pte) & _PAGE_WRITE) != 0;
850 }
851
852 static inline int pte_dirty(pte_t pte)
853 {
854 return (pte_val(pte) & _PAGE_DIRTY) != 0;
855 }
856
857 static inline int pte_young(pte_t pte)
858 {
859 return (pte_val(pte) & _PAGE_YOUNG) != 0;
860 }
861
862 #define __HAVE_ARCH_PTE_UNUSED
863 static inline int pte_unused(pte_t pte)
864 {
865 return pte_val(pte) & _PAGE_UNUSED;
866 }
867
868 /*
869 * pgd/pmd/pte modification functions
870 */
871
872 static inline void pgd_clear(pgd_t *pgd)
873 {
874 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
875 pgd_val(*pgd) = _REGION1_ENTRY_EMPTY;
876 }
877
878 static inline void p4d_clear(p4d_t *p4d)
879 {
880 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
881 p4d_val(*p4d) = _REGION2_ENTRY_EMPTY;
882 }
883
884 static inline void pud_clear(pud_t *pud)
885 {
886 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
887 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
888 }
889
890 static inline void pmd_clear(pmd_t *pmdp)
891 {
892 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
893 }
894
895 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
896 {
897 pte_val(*ptep) = _PAGE_INVALID;
898 }
899
900 /*
901 * The following pte modification functions only work if
902 * pte_present() is true. Undefined behaviour if not..
903 */
904 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
905 {
906 pte_val(pte) &= _PAGE_CHG_MASK;
907 pte_val(pte) |= pgprot_val(newprot);
908 /*
909 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
910 * has the invalid bit set, clear it again for readable, young pages
911 */
912 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
913 pte_val(pte) &= ~_PAGE_INVALID;
914 /*
915 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
916 * protection bit set, clear it again for writable, dirty pages
917 */
918 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
919 pte_val(pte) &= ~_PAGE_PROTECT;
920 return pte;
921 }
922
923 static inline pte_t pte_wrprotect(pte_t pte)
924 {
925 pte_val(pte) &= ~_PAGE_WRITE;
926 pte_val(pte) |= _PAGE_PROTECT;
927 return pte;
928 }
929
930 static inline pte_t pte_mkwrite(pte_t pte)
931 {
932 pte_val(pte) |= _PAGE_WRITE;
933 if (pte_val(pte) & _PAGE_DIRTY)
934 pte_val(pte) &= ~_PAGE_PROTECT;
935 return pte;
936 }
937
938 static inline pte_t pte_mkclean(pte_t pte)
939 {
940 pte_val(pte) &= ~_PAGE_DIRTY;
941 pte_val(pte) |= _PAGE_PROTECT;
942 return pte;
943 }
944
945 static inline pte_t pte_mkdirty(pte_t pte)
946 {
947 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
948 if (pte_val(pte) & _PAGE_WRITE)
949 pte_val(pte) &= ~_PAGE_PROTECT;
950 return pte;
951 }
952
953 static inline pte_t pte_mkold(pte_t pte)
954 {
955 pte_val(pte) &= ~_PAGE_YOUNG;
956 pte_val(pte) |= _PAGE_INVALID;
957 return pte;
958 }
959
960 static inline pte_t pte_mkyoung(pte_t pte)
961 {
962 pte_val(pte) |= _PAGE_YOUNG;
963 if (pte_val(pte) & _PAGE_READ)
964 pte_val(pte) &= ~_PAGE_INVALID;
965 return pte;
966 }
967
968 static inline pte_t pte_mkspecial(pte_t pte)
969 {
970 pte_val(pte) |= _PAGE_SPECIAL;
971 return pte;
972 }
973
974 #ifdef CONFIG_HUGETLB_PAGE
975 static inline pte_t pte_mkhuge(pte_t pte)
976 {
977 pte_val(pte) |= _PAGE_LARGE;
978 return pte;
979 }
980 #endif
981
982 #define IPTE_GLOBAL 0
983 #define IPTE_LOCAL 1
984
985 #define IPTE_NODAT 0x400
986 #define IPTE_GUEST_ASCE 0x800
987
988 static __always_inline void __ptep_ipte(unsigned long address, pte_t *ptep,
989 unsigned long opt, unsigned long asce,
990 int local)
991 {
992 unsigned long pto = (unsigned long) ptep;
993
994 if (__builtin_constant_p(opt) && opt == 0) {
995 /* Invalidation + TLB flush for the pte */
996 asm volatile(
997 " .insn rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
998 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
999 [m4] "i" (local));
1000 return;
1001 }
1002
1003 /* Invalidate ptes with options + TLB flush of the ptes */
1004 opt = opt | (asce & _ASCE_ORIGIN);
1005 asm volatile(
1006 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1007 : [r2] "+a" (address), [r3] "+a" (opt)
1008 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1009 }
1010
1011 static __always_inline void __ptep_ipte_range(unsigned long address, int nr,
1012 pte_t *ptep, int local)
1013 {
1014 unsigned long pto = (unsigned long) ptep;
1015
1016 /* Invalidate a range of ptes + TLB flush of the ptes */
1017 do {
1018 asm volatile(
1019 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
1020 : [r2] "+a" (address), [r3] "+a" (nr)
1021 : [r1] "a" (pto), [m4] "i" (local) : "memory");
1022 } while (nr != 255);
1023 }
1024
1025 /*
1026 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1027 * both clear the TLB for the unmapped pte. The reason is that
1028 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1029 * to modify an active pte. The sequence is
1030 * 1) ptep_get_and_clear
1031 * 2) set_pte_at
1032 * 3) flush_tlb_range
1033 * On s390 the tlb needs to get flushed with the modification of the pte
1034 * if the pte is active. The only way how this can be implemented is to
1035 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1036 * is a nop.
1037 */
1038 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
1039 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
1040
1041 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1042 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1043 unsigned long addr, pte_t *ptep)
1044 {
1045 pte_t pte = *ptep;
1046
1047 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1048 return pte_young(pte);
1049 }
1050
1051 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1052 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1053 unsigned long address, pte_t *ptep)
1054 {
1055 return ptep_test_and_clear_young(vma, address, ptep);
1056 }
1057
1058 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1059 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1060 unsigned long addr, pte_t *ptep)
1061 {
1062 pte_t res;
1063
1064 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1065 if (mm_is_protected(mm) && pte_present(res))
1066 uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1067 return res;
1068 }
1069
1070 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1071 pte_t ptep_modify_prot_start(struct vm_area_struct *, unsigned long, pte_t *);
1072 void ptep_modify_prot_commit(struct vm_area_struct *, unsigned long,
1073 pte_t *, pte_t, pte_t);
1074
1075 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1076 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1077 unsigned long addr, pte_t *ptep)
1078 {
1079 pte_t res;
1080
1081 res = ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1082 if (mm_is_protected(vma->vm_mm) && pte_present(res))
1083 uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1084 return res;
1085 }
1086
1087 /*
1088 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1089 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1090 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1091 * cannot be accessed while the batched unmap is running. In this case
1092 * full==1 and a simple pte_clear is enough. See tlb.h.
1093 */
1094 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1095 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1096 unsigned long addr,
1097 pte_t *ptep, int full)
1098 {
1099 pte_t res;
1100
1101 if (full) {
1102 res = *ptep;
1103 *ptep = __pte(_PAGE_INVALID);
1104 } else {
1105 res = ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1106 }
1107 if (mm_is_protected(mm) && pte_present(res))
1108 uv_convert_from_secure(pte_val(res) & PAGE_MASK);
1109 return res;
1110 }
1111
1112 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1113 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1114 unsigned long addr, pte_t *ptep)
1115 {
1116 pte_t pte = *ptep;
1117
1118 if (pte_write(pte))
1119 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1120 }
1121
1122 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1123 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1124 unsigned long addr, pte_t *ptep,
1125 pte_t entry, int dirty)
1126 {
1127 if (pte_same(*ptep, entry))
1128 return 0;
1129 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1130 return 1;
1131 }
1132
1133 /*
1134 * Additional functions to handle KVM guest page tables
1135 */
1136 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1137 pte_t *ptep, pte_t entry);
1138 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1139 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1140 pte_t *ptep, unsigned long bits);
1141 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1142 pte_t *ptep, int prot, unsigned long bit);
1143 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1144 pte_t *ptep , int reset);
1145 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1146 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1147 pte_t *sptep, pte_t *tptep, pte_t pte);
1148 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1149
1150 bool ptep_test_and_clear_uc(struct mm_struct *mm, unsigned long address,
1151 pte_t *ptep);
1152 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1153 unsigned char key, bool nq);
1154 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1155 unsigned char key, unsigned char *oldkey,
1156 bool nq, bool mr, bool mc);
1157 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1158 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1159 unsigned char *key);
1160
1161 int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1162 unsigned long bits, unsigned long value);
1163 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1164 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1165 unsigned long *oldpte, unsigned long *oldpgste);
1166 void gmap_pmdp_csp(struct mm_struct *mm, unsigned long vmaddr);
1167 void gmap_pmdp_invalidate(struct mm_struct *mm, unsigned long vmaddr);
1168 void gmap_pmdp_idte_local(struct mm_struct *mm, unsigned long vmaddr);
1169 void gmap_pmdp_idte_global(struct mm_struct *mm, unsigned long vmaddr);
1170
1171 #define pgprot_writecombine pgprot_writecombine
1172 pgprot_t pgprot_writecombine(pgprot_t prot);
1173
1174 #define pgprot_writethrough pgprot_writethrough
1175 pgprot_t pgprot_writethrough(pgprot_t prot);
1176
1177 /*
1178 * Certain architectures need to do special things when PTEs
1179 * within a page table are directly modified. Thus, the following
1180 * hook is made available.
1181 */
1182 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1183 pte_t *ptep, pte_t entry)
1184 {
1185 if (pte_present(entry))
1186 pte_val(entry) &= ~_PAGE_UNUSED;
1187 if (mm_has_pgste(mm))
1188 ptep_set_pte_at(mm, addr, ptep, entry);
1189 else
1190 *ptep = entry;
1191 }
1192
1193 /*
1194 * Conversion functions: convert a page and protection to a page entry,
1195 * and a page entry and page directory to the page they refer to.
1196 */
1197 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1198 {
1199 pte_t __pte;
1200
1201 pte_val(__pte) = physpage | pgprot_val(pgprot);
1202 if (!MACHINE_HAS_NX)
1203 pte_val(__pte) &= ~_PAGE_NOEXEC;
1204 return pte_mkyoung(__pte);
1205 }
1206
1207 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1208 {
1209 unsigned long physpage = page_to_phys(page);
1210 pte_t __pte = mk_pte_phys(physpage, pgprot);
1211
1212 if (pte_write(__pte) && PageDirty(page))
1213 __pte = pte_mkdirty(__pte);
1214 return __pte;
1215 }
1216
1217 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1218 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1219 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1220 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1221
1222 #define p4d_deref(pud) ((unsigned long)__va(p4d_val(pud) & _REGION_ENTRY_ORIGIN))
1223 #define pgd_deref(pgd) ((unsigned long)__va(pgd_val(pgd) & _REGION_ENTRY_ORIGIN))
1224
1225 static inline unsigned long pmd_deref(pmd_t pmd)
1226 {
1227 unsigned long origin_mask;
1228
1229 origin_mask = _SEGMENT_ENTRY_ORIGIN;
1230 if (pmd_large(pmd))
1231 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
1232 return (unsigned long)__va(pmd_val(pmd) & origin_mask);
1233 }
1234
1235 static inline unsigned long pmd_pfn(pmd_t pmd)
1236 {
1237 return __pa(pmd_deref(pmd)) >> PAGE_SHIFT;
1238 }
1239
1240 static inline unsigned long pud_deref(pud_t pud)
1241 {
1242 unsigned long origin_mask;
1243
1244 origin_mask = _REGION_ENTRY_ORIGIN;
1245 if (pud_large(pud))
1246 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
1247 return (unsigned long)__va(pud_val(pud) & origin_mask);
1248 }
1249
1250 static inline unsigned long pud_pfn(pud_t pud)
1251 {
1252 return __pa(pud_deref(pud)) >> PAGE_SHIFT;
1253 }
1254
1255 /*
1256 * The pgd_offset function *always* adds the index for the top-level
1257 * region/segment table. This is done to get a sequence like the
1258 * following to work:
1259 * pgdp = pgd_offset(current->mm, addr);
1260 * pgd = READ_ONCE(*pgdp);
1261 * p4dp = p4d_offset(&pgd, addr);
1262 * ...
1263 * The subsequent p4d_offset, pud_offset and pmd_offset functions
1264 * only add an index if they dereferenced the pointer.
1265 */
1266 static inline pgd_t *pgd_offset_raw(pgd_t *pgd, unsigned long address)
1267 {
1268 unsigned long rste;
1269 unsigned int shift;
1270
1271 /* Get the first entry of the top level table */
1272 rste = pgd_val(*pgd);
1273 /* Pick up the shift from the table type of the first entry */
1274 shift = ((rste & _REGION_ENTRY_TYPE_MASK) >> 2) * 11 + 20;
1275 return pgd + ((address >> shift) & (PTRS_PER_PGD - 1));
1276 }
1277
1278 #define pgd_offset(mm, address) pgd_offset_raw(READ_ONCE((mm)->pgd), address)
1279
1280 static inline p4d_t *p4d_offset_lockless(pgd_t *pgdp, pgd_t pgd, unsigned long address)
1281 {
1282 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R1)
1283 return (p4d_t *) pgd_deref(pgd) + p4d_index(address);
1284 return (p4d_t *) pgdp;
1285 }
1286 #define p4d_offset_lockless p4d_offset_lockless
1287
1288 static inline p4d_t *p4d_offset(pgd_t *pgdp, unsigned long address)
1289 {
1290 return p4d_offset_lockless(pgdp, *pgdp, address);
1291 }
1292
1293 static inline pud_t *pud_offset_lockless(p4d_t *p4dp, p4d_t p4d, unsigned long address)
1294 {
1295 if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R2)
1296 return (pud_t *) p4d_deref(p4d) + pud_index(address);
1297 return (pud_t *) p4dp;
1298 }
1299 #define pud_offset_lockless pud_offset_lockless
1300
1301 static inline pud_t *pud_offset(p4d_t *p4dp, unsigned long address)
1302 {
1303 return pud_offset_lockless(p4dp, *p4dp, address);
1304 }
1305 #define pud_offset pud_offset
1306
1307 static inline pmd_t *pmd_offset_lockless(pud_t *pudp, pud_t pud, unsigned long address)
1308 {
1309 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) >= _REGION_ENTRY_TYPE_R3)
1310 return (pmd_t *) pud_deref(pud) + pmd_index(address);
1311 return (pmd_t *) pudp;
1312 }
1313 #define pmd_offset_lockless pmd_offset_lockless
1314
1315 static inline pmd_t *pmd_offset(pud_t *pudp, unsigned long address)
1316 {
1317 return pmd_offset_lockless(pudp, *pudp, address);
1318 }
1319 #define pmd_offset pmd_offset
1320
1321 static inline unsigned long pmd_page_vaddr(pmd_t pmd)
1322 {
1323 return (unsigned long) pmd_deref(pmd);
1324 }
1325
1326 static inline bool gup_fast_permitted(unsigned long start, unsigned long end)
1327 {
1328 return end <= current->mm->context.asce_limit;
1329 }
1330 #define gup_fast_permitted gup_fast_permitted
1331
1332 #define pfn_pte(pfn, pgprot) mk_pte_phys(((pfn) << PAGE_SHIFT), (pgprot))
1333 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1334 #define pte_page(x) pfn_to_page(pte_pfn(x))
1335
1336 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1337 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1338 #define p4d_page(p4d) pfn_to_page(p4d_pfn(p4d))
1339 #define pgd_page(pgd) pfn_to_page(pgd_pfn(pgd))
1340
1341 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1342 {
1343 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1344 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1345 return pmd;
1346 }
1347
1348 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1349 {
1350 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1351 if (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY)
1352 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1353 return pmd;
1354 }
1355
1356 static inline pmd_t pmd_mkclean(pmd_t pmd)
1357 {
1358 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1359 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1360 return pmd;
1361 }
1362
1363 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1364 {
1365 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_SOFT_DIRTY;
1366 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1367 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1368 return pmd;
1369 }
1370
1371 static inline pud_t pud_wrprotect(pud_t pud)
1372 {
1373 pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1374 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1375 return pud;
1376 }
1377
1378 static inline pud_t pud_mkwrite(pud_t pud)
1379 {
1380 pud_val(pud) |= _REGION3_ENTRY_WRITE;
1381 if (pud_val(pud) & _REGION3_ENTRY_DIRTY)
1382 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1383 return pud;
1384 }
1385
1386 static inline pud_t pud_mkclean(pud_t pud)
1387 {
1388 pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1389 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1390 return pud;
1391 }
1392
1393 static inline pud_t pud_mkdirty(pud_t pud)
1394 {
1395 pud_val(pud) |= _REGION3_ENTRY_DIRTY | _REGION3_ENTRY_SOFT_DIRTY;
1396 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1397 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1398 return pud;
1399 }
1400
1401 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1402 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1403 {
1404 /*
1405 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1406 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1407 */
1408 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1409 return pgprot_val(SEGMENT_NONE);
1410 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1411 return pgprot_val(SEGMENT_RO);
1412 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1413 return pgprot_val(SEGMENT_RX);
1414 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1415 return pgprot_val(SEGMENT_RW);
1416 return pgprot_val(SEGMENT_RWX);
1417 }
1418
1419 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1420 {
1421 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1422 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1423 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1424 return pmd;
1425 }
1426
1427 static inline pmd_t pmd_mkold(pmd_t pmd)
1428 {
1429 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1430 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1431 return pmd;
1432 }
1433
1434 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1435 {
1436 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1437 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1438 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1439 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1440 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1441 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1442 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1443 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1444 return pmd;
1445 }
1446
1447 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1448 {
1449 pmd_t __pmd;
1450 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1451 return __pmd;
1452 }
1453
1454 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1455
1456 static inline void __pmdp_csp(pmd_t *pmdp)
1457 {
1458 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1459 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1460 }
1461
1462 #define IDTE_GLOBAL 0
1463 #define IDTE_LOCAL 1
1464
1465 #define IDTE_PTOA 0x0800
1466 #define IDTE_NODAT 0x1000
1467 #define IDTE_GUEST_ASCE 0x2000
1468
1469 static __always_inline void __pmdp_idte(unsigned long addr, pmd_t *pmdp,
1470 unsigned long opt, unsigned long asce,
1471 int local)
1472 {
1473 unsigned long sto;
1474
1475 sto = (unsigned long) pmdp - pmd_index(addr) * sizeof(pmd_t);
1476 if (__builtin_constant_p(opt) && opt == 0) {
1477 /* flush without guest asce */
1478 asm volatile(
1479 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1480 : "+m" (*pmdp)
1481 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK)),
1482 [m4] "i" (local)
1483 : "cc" );
1484 } else {
1485 /* flush with guest asce */
1486 asm volatile(
1487 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1488 : "+m" (*pmdp)
1489 : [r1] "a" (sto), [r2] "a" ((addr & HPAGE_MASK) | opt),
1490 [r3] "a" (asce), [m4] "i" (local)
1491 : "cc" );
1492 }
1493 }
1494
1495 static __always_inline void __pudp_idte(unsigned long addr, pud_t *pudp,
1496 unsigned long opt, unsigned long asce,
1497 int local)
1498 {
1499 unsigned long r3o;
1500
1501 r3o = (unsigned long) pudp - pud_index(addr) * sizeof(pud_t);
1502 r3o |= _ASCE_TYPE_REGION3;
1503 if (__builtin_constant_p(opt) && opt == 0) {
1504 /* flush without guest asce */
1505 asm volatile(
1506 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1507 : "+m" (*pudp)
1508 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK)),
1509 [m4] "i" (local)
1510 : "cc");
1511 } else {
1512 /* flush with guest asce */
1513 asm volatile(
1514 " .insn rrf,0xb98e0000,%[r1],%[r2],%[r3],%[m4]"
1515 : "+m" (*pudp)
1516 : [r1] "a" (r3o), [r2] "a" ((addr & PUD_MASK) | opt),
1517 [r3] "a" (asce), [m4] "i" (local)
1518 : "cc" );
1519 }
1520 }
1521
1522 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1523 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1524 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1525
1526 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1527
1528 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1529 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1530 pgtable_t pgtable);
1531
1532 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1533 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1534
1535 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1536 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1537 unsigned long addr, pmd_t *pmdp,
1538 pmd_t entry, int dirty)
1539 {
1540 VM_BUG_ON(addr & ~HPAGE_MASK);
1541
1542 entry = pmd_mkyoung(entry);
1543 if (dirty)
1544 entry = pmd_mkdirty(entry);
1545 if (pmd_val(*pmdp) == pmd_val(entry))
1546 return 0;
1547 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1548 return 1;
1549 }
1550
1551 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1552 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1553 unsigned long addr, pmd_t *pmdp)
1554 {
1555 pmd_t pmd = *pmdp;
1556
1557 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1558 return pmd_young(pmd);
1559 }
1560
1561 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1562 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1563 unsigned long addr, pmd_t *pmdp)
1564 {
1565 VM_BUG_ON(addr & ~HPAGE_MASK);
1566 return pmdp_test_and_clear_young(vma, addr, pmdp);
1567 }
1568
1569 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1570 pmd_t *pmdp, pmd_t entry)
1571 {
1572 if (!MACHINE_HAS_NX)
1573 pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1574 *pmdp = entry;
1575 }
1576
1577 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1578 {
1579 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1580 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1581 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1582 return pmd;
1583 }
1584
1585 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1586 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1587 unsigned long addr, pmd_t *pmdp)
1588 {
1589 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1590 }
1591
1592 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1593 static inline pmd_t pmdp_huge_get_and_clear_full(struct vm_area_struct *vma,
1594 unsigned long addr,
1595 pmd_t *pmdp, int full)
1596 {
1597 if (full) {
1598 pmd_t pmd = *pmdp;
1599 *pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
1600 return pmd;
1601 }
1602 return pmdp_xchg_lazy(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1603 }
1604
1605 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1606 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1607 unsigned long addr, pmd_t *pmdp)
1608 {
1609 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1610 }
1611
1612 #define __HAVE_ARCH_PMDP_INVALIDATE
1613 static inline pmd_t pmdp_invalidate(struct vm_area_struct *vma,
1614 unsigned long addr, pmd_t *pmdp)
1615 {
1616 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1617
1618 return pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1619 }
1620
1621 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1622 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1623 unsigned long addr, pmd_t *pmdp)
1624 {
1625 pmd_t pmd = *pmdp;
1626
1627 if (pmd_write(pmd))
1628 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1629 }
1630
1631 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1632 unsigned long address,
1633 pmd_t *pmdp)
1634 {
1635 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1636 }
1637 #define pmdp_collapse_flush pmdp_collapse_flush
1638
1639 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(((pfn) << PAGE_SHIFT), (pgprot))
1640 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1641
1642 static inline int pmd_trans_huge(pmd_t pmd)
1643 {
1644 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1645 }
1646
1647 #define has_transparent_hugepage has_transparent_hugepage
1648 static inline int has_transparent_hugepage(void)
1649 {
1650 return MACHINE_HAS_EDAT1 ? 1 : 0;
1651 }
1652 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1653
1654 /*
1655 * 64 bit swap entry format:
1656 * A page-table entry has some bits we have to treat in a special way.
1657 * Bits 52 and bit 55 have to be zero, otherwise a specification
1658 * exception will occur instead of a page translation exception. The
1659 * specification exception has the bad habit not to store necessary
1660 * information in the lowcore.
1661 * Bits 54 and 63 are used to indicate the page type.
1662 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1663 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1664 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1665 * for the offset.
1666 * | offset |01100|type |00|
1667 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1668 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1669 */
1670
1671 #define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1672 #define __SWP_OFFSET_SHIFT 12
1673 #define __SWP_TYPE_MASK ((1UL << 5) - 1)
1674 #define __SWP_TYPE_SHIFT 2
1675
1676 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1677 {
1678 pte_t pte;
1679
1680 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1681 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1682 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1683 return pte;
1684 }
1685
1686 static inline unsigned long __swp_type(swp_entry_t entry)
1687 {
1688 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1689 }
1690
1691 static inline unsigned long __swp_offset(swp_entry_t entry)
1692 {
1693 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1694 }
1695
1696 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1697 {
1698 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1699 }
1700
1701 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1702 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1703
1704 #define kern_addr_valid(addr) (1)
1705
1706 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1707 extern void vmem_remove_mapping(unsigned long start, unsigned long size);
1708 extern int s390_enable_sie(void);
1709 extern int s390_enable_skey(void);
1710 extern void s390_reset_cmma(struct mm_struct *mm);
1711
1712 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1713 #define HAVE_ARCH_UNMAPPED_AREA
1714 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1715
1716 #endif /* _S390_PAGE_H */