]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/s390/include/asm/pgtable.h
s390/mm: extended gmap pte notifier
[mirror_ubuntu-artful-kernel.git] / arch / s390 / include / asm / pgtable.h
1 /*
2 * S390 version
3 * Copyright IBM Corp. 1999, 2000
4 * Author(s): Hartmut Penner (hp@de.ibm.com)
5 * Ulrich Weigand (weigand@de.ibm.com)
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 *
8 * Derived from "include/asm-i386/pgtable.h"
9 */
10
11 #ifndef _ASM_S390_PGTABLE_H
12 #define _ASM_S390_PGTABLE_H
13
14 /*
15 * The Linux memory management assumes a three-level page table setup.
16 * For s390 64 bit we use up to four of the five levels the hardware
17 * provides (region first tables are not used).
18 *
19 * The "pgd_xxx()" functions are trivial for a folded two-level
20 * setup: the pgd is never bad, and a pmd always exists (as it's folded
21 * into the pgd entry)
22 *
23 * This file contains the functions and defines necessary to modify and use
24 * the S390 page table tree.
25 */
26 #ifndef __ASSEMBLY__
27 #include <linux/sched.h>
28 #include <linux/mm_types.h>
29 #include <linux/page-flags.h>
30 #include <linux/radix-tree.h>
31 #include <asm/bug.h>
32 #include <asm/page.h>
33
34 extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
35 extern void paging_init(void);
36 extern void vmem_map_init(void);
37
38 /*
39 * The S390 doesn't have any external MMU info: the kernel page
40 * tables contain all the necessary information.
41 */
42 #define update_mmu_cache(vma, address, ptep) do { } while (0)
43 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
44
45 /*
46 * ZERO_PAGE is a global shared page that is always zero; used
47 * for zero-mapped memory areas etc..
48 */
49
50 extern unsigned long empty_zero_page;
51 extern unsigned long zero_page_mask;
52
53 #define ZERO_PAGE(vaddr) \
54 (virt_to_page((void *)(empty_zero_page + \
55 (((unsigned long)(vaddr)) &zero_page_mask))))
56 #define __HAVE_COLOR_ZERO_PAGE
57
58 /* TODO: s390 cannot support io_remap_pfn_range... */
59 #endif /* !__ASSEMBLY__ */
60
61 /*
62 * PMD_SHIFT determines the size of the area a second-level page
63 * table can map
64 * PGDIR_SHIFT determines what a third-level page table entry can map
65 */
66 #define PMD_SHIFT 20
67 #define PUD_SHIFT 31
68 #define PGDIR_SHIFT 42
69
70 #define PMD_SIZE (1UL << PMD_SHIFT)
71 #define PMD_MASK (~(PMD_SIZE-1))
72 #define PUD_SIZE (1UL << PUD_SHIFT)
73 #define PUD_MASK (~(PUD_SIZE-1))
74 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
75 #define PGDIR_MASK (~(PGDIR_SIZE-1))
76
77 /*
78 * entries per page directory level: the S390 is two-level, so
79 * we don't really have any PMD directory physically.
80 * for S390 segment-table entries are combined to one PGD
81 * that leads to 1024 pte per pgd
82 */
83 #define PTRS_PER_PTE 256
84 #define PTRS_PER_PMD 2048
85 #define PTRS_PER_PUD 2048
86 #define PTRS_PER_PGD 2048
87
88 #define FIRST_USER_ADDRESS 0UL
89
90 #define pte_ERROR(e) \
91 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
92 #define pmd_ERROR(e) \
93 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
94 #define pud_ERROR(e) \
95 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
96 #define pgd_ERROR(e) \
97 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
98
99 #ifndef __ASSEMBLY__
100 /*
101 * The vmalloc and module area will always be on the topmost area of the
102 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
103 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
104 * modules will reside. That makes sure that inter module branches always
105 * happen without trampolines and in addition the placement within a 2GB frame
106 * is branch prediction unit friendly.
107 */
108 extern unsigned long VMALLOC_START;
109 extern unsigned long VMALLOC_END;
110 extern struct page *vmemmap;
111
112 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
113
114 extern unsigned long MODULES_VADDR;
115 extern unsigned long MODULES_END;
116 #define MODULES_VADDR MODULES_VADDR
117 #define MODULES_END MODULES_END
118 #define MODULES_LEN (1UL << 31)
119
120 static inline int is_module_addr(void *addr)
121 {
122 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
123 if (addr < (void *)MODULES_VADDR)
124 return 0;
125 if (addr > (void *)MODULES_END)
126 return 0;
127 return 1;
128 }
129
130 /*
131 * A 64 bit pagetable entry of S390 has following format:
132 * | PFRA |0IPC| OS |
133 * 0000000000111111111122222222223333333333444444444455555555556666
134 * 0123456789012345678901234567890123456789012345678901234567890123
135 *
136 * I Page-Invalid Bit: Page is not available for address-translation
137 * P Page-Protection Bit: Store access not possible for page
138 * C Change-bit override: HW is not required to set change bit
139 *
140 * A 64 bit segmenttable entry of S390 has following format:
141 * | P-table origin | TT
142 * 0000000000111111111122222222223333333333444444444455555555556666
143 * 0123456789012345678901234567890123456789012345678901234567890123
144 *
145 * I Segment-Invalid Bit: Segment is not available for address-translation
146 * C Common-Segment Bit: Segment is not private (PoP 3-30)
147 * P Page-Protection Bit: Store access not possible for page
148 * TT Type 00
149 *
150 * A 64 bit region table entry of S390 has following format:
151 * | S-table origin | TF TTTL
152 * 0000000000111111111122222222223333333333444444444455555555556666
153 * 0123456789012345678901234567890123456789012345678901234567890123
154 *
155 * I Segment-Invalid Bit: Segment is not available for address-translation
156 * TT Type 01
157 * TF
158 * TL Table length
159 *
160 * The 64 bit regiontable origin of S390 has following format:
161 * | region table origon | DTTL
162 * 0000000000111111111122222222223333333333444444444455555555556666
163 * 0123456789012345678901234567890123456789012345678901234567890123
164 *
165 * X Space-Switch event:
166 * G Segment-Invalid Bit:
167 * P Private-Space Bit:
168 * S Storage-Alteration:
169 * R Real space
170 * TL Table-Length:
171 *
172 * A storage key has the following format:
173 * | ACC |F|R|C|0|
174 * 0 3 4 5 6 7
175 * ACC: access key
176 * F : fetch protection bit
177 * R : referenced bit
178 * C : changed bit
179 */
180
181 /* Hardware bits in the page table entry */
182 #define _PAGE_PROTECT 0x200 /* HW read-only bit */
183 #define _PAGE_INVALID 0x400 /* HW invalid bit */
184 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
185
186 /* Software bits in the page table entry */
187 #define _PAGE_PRESENT 0x001 /* SW pte present bit */
188 #define _PAGE_YOUNG 0x004 /* SW pte young bit */
189 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
190 #define _PAGE_READ 0x010 /* SW pte read bit */
191 #define _PAGE_WRITE 0x020 /* SW pte write bit */
192 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
193 #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
194 #define __HAVE_ARCH_PTE_SPECIAL
195
196 #ifdef CONFIG_MEM_SOFT_DIRTY
197 #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
198 #else
199 #define _PAGE_SOFT_DIRTY 0x000
200 #endif
201
202 /* Set of bits not changed in pte_modify */
203 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
204 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
205
206 /*
207 * handle_pte_fault uses pte_present and pte_none to find out the pte type
208 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
209 * distinguish present from not-present ptes. It is changed only with the page
210 * table lock held.
211 *
212 * The following table gives the different possible bit combinations for
213 * the pte hardware and software bits in the last 12 bits of a pte
214 * (. unassigned bit, x don't care, t swap type):
215 *
216 * 842100000000
217 * 000084210000
218 * 000000008421
219 * .IR.uswrdy.p
220 * empty .10.00000000
221 * swap .11..ttttt.0
222 * prot-none, clean, old .11.xx0000.1
223 * prot-none, clean, young .11.xx0001.1
224 * prot-none, dirty, old .10.xx0010.1
225 * prot-none, dirty, young .10.xx0011.1
226 * read-only, clean, old .11.xx0100.1
227 * read-only, clean, young .01.xx0101.1
228 * read-only, dirty, old .11.xx0110.1
229 * read-only, dirty, young .01.xx0111.1
230 * read-write, clean, old .11.xx1100.1
231 * read-write, clean, young .01.xx1101.1
232 * read-write, dirty, old .10.xx1110.1
233 * read-write, dirty, young .00.xx1111.1
234 * HW-bits: R read-only, I invalid
235 * SW-bits: p present, y young, d dirty, r read, w write, s special,
236 * u unused, l large
237 *
238 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
239 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
240 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
241 */
242
243 /* Bits in the segment/region table address-space-control-element */
244 #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
245 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
246 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
247 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
248 #define _ASCE_REAL_SPACE 0x20 /* real space control */
249 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
250 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
251 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
252 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
253 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
254 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
255
256 /* Bits in the region table entry */
257 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
258 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
259 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
260 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
261 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
262 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
263 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
264 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
265
266 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
267 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
268 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
269 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
270 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
271 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
272
273 #define _REGION3_ENTRY_LARGE 0x400 /* RTTE-format control, large page */
274 #define _REGION3_ENTRY_RO 0x200 /* page protection bit */
275
276 /* Bits in the segment table entry */
277 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
278 #define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
279 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
280 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
281 #define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
282 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
283
284 #define _SEGMENT_ENTRY (0)
285 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
286
287 #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
288 #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
289 #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
290 #define _SEGMENT_ENTRY_READ 0x0002 /* SW segment read bit */
291 #define _SEGMENT_ENTRY_WRITE 0x0001 /* SW segment write bit */
292
293 #ifdef CONFIG_MEM_SOFT_DIRTY
294 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
295 #else
296 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
297 #endif
298
299 /*
300 * Segment table entry encoding (R = read-only, I = invalid, y = young bit):
301 * dy..R...I...rw
302 * prot-none, clean, old 00..1...1...00
303 * prot-none, clean, young 01..1...1...00
304 * prot-none, dirty, old 10..1...1...00
305 * prot-none, dirty, young 11..1...1...00
306 * read-only, clean, old 00..1...1...10
307 * read-only, clean, young 01..1...0...10
308 * read-only, dirty, old 10..1...1...10
309 * read-only, dirty, young 11..1...0...10
310 * read-write, clean, old 00..1...1...11
311 * read-write, clean, young 01..1...0...11
312 * read-write, dirty, old 10..0...1...11
313 * read-write, dirty, young 11..0...0...11
314 * The segment table origin is used to distinguish empty (origin==0) from
315 * read-write, old segment table entries (origin!=0)
316 * HW-bits: R read-only, I invalid
317 * SW-bits: y young, d dirty, r read, w write
318 */
319
320 /* Page status table bits for virtualization */
321 #define PGSTE_ACC_BITS 0xf000000000000000UL
322 #define PGSTE_FP_BIT 0x0800000000000000UL
323 #define PGSTE_PCL_BIT 0x0080000000000000UL
324 #define PGSTE_HR_BIT 0x0040000000000000UL
325 #define PGSTE_HC_BIT 0x0020000000000000UL
326 #define PGSTE_GR_BIT 0x0004000000000000UL
327 #define PGSTE_GC_BIT 0x0002000000000000UL
328 #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
329 #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
330
331 /* Guest Page State used for virtualization */
332 #define _PGSTE_GPS_ZERO 0x0000000080000000UL
333 #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
334 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
335 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
336
337 /*
338 * A user page table pointer has the space-switch-event bit, the
339 * private-space-control bit and the storage-alteration-event-control
340 * bit set. A kernel page table pointer doesn't need them.
341 */
342 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
343 _ASCE_ALT_EVENT)
344
345 /*
346 * Page protection definitions.
347 */
348 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID)
349 #define PAGE_READ __pgprot(_PAGE_PRESENT | _PAGE_READ | \
350 _PAGE_INVALID | _PAGE_PROTECT)
351 #define PAGE_WRITE __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
352 _PAGE_INVALID | _PAGE_PROTECT)
353
354 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
355 _PAGE_YOUNG | _PAGE_DIRTY)
356 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
357 _PAGE_YOUNG | _PAGE_DIRTY)
358 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
359 _PAGE_PROTECT)
360
361 /*
362 * On s390 the page table entry has an invalid bit and a read-only bit.
363 * Read permission implies execute permission and write permission
364 * implies read permission.
365 */
366 /*xwr*/
367 #define __P000 PAGE_NONE
368 #define __P001 PAGE_READ
369 #define __P010 PAGE_READ
370 #define __P011 PAGE_READ
371 #define __P100 PAGE_READ
372 #define __P101 PAGE_READ
373 #define __P110 PAGE_READ
374 #define __P111 PAGE_READ
375
376 #define __S000 PAGE_NONE
377 #define __S001 PAGE_READ
378 #define __S010 PAGE_WRITE
379 #define __S011 PAGE_WRITE
380 #define __S100 PAGE_READ
381 #define __S101 PAGE_READ
382 #define __S110 PAGE_WRITE
383 #define __S111 PAGE_WRITE
384
385 /*
386 * Segment entry (large page) protection definitions.
387 */
388 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
389 _SEGMENT_ENTRY_PROTECT)
390 #define SEGMENT_READ __pgprot(_SEGMENT_ENTRY_PROTECT | \
391 _SEGMENT_ENTRY_READ)
392 #define SEGMENT_WRITE __pgprot(_SEGMENT_ENTRY_READ | \
393 _SEGMENT_ENTRY_WRITE)
394
395 static inline int mm_has_pgste(struct mm_struct *mm)
396 {
397 #ifdef CONFIG_PGSTE
398 if (unlikely(mm->context.has_pgste))
399 return 1;
400 #endif
401 return 0;
402 }
403
404 static inline int mm_alloc_pgste(struct mm_struct *mm)
405 {
406 #ifdef CONFIG_PGSTE
407 if (unlikely(mm->context.alloc_pgste))
408 return 1;
409 #endif
410 return 0;
411 }
412
413 /*
414 * In the case that a guest uses storage keys
415 * faults should no longer be backed by zero pages
416 */
417 #define mm_forbids_zeropage mm_use_skey
418 static inline int mm_use_skey(struct mm_struct *mm)
419 {
420 #ifdef CONFIG_PGSTE
421 if (mm->context.use_skey)
422 return 1;
423 #endif
424 return 0;
425 }
426
427 /*
428 * pgd/pmd/pte query functions
429 */
430 static inline int pgd_present(pgd_t pgd)
431 {
432 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
433 return 1;
434 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
435 }
436
437 static inline int pgd_none(pgd_t pgd)
438 {
439 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
440 return 0;
441 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
442 }
443
444 static inline int pgd_bad(pgd_t pgd)
445 {
446 /*
447 * With dynamic page table levels the pgd can be a region table
448 * entry or a segment table entry. Check for the bit that are
449 * invalid for either table entry.
450 */
451 unsigned long mask =
452 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
453 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
454 return (pgd_val(pgd) & mask) != 0;
455 }
456
457 static inline int pud_present(pud_t pud)
458 {
459 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
460 return 1;
461 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
462 }
463
464 static inline int pud_none(pud_t pud)
465 {
466 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
467 return 0;
468 return (pud_val(pud) & _REGION_ENTRY_INVALID) != 0UL;
469 }
470
471 static inline int pud_large(pud_t pud)
472 {
473 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
474 return 0;
475 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
476 }
477
478 static inline int pud_bad(pud_t pud)
479 {
480 /*
481 * With dynamic page table levels the pud can be a region table
482 * entry or a segment table entry. Check for the bit that are
483 * invalid for either table entry.
484 */
485 unsigned long mask =
486 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
487 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
488 return (pud_val(pud) & mask) != 0;
489 }
490
491 static inline int pmd_present(pmd_t pmd)
492 {
493 return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID;
494 }
495
496 static inline int pmd_none(pmd_t pmd)
497 {
498 return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID;
499 }
500
501 static inline int pmd_large(pmd_t pmd)
502 {
503 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
504 }
505
506 static inline unsigned long pmd_pfn(pmd_t pmd)
507 {
508 unsigned long origin_mask;
509
510 origin_mask = _SEGMENT_ENTRY_ORIGIN;
511 if (pmd_large(pmd))
512 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
513 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
514 }
515
516 static inline int pmd_bad(pmd_t pmd)
517 {
518 if (pmd_large(pmd))
519 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
520 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
521 }
522
523 #define __HAVE_ARCH_PMD_WRITE
524 static inline int pmd_write(pmd_t pmd)
525 {
526 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
527 }
528
529 static inline int pmd_dirty(pmd_t pmd)
530 {
531 int dirty = 1;
532 if (pmd_large(pmd))
533 dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
534 return dirty;
535 }
536
537 static inline int pmd_young(pmd_t pmd)
538 {
539 int young = 1;
540 if (pmd_large(pmd))
541 young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
542 return young;
543 }
544
545 static inline int pte_present(pte_t pte)
546 {
547 /* Bit pattern: (pte & 0x001) == 0x001 */
548 return (pte_val(pte) & _PAGE_PRESENT) != 0;
549 }
550
551 static inline int pte_none(pte_t pte)
552 {
553 /* Bit pattern: pte == 0x400 */
554 return pte_val(pte) == _PAGE_INVALID;
555 }
556
557 static inline int pte_swap(pte_t pte)
558 {
559 /* Bit pattern: (pte & 0x201) == 0x200 */
560 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
561 == _PAGE_PROTECT;
562 }
563
564 static inline int pte_special(pte_t pte)
565 {
566 return (pte_val(pte) & _PAGE_SPECIAL);
567 }
568
569 #define __HAVE_ARCH_PTE_SAME
570 static inline int pte_same(pte_t a, pte_t b)
571 {
572 return pte_val(a) == pte_val(b);
573 }
574
575 #ifdef CONFIG_NUMA_BALANCING
576 static inline int pte_protnone(pte_t pte)
577 {
578 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
579 }
580
581 static inline int pmd_protnone(pmd_t pmd)
582 {
583 /* pmd_large(pmd) implies pmd_present(pmd) */
584 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
585 }
586 #endif
587
588 static inline int pte_soft_dirty(pte_t pte)
589 {
590 return pte_val(pte) & _PAGE_SOFT_DIRTY;
591 }
592 #define pte_swp_soft_dirty pte_soft_dirty
593
594 static inline pte_t pte_mksoft_dirty(pte_t pte)
595 {
596 pte_val(pte) |= _PAGE_SOFT_DIRTY;
597 return pte;
598 }
599 #define pte_swp_mksoft_dirty pte_mksoft_dirty
600
601 static inline pte_t pte_clear_soft_dirty(pte_t pte)
602 {
603 pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
604 return pte;
605 }
606 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
607
608 static inline int pmd_soft_dirty(pmd_t pmd)
609 {
610 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
611 }
612
613 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
614 {
615 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
616 return pmd;
617 }
618
619 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
620 {
621 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
622 return pmd;
623 }
624
625 /*
626 * query functions pte_write/pte_dirty/pte_young only work if
627 * pte_present() is true. Undefined behaviour if not..
628 */
629 static inline int pte_write(pte_t pte)
630 {
631 return (pte_val(pte) & _PAGE_WRITE) != 0;
632 }
633
634 static inline int pte_dirty(pte_t pte)
635 {
636 return (pte_val(pte) & _PAGE_DIRTY) != 0;
637 }
638
639 static inline int pte_young(pte_t pte)
640 {
641 return (pte_val(pte) & _PAGE_YOUNG) != 0;
642 }
643
644 #define __HAVE_ARCH_PTE_UNUSED
645 static inline int pte_unused(pte_t pte)
646 {
647 return pte_val(pte) & _PAGE_UNUSED;
648 }
649
650 /*
651 * pgd/pmd/pte modification functions
652 */
653
654 static inline void pgd_clear(pgd_t *pgd)
655 {
656 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
657 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
658 }
659
660 static inline void pud_clear(pud_t *pud)
661 {
662 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
663 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
664 }
665
666 static inline void pmd_clear(pmd_t *pmdp)
667 {
668 pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID;
669 }
670
671 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
672 {
673 pte_val(*ptep) = _PAGE_INVALID;
674 }
675
676 /*
677 * The following pte modification functions only work if
678 * pte_present() is true. Undefined behaviour if not..
679 */
680 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
681 {
682 pte_val(pte) &= _PAGE_CHG_MASK;
683 pte_val(pte) |= pgprot_val(newprot);
684 /*
685 * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the
686 * invalid bit set, clear it again for readable, young pages
687 */
688 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
689 pte_val(pte) &= ~_PAGE_INVALID;
690 /*
691 * newprot for PAGE_READ and PAGE_WRITE has the page protection
692 * bit set, clear it again for writable, dirty pages
693 */
694 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
695 pte_val(pte) &= ~_PAGE_PROTECT;
696 return pte;
697 }
698
699 static inline pte_t pte_wrprotect(pte_t pte)
700 {
701 pte_val(pte) &= ~_PAGE_WRITE;
702 pte_val(pte) |= _PAGE_PROTECT;
703 return pte;
704 }
705
706 static inline pte_t pte_mkwrite(pte_t pte)
707 {
708 pte_val(pte) |= _PAGE_WRITE;
709 if (pte_val(pte) & _PAGE_DIRTY)
710 pte_val(pte) &= ~_PAGE_PROTECT;
711 return pte;
712 }
713
714 static inline pte_t pte_mkclean(pte_t pte)
715 {
716 pte_val(pte) &= ~_PAGE_DIRTY;
717 pte_val(pte) |= _PAGE_PROTECT;
718 return pte;
719 }
720
721 static inline pte_t pte_mkdirty(pte_t pte)
722 {
723 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
724 if (pte_val(pte) & _PAGE_WRITE)
725 pte_val(pte) &= ~_PAGE_PROTECT;
726 return pte;
727 }
728
729 static inline pte_t pte_mkold(pte_t pte)
730 {
731 pte_val(pte) &= ~_PAGE_YOUNG;
732 pte_val(pte) |= _PAGE_INVALID;
733 return pte;
734 }
735
736 static inline pte_t pte_mkyoung(pte_t pte)
737 {
738 pte_val(pte) |= _PAGE_YOUNG;
739 if (pte_val(pte) & _PAGE_READ)
740 pte_val(pte) &= ~_PAGE_INVALID;
741 return pte;
742 }
743
744 static inline pte_t pte_mkspecial(pte_t pte)
745 {
746 pte_val(pte) |= _PAGE_SPECIAL;
747 return pte;
748 }
749
750 #ifdef CONFIG_HUGETLB_PAGE
751 static inline pte_t pte_mkhuge(pte_t pte)
752 {
753 pte_val(pte) |= _PAGE_LARGE;
754 return pte;
755 }
756 #endif
757
758 static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
759 {
760 unsigned long pto = (unsigned long) ptep;
761
762 /* Invalidation + global TLB flush for the pte */
763 asm volatile(
764 " ipte %2,%3"
765 : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
766 }
767
768 static inline void __ptep_ipte_local(unsigned long address, pte_t *ptep)
769 {
770 unsigned long pto = (unsigned long) ptep;
771
772 /* Invalidation + local TLB flush for the pte */
773 asm volatile(
774 " .insn rrf,0xb2210000,%2,%3,0,1"
775 : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
776 }
777
778 static inline void __ptep_ipte_range(unsigned long address, int nr, pte_t *ptep)
779 {
780 unsigned long pto = (unsigned long) ptep;
781
782 /* Invalidate a range of ptes + global TLB flush of the ptes */
783 do {
784 asm volatile(
785 " .insn rrf,0xb2210000,%2,%0,%1,0"
786 : "+a" (address), "+a" (nr) : "a" (pto) : "memory");
787 } while (nr != 255);
788 }
789
790 /*
791 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
792 * both clear the TLB for the unmapped pte. The reason is that
793 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
794 * to modify an active pte. The sequence is
795 * 1) ptep_get_and_clear
796 * 2) set_pte_at
797 * 3) flush_tlb_range
798 * On s390 the tlb needs to get flushed with the modification of the pte
799 * if the pte is active. The only way how this can be implemented is to
800 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
801 * is a nop.
802 */
803 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
804 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
805
806 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
807 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
808 unsigned long addr, pte_t *ptep)
809 {
810 pte_t pte = *ptep;
811
812 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
813 return pte_young(pte);
814 }
815
816 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
817 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
818 unsigned long address, pte_t *ptep)
819 {
820 return ptep_test_and_clear_young(vma, address, ptep);
821 }
822
823 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
824 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
825 unsigned long addr, pte_t *ptep)
826 {
827 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
828 }
829
830 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
831 pte_t ptep_modify_prot_start(struct mm_struct *, unsigned long, pte_t *);
832 void ptep_modify_prot_commit(struct mm_struct *, unsigned long, pte_t *, pte_t);
833
834 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
835 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
836 unsigned long addr, pte_t *ptep)
837 {
838 return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
839 }
840
841 /*
842 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
843 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
844 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
845 * cannot be accessed while the batched unmap is running. In this case
846 * full==1 and a simple pte_clear is enough. See tlb.h.
847 */
848 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
849 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
850 unsigned long addr,
851 pte_t *ptep, int full)
852 {
853 if (full) {
854 pte_t pte = *ptep;
855 *ptep = __pte(_PAGE_INVALID);
856 return pte;
857 }
858 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
859 }
860
861 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
862 static inline void ptep_set_wrprotect(struct mm_struct *mm,
863 unsigned long addr, pte_t *ptep)
864 {
865 pte_t pte = *ptep;
866
867 if (pte_write(pte))
868 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
869 }
870
871 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
872 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
873 unsigned long addr, pte_t *ptep,
874 pte_t entry, int dirty)
875 {
876 if (pte_same(*ptep, entry))
877 return 0;
878 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
879 return 1;
880 }
881
882 /*
883 * Additional functions to handle KVM guest page tables
884 */
885 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
886 pte_t *ptep, pte_t entry);
887 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
888 void ptep_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
889 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
890 pte_t *ptep, int prot);
891 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
892 pte_t *ptep , int reset);
893 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
894
895 bool test_and_clear_guest_dirty(struct mm_struct *mm, unsigned long address);
896 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
897 unsigned char key, bool nq);
898 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
899 unsigned char key, unsigned char *oldkey,
900 bool nq, bool mr, bool mc);
901 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
902 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
903 unsigned char *key);
904
905 /*
906 * Certain architectures need to do special things when PTEs
907 * within a page table are directly modified. Thus, the following
908 * hook is made available.
909 */
910 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
911 pte_t *ptep, pte_t entry)
912 {
913 if (mm_has_pgste(mm))
914 ptep_set_pte_at(mm, addr, ptep, entry);
915 else
916 *ptep = entry;
917 }
918
919 /*
920 * Conversion functions: convert a page and protection to a page entry,
921 * and a page entry and page directory to the page they refer to.
922 */
923 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
924 {
925 pte_t __pte;
926 pte_val(__pte) = physpage + pgprot_val(pgprot);
927 return pte_mkyoung(__pte);
928 }
929
930 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
931 {
932 unsigned long physpage = page_to_phys(page);
933 pte_t __pte = mk_pte_phys(physpage, pgprot);
934
935 if (pte_write(__pte) && PageDirty(page))
936 __pte = pte_mkdirty(__pte);
937 return __pte;
938 }
939
940 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
941 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
942 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
943 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
944
945 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
946 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
947
948 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
949 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
950 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
951
952 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
953 {
954 pud_t *pud = (pud_t *) pgd;
955 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
956 pud = (pud_t *) pgd_deref(*pgd);
957 return pud + pud_index(address);
958 }
959
960 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
961 {
962 pmd_t *pmd = (pmd_t *) pud;
963 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
964 pmd = (pmd_t *) pud_deref(*pud);
965 return pmd + pmd_index(address);
966 }
967
968 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
969 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
970 #define pte_page(x) pfn_to_page(pte_pfn(x))
971
972 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
973
974 /* Find an entry in the lowest level page table.. */
975 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
976 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
977 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
978 #define pte_unmap(pte) do { } while (0)
979
980 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
981 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
982 {
983 /*
984 * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx)
985 * Convert to segment table entry format.
986 */
987 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
988 return pgprot_val(SEGMENT_NONE);
989 if (pgprot_val(pgprot) == pgprot_val(PAGE_READ))
990 return pgprot_val(SEGMENT_READ);
991 return pgprot_val(SEGMENT_WRITE);
992 }
993
994 static inline pmd_t pmd_wrprotect(pmd_t pmd)
995 {
996 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
997 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
998 return pmd;
999 }
1000
1001 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1002 {
1003 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1004 if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1005 return pmd;
1006 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1007 return pmd;
1008 }
1009
1010 static inline pmd_t pmd_mkclean(pmd_t pmd)
1011 {
1012 if (pmd_large(pmd)) {
1013 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1014 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1015 }
1016 return pmd;
1017 }
1018
1019 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1020 {
1021 if (pmd_large(pmd)) {
1022 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
1023 _SEGMENT_ENTRY_SOFT_DIRTY;
1024 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1025 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1026 }
1027 return pmd;
1028 }
1029
1030 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1031 {
1032 if (pmd_large(pmd)) {
1033 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1034 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1035 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1036 }
1037 return pmd;
1038 }
1039
1040 static inline pmd_t pmd_mkold(pmd_t pmd)
1041 {
1042 if (pmd_large(pmd)) {
1043 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1044 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1045 }
1046 return pmd;
1047 }
1048
1049 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1050 {
1051 if (pmd_large(pmd)) {
1052 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1053 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1054 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1055 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1056 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1057 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1058 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1059 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1060 return pmd;
1061 }
1062 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1063 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1064 return pmd;
1065 }
1066
1067 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1068 {
1069 pmd_t __pmd;
1070 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1071 return __pmd;
1072 }
1073
1074 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1075
1076 static inline void __pmdp_csp(pmd_t *pmdp)
1077 {
1078 register unsigned long reg2 asm("2") = pmd_val(*pmdp);
1079 register unsigned long reg3 asm("3") = pmd_val(*pmdp) |
1080 _SEGMENT_ENTRY_INVALID;
1081 register unsigned long reg4 asm("4") = ((unsigned long) pmdp) + 5;
1082
1083 asm volatile(
1084 " csp %1,%3"
1085 : "=m" (*pmdp)
1086 : "d" (reg2), "d" (reg3), "d" (reg4), "m" (*pmdp) : "cc");
1087 }
1088
1089 static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp)
1090 {
1091 unsigned long sto;
1092
1093 sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1094 asm volatile(
1095 " .insn rrf,0xb98e0000,%2,%3,0,0"
1096 : "=m" (*pmdp)
1097 : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1098 : "cc" );
1099 }
1100
1101 static inline void __pmdp_idte_local(unsigned long address, pmd_t *pmdp)
1102 {
1103 unsigned long sto;
1104
1105 sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1106 asm volatile(
1107 " .insn rrf,0xb98e0000,%2,%3,0,1"
1108 : "=m" (*pmdp)
1109 : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1110 : "cc" );
1111 }
1112
1113 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1114 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1115
1116 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1117
1118 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1119 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1120 pgtable_t pgtable);
1121
1122 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1123 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1124
1125 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1126 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1127 unsigned long addr, pmd_t *pmdp,
1128 pmd_t entry, int dirty)
1129 {
1130 VM_BUG_ON(addr & ~HPAGE_MASK);
1131
1132 entry = pmd_mkyoung(entry);
1133 if (dirty)
1134 entry = pmd_mkdirty(entry);
1135 if (pmd_val(*pmdp) == pmd_val(entry))
1136 return 0;
1137 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1138 return 1;
1139 }
1140
1141 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1142 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1143 unsigned long addr, pmd_t *pmdp)
1144 {
1145 pmd_t pmd = *pmdp;
1146
1147 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1148 return pmd_young(pmd);
1149 }
1150
1151 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1152 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1153 unsigned long addr, pmd_t *pmdp)
1154 {
1155 VM_BUG_ON(addr & ~HPAGE_MASK);
1156 return pmdp_test_and_clear_young(vma, addr, pmdp);
1157 }
1158
1159 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1160 pmd_t *pmdp, pmd_t entry)
1161 {
1162 *pmdp = entry;
1163 }
1164
1165 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1166 {
1167 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1168 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1169 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1170 return pmd;
1171 }
1172
1173 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1174 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1175 unsigned long addr, pmd_t *pmdp)
1176 {
1177 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_INVALID));
1178 }
1179
1180 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1181 static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1182 unsigned long addr,
1183 pmd_t *pmdp, int full)
1184 {
1185 if (full) {
1186 pmd_t pmd = *pmdp;
1187 *pmdp = __pmd(_SEGMENT_ENTRY_INVALID);
1188 return pmd;
1189 }
1190 return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_INVALID));
1191 }
1192
1193 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1194 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1195 unsigned long addr, pmd_t *pmdp)
1196 {
1197 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1198 }
1199
1200 #define __HAVE_ARCH_PMDP_INVALIDATE
1201 static inline void pmdp_invalidate(struct vm_area_struct *vma,
1202 unsigned long addr, pmd_t *pmdp)
1203 {
1204 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_INVALID));
1205 }
1206
1207 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1208 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1209 unsigned long addr, pmd_t *pmdp)
1210 {
1211 pmd_t pmd = *pmdp;
1212
1213 if (pmd_write(pmd))
1214 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1215 }
1216
1217 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1218 unsigned long address,
1219 pmd_t *pmdp)
1220 {
1221 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1222 }
1223 #define pmdp_collapse_flush pmdp_collapse_flush
1224
1225 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1226 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1227
1228 static inline int pmd_trans_huge(pmd_t pmd)
1229 {
1230 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1231 }
1232
1233 #define has_transparent_hugepage has_transparent_hugepage
1234 static inline int has_transparent_hugepage(void)
1235 {
1236 return MACHINE_HAS_HPAGE ? 1 : 0;
1237 }
1238 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1239
1240 /*
1241 * 64 bit swap entry format:
1242 * A page-table entry has some bits we have to treat in a special way.
1243 * Bits 52 and bit 55 have to be zero, otherwise a specification
1244 * exception will occur instead of a page translation exception. The
1245 * specification exception has the bad habit not to store necessary
1246 * information in the lowcore.
1247 * Bits 54 and 63 are used to indicate the page type.
1248 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1249 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1250 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1251 * for the offset.
1252 * | offset |01100|type |00|
1253 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1254 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1255 */
1256
1257 #define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1258 #define __SWP_OFFSET_SHIFT 12
1259 #define __SWP_TYPE_MASK ((1UL << 5) - 1)
1260 #define __SWP_TYPE_SHIFT 2
1261
1262 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1263 {
1264 pte_t pte;
1265
1266 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1267 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1268 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1269 return pte;
1270 }
1271
1272 static inline unsigned long __swp_type(swp_entry_t entry)
1273 {
1274 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1275 }
1276
1277 static inline unsigned long __swp_offset(swp_entry_t entry)
1278 {
1279 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1280 }
1281
1282 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1283 {
1284 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1285 }
1286
1287 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1288 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1289
1290 #endif /* !__ASSEMBLY__ */
1291
1292 #define kern_addr_valid(addr) (1)
1293
1294 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1295 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1296 extern int s390_enable_sie(void);
1297 extern int s390_enable_skey(void);
1298 extern void s390_reset_cmma(struct mm_struct *mm);
1299
1300 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1301 #define HAVE_ARCH_UNMAPPED_AREA
1302 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1303
1304 /*
1305 * No page table caches to initialise
1306 */
1307 static inline void pgtable_cache_init(void) { }
1308 static inline void check_pgt_cache(void) { }
1309
1310 #include <asm-generic/pgtable.h>
1311
1312 #endif /* _S390_PAGE_H */