]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/s390/include/asm/pgtable.h
Merge remote-tracking branch 'regulator/topic/palmas' into v3.9-rc8
[mirror_ubuntu-hirsute-kernel.git] / arch / s390 / include / asm / pgtable.h
1 /*
2 * S390 version
3 * Copyright IBM Corp. 1999, 2000
4 * Author(s): Hartmut Penner (hp@de.ibm.com)
5 * Ulrich Weigand (weigand@de.ibm.com)
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 *
8 * Derived from "include/asm-i386/pgtable.h"
9 */
10
11 #ifndef _ASM_S390_PGTABLE_H
12 #define _ASM_S390_PGTABLE_H
13
14 /*
15 * The Linux memory management assumes a three-level page table setup. For
16 * s390 31 bit we "fold" the mid level into the top-level page table, so
17 * that we physically have the same two-level page table as the s390 mmu
18 * expects in 31 bit mode. For s390 64 bit we use three of the five levels
19 * the hardware provides (region first and region second tables are not
20 * used).
21 *
22 * The "pgd_xxx()" functions are trivial for a folded two-level
23 * setup: the pgd is never bad, and a pmd always exists (as it's folded
24 * into the pgd entry)
25 *
26 * This file contains the functions and defines necessary to modify and use
27 * the S390 page table tree.
28 */
29 #ifndef __ASSEMBLY__
30 #include <linux/sched.h>
31 #include <linux/mm_types.h>
32 #include <linux/page-flags.h>
33 #include <asm/bug.h>
34 #include <asm/page.h>
35
36 extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
37 extern void paging_init(void);
38 extern void vmem_map_init(void);
39
40 /*
41 * The S390 doesn't have any external MMU info: the kernel page
42 * tables contain all the necessary information.
43 */
44 #define update_mmu_cache(vma, address, ptep) do { } while (0)
45 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
46
47 /*
48 * ZERO_PAGE is a global shared page that is always zero; used
49 * for zero-mapped memory areas etc..
50 */
51
52 extern unsigned long empty_zero_page;
53 extern unsigned long zero_page_mask;
54
55 #define ZERO_PAGE(vaddr) \
56 (virt_to_page((void *)(empty_zero_page + \
57 (((unsigned long)(vaddr)) &zero_page_mask))))
58 #define __HAVE_COLOR_ZERO_PAGE
59
60 /* TODO: s390 cannot support io_remap_pfn_range... */
61 #define io_remap_pfn_range(vma, vaddr, pfn, size, prot) \
62 remap_pfn_range(vma, vaddr, pfn, size, prot)
63
64 #endif /* !__ASSEMBLY__ */
65
66 /*
67 * PMD_SHIFT determines the size of the area a second-level page
68 * table can map
69 * PGDIR_SHIFT determines what a third-level page table entry can map
70 */
71 #ifndef CONFIG_64BIT
72 # define PMD_SHIFT 20
73 # define PUD_SHIFT 20
74 # define PGDIR_SHIFT 20
75 #else /* CONFIG_64BIT */
76 # define PMD_SHIFT 20
77 # define PUD_SHIFT 31
78 # define PGDIR_SHIFT 42
79 #endif /* CONFIG_64BIT */
80
81 #define PMD_SIZE (1UL << PMD_SHIFT)
82 #define PMD_MASK (~(PMD_SIZE-1))
83 #define PUD_SIZE (1UL << PUD_SHIFT)
84 #define PUD_MASK (~(PUD_SIZE-1))
85 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
86 #define PGDIR_MASK (~(PGDIR_SIZE-1))
87
88 /*
89 * entries per page directory level: the S390 is two-level, so
90 * we don't really have any PMD directory physically.
91 * for S390 segment-table entries are combined to one PGD
92 * that leads to 1024 pte per pgd
93 */
94 #define PTRS_PER_PTE 256
95 #ifndef CONFIG_64BIT
96 #define PTRS_PER_PMD 1
97 #define PTRS_PER_PUD 1
98 #else /* CONFIG_64BIT */
99 #define PTRS_PER_PMD 2048
100 #define PTRS_PER_PUD 2048
101 #endif /* CONFIG_64BIT */
102 #define PTRS_PER_PGD 2048
103
104 #define FIRST_USER_ADDRESS 0
105
106 #define pte_ERROR(e) \
107 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
108 #define pmd_ERROR(e) \
109 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
110 #define pud_ERROR(e) \
111 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
112 #define pgd_ERROR(e) \
113 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
114
115 #ifndef __ASSEMBLY__
116 /*
117 * The vmalloc and module area will always be on the topmost area of the kernel
118 * mapping. We reserve 96MB (31bit) / 128GB (64bit) for vmalloc and modules.
119 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
120 * modules will reside. That makes sure that inter module branches always
121 * happen without trampolines and in addition the placement within a 2GB frame
122 * is branch prediction unit friendly.
123 */
124 extern unsigned long VMALLOC_START;
125 extern unsigned long VMALLOC_END;
126 extern struct page *vmemmap;
127
128 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
129
130 #ifdef CONFIG_64BIT
131 extern unsigned long MODULES_VADDR;
132 extern unsigned long MODULES_END;
133 #define MODULES_VADDR MODULES_VADDR
134 #define MODULES_END MODULES_END
135 #define MODULES_LEN (1UL << 31)
136 #endif
137
138 /*
139 * A 31 bit pagetable entry of S390 has following format:
140 * | PFRA | | OS |
141 * 0 0IP0
142 * 00000000001111111111222222222233
143 * 01234567890123456789012345678901
144 *
145 * I Page-Invalid Bit: Page is not available for address-translation
146 * P Page-Protection Bit: Store access not possible for page
147 *
148 * A 31 bit segmenttable entry of S390 has following format:
149 * | P-table origin | |PTL
150 * 0 IC
151 * 00000000001111111111222222222233
152 * 01234567890123456789012345678901
153 *
154 * I Segment-Invalid Bit: Segment is not available for address-translation
155 * C Common-Segment Bit: Segment is not private (PoP 3-30)
156 * PTL Page-Table-Length: Page-table length (PTL+1*16 entries -> up to 256)
157 *
158 * The 31 bit segmenttable origin of S390 has following format:
159 *
160 * |S-table origin | | STL |
161 * X **GPS
162 * 00000000001111111111222222222233
163 * 01234567890123456789012345678901
164 *
165 * X Space-Switch event:
166 * G Segment-Invalid Bit: *
167 * P Private-Space Bit: Segment is not private (PoP 3-30)
168 * S Storage-Alteration:
169 * STL Segment-Table-Length: Segment-table length (STL+1*16 entries -> up to 2048)
170 *
171 * A 64 bit pagetable entry of S390 has following format:
172 * | PFRA |0IPC| OS |
173 * 0000000000111111111122222222223333333333444444444455555555556666
174 * 0123456789012345678901234567890123456789012345678901234567890123
175 *
176 * I Page-Invalid Bit: Page is not available for address-translation
177 * P Page-Protection Bit: Store access not possible for page
178 * C Change-bit override: HW is not required to set change bit
179 *
180 * A 64 bit segmenttable entry of S390 has following format:
181 * | P-table origin | TT
182 * 0000000000111111111122222222223333333333444444444455555555556666
183 * 0123456789012345678901234567890123456789012345678901234567890123
184 *
185 * I Segment-Invalid Bit: Segment is not available for address-translation
186 * C Common-Segment Bit: Segment is not private (PoP 3-30)
187 * P Page-Protection Bit: Store access not possible for page
188 * TT Type 00
189 *
190 * A 64 bit region table entry of S390 has following format:
191 * | S-table origin | TF TTTL
192 * 0000000000111111111122222222223333333333444444444455555555556666
193 * 0123456789012345678901234567890123456789012345678901234567890123
194 *
195 * I Segment-Invalid Bit: Segment is not available for address-translation
196 * TT Type 01
197 * TF
198 * TL Table length
199 *
200 * The 64 bit regiontable origin of S390 has following format:
201 * | region table origon | DTTL
202 * 0000000000111111111122222222223333333333444444444455555555556666
203 * 0123456789012345678901234567890123456789012345678901234567890123
204 *
205 * X Space-Switch event:
206 * G Segment-Invalid Bit:
207 * P Private-Space Bit:
208 * S Storage-Alteration:
209 * R Real space
210 * TL Table-Length:
211 *
212 * A storage key has the following format:
213 * | ACC |F|R|C|0|
214 * 0 3 4 5 6 7
215 * ACC: access key
216 * F : fetch protection bit
217 * R : referenced bit
218 * C : changed bit
219 */
220
221 /* Hardware bits in the page table entry */
222 #define _PAGE_CO 0x100 /* HW Change-bit override */
223 #define _PAGE_RO 0x200 /* HW read-only bit */
224 #define _PAGE_INVALID 0x400 /* HW invalid bit */
225
226 /* Software bits in the page table entry */
227 #define _PAGE_SWT 0x001 /* SW pte type bit t */
228 #define _PAGE_SWX 0x002 /* SW pte type bit x */
229 #define _PAGE_SWC 0x004 /* SW pte changed bit */
230 #define _PAGE_SWR 0x008 /* SW pte referenced bit */
231 #define _PAGE_SWW 0x010 /* SW pte write bit */
232 #define _PAGE_SPECIAL 0x020 /* SW associated with special page */
233 #define __HAVE_ARCH_PTE_SPECIAL
234
235 /* Set of bits not changed in pte_modify */
236 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_CO | \
237 _PAGE_SWC | _PAGE_SWR)
238
239 /* Six different types of pages. */
240 #define _PAGE_TYPE_EMPTY 0x400
241 #define _PAGE_TYPE_NONE 0x401
242 #define _PAGE_TYPE_SWAP 0x403
243 #define _PAGE_TYPE_FILE 0x601 /* bit 0x002 is used for offset !! */
244 #define _PAGE_TYPE_RO 0x200
245 #define _PAGE_TYPE_RW 0x000
246
247 /*
248 * Only four types for huge pages, using the invalid bit and protection bit
249 * of a segment table entry.
250 */
251 #define _HPAGE_TYPE_EMPTY 0x020 /* _SEGMENT_ENTRY_INV */
252 #define _HPAGE_TYPE_NONE 0x220
253 #define _HPAGE_TYPE_RO 0x200 /* _SEGMENT_ENTRY_RO */
254 #define _HPAGE_TYPE_RW 0x000
255
256 /*
257 * PTE type bits are rather complicated. handle_pte_fault uses pte_present,
258 * pte_none and pte_file to find out the pte type WITHOUT holding the page
259 * table lock. ptep_clear_flush on the other hand uses ptep_clear_flush to
260 * invalidate a given pte. ipte sets the hw invalid bit and clears all tlbs
261 * for the page. The page table entry is set to _PAGE_TYPE_EMPTY afterwards.
262 * This change is done while holding the lock, but the intermediate step
263 * of a previously valid pte with the hw invalid bit set can be observed by
264 * handle_pte_fault. That makes it necessary that all valid pte types with
265 * the hw invalid bit set must be distinguishable from the four pte types
266 * empty, none, swap and file.
267 *
268 * irxt ipte irxt
269 * _PAGE_TYPE_EMPTY 1000 -> 1000
270 * _PAGE_TYPE_NONE 1001 -> 1001
271 * _PAGE_TYPE_SWAP 1011 -> 1011
272 * _PAGE_TYPE_FILE 11?1 -> 11?1
273 * _PAGE_TYPE_RO 0100 -> 1100
274 * _PAGE_TYPE_RW 0000 -> 1000
275 *
276 * pte_none is true for bits combinations 1000, 1010, 1100, 1110
277 * pte_present is true for bits combinations 0000, 0010, 0100, 0110, 1001
278 * pte_file is true for bits combinations 1101, 1111
279 * swap pte is 1011 and 0001, 0011, 0101, 0111 are invalid.
280 */
281
282 #ifndef CONFIG_64BIT
283
284 /* Bits in the segment table address-space-control-element */
285 #define _ASCE_SPACE_SWITCH 0x80000000UL /* space switch event */
286 #define _ASCE_ORIGIN_MASK 0x7ffff000UL /* segment table origin */
287 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
288 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
289 #define _ASCE_TABLE_LENGTH 0x7f /* 128 x 64 entries = 8k */
290
291 /* Bits in the segment table entry */
292 #define _SEGMENT_ENTRY_ORIGIN 0x7fffffc0UL /* page table origin */
293 #define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */
294 #define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
295 #define _SEGMENT_ENTRY_COMMON 0x10 /* common segment bit */
296 #define _SEGMENT_ENTRY_PTL 0x0f /* page table length */
297
298 #define _SEGMENT_ENTRY (_SEGMENT_ENTRY_PTL)
299 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
300
301 /* Page status table bits for virtualization */
302 #define RCP_ACC_BITS 0xf0000000UL
303 #define RCP_FP_BIT 0x08000000UL
304 #define RCP_PCL_BIT 0x00800000UL
305 #define RCP_HR_BIT 0x00400000UL
306 #define RCP_HC_BIT 0x00200000UL
307 #define RCP_GR_BIT 0x00040000UL
308 #define RCP_GC_BIT 0x00020000UL
309
310 /* User dirty / referenced bit for KVM's migration feature */
311 #define KVM_UR_BIT 0x00008000UL
312 #define KVM_UC_BIT 0x00004000UL
313
314 #else /* CONFIG_64BIT */
315
316 /* Bits in the segment/region table address-space-control-element */
317 #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
318 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
319 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
320 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
321 #define _ASCE_REAL_SPACE 0x20 /* real space control */
322 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
323 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
324 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
325 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
326 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
327 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
328
329 /* Bits in the region table entry */
330 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
331 #define _REGION_ENTRY_RO 0x200 /* region protection bit */
332 #define _REGION_ENTRY_INV 0x20 /* invalid region table entry */
333 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
334 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
335 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
336 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
337 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
338
339 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
340 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INV)
341 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
342 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INV)
343 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
344 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INV)
345
346 #define _REGION3_ENTRY_LARGE 0x400 /* RTTE-format control, large page */
347 #define _REGION3_ENTRY_RO 0x200 /* page protection bit */
348 #define _REGION3_ENTRY_CO 0x100 /* change-recording override */
349
350 /* Bits in the segment table entry */
351 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
352 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
353 #define _SEGMENT_ENTRY_RO 0x200 /* page protection bit */
354 #define _SEGMENT_ENTRY_INV 0x20 /* invalid segment table entry */
355
356 #define _SEGMENT_ENTRY (0)
357 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INV)
358
359 #define _SEGMENT_ENTRY_LARGE 0x400 /* STE-format control, large page */
360 #define _SEGMENT_ENTRY_CO 0x100 /* change-recording override */
361 #define _SEGMENT_ENTRY_SPLIT_BIT 0 /* THP splitting bit number */
362 #define _SEGMENT_ENTRY_SPLIT (1UL << _SEGMENT_ENTRY_SPLIT_BIT)
363
364 /* Set of bits not changed in pmd_modify */
365 #define _SEGMENT_CHG_MASK (_SEGMENT_ENTRY_ORIGIN | _SEGMENT_ENTRY_LARGE \
366 | _SEGMENT_ENTRY_SPLIT | _SEGMENT_ENTRY_CO)
367
368 /* Page status table bits for virtualization */
369 #define RCP_ACC_BITS 0xf000000000000000UL
370 #define RCP_FP_BIT 0x0800000000000000UL
371 #define RCP_PCL_BIT 0x0080000000000000UL
372 #define RCP_HR_BIT 0x0040000000000000UL
373 #define RCP_HC_BIT 0x0020000000000000UL
374 #define RCP_GR_BIT 0x0004000000000000UL
375 #define RCP_GC_BIT 0x0002000000000000UL
376
377 /* User dirty / referenced bit for KVM's migration feature */
378 #define KVM_UR_BIT 0x0000800000000000UL
379 #define KVM_UC_BIT 0x0000400000000000UL
380
381 #endif /* CONFIG_64BIT */
382
383 /*
384 * A user page table pointer has the space-switch-event bit, the
385 * private-space-control bit and the storage-alteration-event-control
386 * bit set. A kernel page table pointer doesn't need them.
387 */
388 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
389 _ASCE_ALT_EVENT)
390
391 /*
392 * Page protection definitions.
393 */
394 #define PAGE_NONE __pgprot(_PAGE_TYPE_NONE)
395 #define PAGE_RO __pgprot(_PAGE_TYPE_RO)
396 #define PAGE_RW __pgprot(_PAGE_TYPE_RO | _PAGE_SWW)
397 #define PAGE_RWC __pgprot(_PAGE_TYPE_RW | _PAGE_SWW | _PAGE_SWC)
398
399 #define PAGE_KERNEL PAGE_RWC
400 #define PAGE_SHARED PAGE_KERNEL
401 #define PAGE_COPY PAGE_RO
402
403 /*
404 * On s390 the page table entry has an invalid bit and a read-only bit.
405 * Read permission implies execute permission and write permission
406 * implies read permission.
407 */
408 /*xwr*/
409 #define __P000 PAGE_NONE
410 #define __P001 PAGE_RO
411 #define __P010 PAGE_RO
412 #define __P011 PAGE_RO
413 #define __P100 PAGE_RO
414 #define __P101 PAGE_RO
415 #define __P110 PAGE_RO
416 #define __P111 PAGE_RO
417
418 #define __S000 PAGE_NONE
419 #define __S001 PAGE_RO
420 #define __S010 PAGE_RW
421 #define __S011 PAGE_RW
422 #define __S100 PAGE_RO
423 #define __S101 PAGE_RO
424 #define __S110 PAGE_RW
425 #define __S111 PAGE_RW
426
427 static inline int mm_exclusive(struct mm_struct *mm)
428 {
429 return likely(mm == current->active_mm &&
430 atomic_read(&mm->context.attach_count) <= 1);
431 }
432
433 static inline int mm_has_pgste(struct mm_struct *mm)
434 {
435 #ifdef CONFIG_PGSTE
436 if (unlikely(mm->context.has_pgste))
437 return 1;
438 #endif
439 return 0;
440 }
441 /*
442 * pgd/pmd/pte query functions
443 */
444 #ifndef CONFIG_64BIT
445
446 static inline int pgd_present(pgd_t pgd) { return 1; }
447 static inline int pgd_none(pgd_t pgd) { return 0; }
448 static inline int pgd_bad(pgd_t pgd) { return 0; }
449
450 static inline int pud_present(pud_t pud) { return 1; }
451 static inline int pud_none(pud_t pud) { return 0; }
452 static inline int pud_large(pud_t pud) { return 0; }
453 static inline int pud_bad(pud_t pud) { return 0; }
454
455 #else /* CONFIG_64BIT */
456
457 static inline int pgd_present(pgd_t pgd)
458 {
459 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
460 return 1;
461 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
462 }
463
464 static inline int pgd_none(pgd_t pgd)
465 {
466 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
467 return 0;
468 return (pgd_val(pgd) & _REGION_ENTRY_INV) != 0UL;
469 }
470
471 static inline int pgd_bad(pgd_t pgd)
472 {
473 /*
474 * With dynamic page table levels the pgd can be a region table
475 * entry or a segment table entry. Check for the bit that are
476 * invalid for either table entry.
477 */
478 unsigned long mask =
479 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
480 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
481 return (pgd_val(pgd) & mask) != 0;
482 }
483
484 static inline int pud_present(pud_t pud)
485 {
486 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
487 return 1;
488 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
489 }
490
491 static inline int pud_none(pud_t pud)
492 {
493 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
494 return 0;
495 return (pud_val(pud) & _REGION_ENTRY_INV) != 0UL;
496 }
497
498 static inline int pud_large(pud_t pud)
499 {
500 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
501 return 0;
502 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
503 }
504
505 static inline int pud_bad(pud_t pud)
506 {
507 /*
508 * With dynamic page table levels the pud can be a region table
509 * entry or a segment table entry. Check for the bit that are
510 * invalid for either table entry.
511 */
512 unsigned long mask =
513 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INV &
514 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
515 return (pud_val(pud) & mask) != 0;
516 }
517
518 #endif /* CONFIG_64BIT */
519
520 static inline int pmd_present(pmd_t pmd)
521 {
522 unsigned long mask = _SEGMENT_ENTRY_INV | _SEGMENT_ENTRY_RO;
523 return (pmd_val(pmd) & mask) == _HPAGE_TYPE_NONE ||
524 !(pmd_val(pmd) & _SEGMENT_ENTRY_INV);
525 }
526
527 static inline int pmd_none(pmd_t pmd)
528 {
529 return (pmd_val(pmd) & _SEGMENT_ENTRY_INV) &&
530 !(pmd_val(pmd) & _SEGMENT_ENTRY_RO);
531 }
532
533 static inline int pmd_large(pmd_t pmd)
534 {
535 #ifdef CONFIG_64BIT
536 return !!(pmd_val(pmd) & _SEGMENT_ENTRY_LARGE);
537 #else
538 return 0;
539 #endif
540 }
541
542 static inline int pmd_bad(pmd_t pmd)
543 {
544 unsigned long mask = ~_SEGMENT_ENTRY_ORIGIN & ~_SEGMENT_ENTRY_INV;
545 return (pmd_val(pmd) & mask) != _SEGMENT_ENTRY;
546 }
547
548 #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
549 extern void pmdp_splitting_flush(struct vm_area_struct *vma,
550 unsigned long addr, pmd_t *pmdp);
551
552 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
553 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
554 unsigned long address, pmd_t *pmdp,
555 pmd_t entry, int dirty);
556
557 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
558 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
559 unsigned long address, pmd_t *pmdp);
560
561 #define __HAVE_ARCH_PMD_WRITE
562 static inline int pmd_write(pmd_t pmd)
563 {
564 return (pmd_val(pmd) & _SEGMENT_ENTRY_RO) == 0;
565 }
566
567 static inline int pmd_young(pmd_t pmd)
568 {
569 return 0;
570 }
571
572 static inline int pte_none(pte_t pte)
573 {
574 return (pte_val(pte) & _PAGE_INVALID) && !(pte_val(pte) & _PAGE_SWT);
575 }
576
577 static inline int pte_present(pte_t pte)
578 {
579 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT | _PAGE_SWX;
580 return (pte_val(pte) & mask) == _PAGE_TYPE_NONE ||
581 (!(pte_val(pte) & _PAGE_INVALID) &&
582 !(pte_val(pte) & _PAGE_SWT));
583 }
584
585 static inline int pte_file(pte_t pte)
586 {
587 unsigned long mask = _PAGE_RO | _PAGE_INVALID | _PAGE_SWT;
588 return (pte_val(pte) & mask) == _PAGE_TYPE_FILE;
589 }
590
591 static inline int pte_special(pte_t pte)
592 {
593 return (pte_val(pte) & _PAGE_SPECIAL);
594 }
595
596 #define __HAVE_ARCH_PTE_SAME
597 static inline int pte_same(pte_t a, pte_t b)
598 {
599 return pte_val(a) == pte_val(b);
600 }
601
602 static inline pgste_t pgste_get_lock(pte_t *ptep)
603 {
604 unsigned long new = 0;
605 #ifdef CONFIG_PGSTE
606 unsigned long old;
607
608 preempt_disable();
609 asm(
610 " lg %0,%2\n"
611 "0: lgr %1,%0\n"
612 " nihh %0,0xff7f\n" /* clear RCP_PCL_BIT in old */
613 " oihh %1,0x0080\n" /* set RCP_PCL_BIT in new */
614 " csg %0,%1,%2\n"
615 " jl 0b\n"
616 : "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE])
617 : "Q" (ptep[PTRS_PER_PTE]) : "cc");
618 #endif
619 return __pgste(new);
620 }
621
622 static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
623 {
624 #ifdef CONFIG_PGSTE
625 asm(
626 " nihh %1,0xff7f\n" /* clear RCP_PCL_BIT */
627 " stg %1,%0\n"
628 : "=Q" (ptep[PTRS_PER_PTE])
629 : "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE]) : "cc");
630 preempt_enable();
631 #endif
632 }
633
634 static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste)
635 {
636 #ifdef CONFIG_PGSTE
637 unsigned long address, bits;
638 unsigned char skey;
639
640 if (!pte_present(*ptep))
641 return pgste;
642 address = pte_val(*ptep) & PAGE_MASK;
643 skey = page_get_storage_key(address);
644 bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
645 /* Clear page changed & referenced bit in the storage key */
646 if (bits & _PAGE_CHANGED)
647 page_set_storage_key(address, skey ^ bits, 0);
648 else if (bits)
649 page_reset_referenced(address);
650 /* Transfer page changed & referenced bit to guest bits in pgste */
651 pgste_val(pgste) |= bits << 48; /* RCP_GR_BIT & RCP_GC_BIT */
652 /* Get host changed & referenced bits from pgste */
653 bits |= (pgste_val(pgste) & (RCP_HR_BIT | RCP_HC_BIT)) >> 52;
654 /* Transfer page changed & referenced bit to kvm user bits */
655 pgste_val(pgste) |= bits << 45; /* KVM_UR_BIT & KVM_UC_BIT */
656 /* Clear relevant host bits in pgste. */
657 pgste_val(pgste) &= ~(RCP_HR_BIT | RCP_HC_BIT);
658 pgste_val(pgste) &= ~(RCP_ACC_BITS | RCP_FP_BIT);
659 /* Copy page access key and fetch protection bit to pgste */
660 pgste_val(pgste) |=
661 (unsigned long) (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
662 /* Transfer referenced bit to pte */
663 pte_val(*ptep) |= (bits & _PAGE_REFERENCED) << 1;
664 #endif
665 return pgste;
666
667 }
668
669 static inline pgste_t pgste_update_young(pte_t *ptep, pgste_t pgste)
670 {
671 #ifdef CONFIG_PGSTE
672 int young;
673
674 if (!pte_present(*ptep))
675 return pgste;
676 /* Get referenced bit from storage key */
677 young = page_reset_referenced(pte_val(*ptep) & PAGE_MASK);
678 if (young)
679 pgste_val(pgste) |= RCP_GR_BIT;
680 /* Get host referenced bit from pgste */
681 if (pgste_val(pgste) & RCP_HR_BIT) {
682 pgste_val(pgste) &= ~RCP_HR_BIT;
683 young = 1;
684 }
685 /* Transfer referenced bit to kvm user bits and pte */
686 if (young) {
687 pgste_val(pgste) |= KVM_UR_BIT;
688 pte_val(*ptep) |= _PAGE_SWR;
689 }
690 #endif
691 return pgste;
692 }
693
694 static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry)
695 {
696 #ifdef CONFIG_PGSTE
697 unsigned long address;
698 unsigned long okey, nkey;
699
700 if (!pte_present(entry))
701 return;
702 address = pte_val(entry) & PAGE_MASK;
703 okey = nkey = page_get_storage_key(address);
704 nkey &= ~(_PAGE_ACC_BITS | _PAGE_FP_BIT);
705 /* Set page access key and fetch protection bit from pgste */
706 nkey |= (pgste_val(pgste) & (RCP_ACC_BITS | RCP_FP_BIT)) >> 56;
707 if (okey != nkey)
708 page_set_storage_key(address, nkey, 0);
709 #endif
710 }
711
712 static inline void pgste_set_pte(pte_t *ptep, pte_t entry)
713 {
714 if (!MACHINE_HAS_ESOP && (pte_val(entry) & _PAGE_SWW)) {
715 /*
716 * Without enhanced suppression-on-protection force
717 * the dirty bit on for all writable ptes.
718 */
719 pte_val(entry) |= _PAGE_SWC;
720 pte_val(entry) &= ~_PAGE_RO;
721 }
722 *ptep = entry;
723 }
724
725 /**
726 * struct gmap_struct - guest address space
727 * @mm: pointer to the parent mm_struct
728 * @table: pointer to the page directory
729 * @asce: address space control element for gmap page table
730 * @crst_list: list of all crst tables used in the guest address space
731 */
732 struct gmap {
733 struct list_head list;
734 struct mm_struct *mm;
735 unsigned long *table;
736 unsigned long asce;
737 struct list_head crst_list;
738 };
739
740 /**
741 * struct gmap_rmap - reverse mapping for segment table entries
742 * @next: pointer to the next gmap_rmap structure in the list
743 * @entry: pointer to a segment table entry
744 */
745 struct gmap_rmap {
746 struct list_head list;
747 unsigned long *entry;
748 };
749
750 /**
751 * struct gmap_pgtable - gmap information attached to a page table
752 * @vmaddr: address of the 1MB segment in the process virtual memory
753 * @mapper: list of segment table entries maping a page table
754 */
755 struct gmap_pgtable {
756 unsigned long vmaddr;
757 struct list_head mapper;
758 };
759
760 struct gmap *gmap_alloc(struct mm_struct *mm);
761 void gmap_free(struct gmap *gmap);
762 void gmap_enable(struct gmap *gmap);
763 void gmap_disable(struct gmap *gmap);
764 int gmap_map_segment(struct gmap *gmap, unsigned long from,
765 unsigned long to, unsigned long length);
766 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len);
767 unsigned long __gmap_fault(unsigned long address, struct gmap *);
768 unsigned long gmap_fault(unsigned long address, struct gmap *);
769 void gmap_discard(unsigned long from, unsigned long to, struct gmap *);
770
771 /*
772 * Certain architectures need to do special things when PTEs
773 * within a page table are directly modified. Thus, the following
774 * hook is made available.
775 */
776 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
777 pte_t *ptep, pte_t entry)
778 {
779 pgste_t pgste;
780
781 if (mm_has_pgste(mm)) {
782 pgste = pgste_get_lock(ptep);
783 pgste_set_key(ptep, pgste, entry);
784 pgste_set_pte(ptep, entry);
785 pgste_set_unlock(ptep, pgste);
786 } else {
787 if (!(pte_val(entry) & _PAGE_INVALID) && MACHINE_HAS_EDAT1)
788 pte_val(entry) |= _PAGE_CO;
789 *ptep = entry;
790 }
791 }
792
793 /*
794 * query functions pte_write/pte_dirty/pte_young only work if
795 * pte_present() is true. Undefined behaviour if not..
796 */
797 static inline int pte_write(pte_t pte)
798 {
799 return (pte_val(pte) & _PAGE_SWW) != 0;
800 }
801
802 static inline int pte_dirty(pte_t pte)
803 {
804 return (pte_val(pte) & _PAGE_SWC) != 0;
805 }
806
807 static inline int pte_young(pte_t pte)
808 {
809 #ifdef CONFIG_PGSTE
810 if (pte_val(pte) & _PAGE_SWR)
811 return 1;
812 #endif
813 return 0;
814 }
815
816 /*
817 * pgd/pmd/pte modification functions
818 */
819
820 static inline void pgd_clear(pgd_t *pgd)
821 {
822 #ifdef CONFIG_64BIT
823 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
824 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
825 #endif
826 }
827
828 static inline void pud_clear(pud_t *pud)
829 {
830 #ifdef CONFIG_64BIT
831 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
832 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
833 #endif
834 }
835
836 static inline void pmd_clear(pmd_t *pmdp)
837 {
838 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
839 }
840
841 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
842 {
843 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
844 }
845
846 /*
847 * The following pte modification functions only work if
848 * pte_present() is true. Undefined behaviour if not..
849 */
850 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
851 {
852 pte_val(pte) &= _PAGE_CHG_MASK;
853 pte_val(pte) |= pgprot_val(newprot);
854 if ((pte_val(pte) & _PAGE_SWC) && (pte_val(pte) & _PAGE_SWW))
855 pte_val(pte) &= ~_PAGE_RO;
856 return pte;
857 }
858
859 static inline pte_t pte_wrprotect(pte_t pte)
860 {
861 pte_val(pte) &= ~_PAGE_SWW;
862 /* Do not clobber _PAGE_TYPE_NONE pages! */
863 if (!(pte_val(pte) & _PAGE_INVALID))
864 pte_val(pte) |= _PAGE_RO;
865 return pte;
866 }
867
868 static inline pte_t pte_mkwrite(pte_t pte)
869 {
870 pte_val(pte) |= _PAGE_SWW;
871 if (pte_val(pte) & _PAGE_SWC)
872 pte_val(pte) &= ~_PAGE_RO;
873 return pte;
874 }
875
876 static inline pte_t pte_mkclean(pte_t pte)
877 {
878 pte_val(pte) &= ~_PAGE_SWC;
879 /* Do not clobber _PAGE_TYPE_NONE pages! */
880 if (!(pte_val(pte) & _PAGE_INVALID))
881 pte_val(pte) |= _PAGE_RO;
882 return pte;
883 }
884
885 static inline pte_t pte_mkdirty(pte_t pte)
886 {
887 pte_val(pte) |= _PAGE_SWC;
888 if (pte_val(pte) & _PAGE_SWW)
889 pte_val(pte) &= ~_PAGE_RO;
890 return pte;
891 }
892
893 static inline pte_t pte_mkold(pte_t pte)
894 {
895 #ifdef CONFIG_PGSTE
896 pte_val(pte) &= ~_PAGE_SWR;
897 #endif
898 return pte;
899 }
900
901 static inline pte_t pte_mkyoung(pte_t pte)
902 {
903 return pte;
904 }
905
906 static inline pte_t pte_mkspecial(pte_t pte)
907 {
908 pte_val(pte) |= _PAGE_SPECIAL;
909 return pte;
910 }
911
912 #ifdef CONFIG_HUGETLB_PAGE
913 static inline pte_t pte_mkhuge(pte_t pte)
914 {
915 /*
916 * PROT_NONE needs to be remapped from the pte type to the ste type.
917 * The HW invalid bit is also different for pte and ste. The pte
918 * invalid bit happens to be the same as the ste _SEGMENT_ENTRY_LARGE
919 * bit, so we don't have to clear it.
920 */
921 if (pte_val(pte) & _PAGE_INVALID) {
922 if (pte_val(pte) & _PAGE_SWT)
923 pte_val(pte) |= _HPAGE_TYPE_NONE;
924 pte_val(pte) |= _SEGMENT_ENTRY_INV;
925 }
926 /*
927 * Clear SW pte bits, there are no SW bits in a segment table entry.
928 */
929 pte_val(pte) &= ~(_PAGE_SWT | _PAGE_SWX | _PAGE_SWC |
930 _PAGE_SWR | _PAGE_SWW);
931 /*
932 * Also set the change-override bit because we don't need dirty bit
933 * tracking for hugetlbfs pages.
934 */
935 pte_val(pte) |= (_SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_CO);
936 return pte;
937 }
938 #endif
939
940 /*
941 * Get (and clear) the user dirty bit for a pte.
942 */
943 static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm,
944 pte_t *ptep)
945 {
946 pgste_t pgste;
947 int dirty = 0;
948
949 if (mm_has_pgste(mm)) {
950 pgste = pgste_get_lock(ptep);
951 pgste = pgste_update_all(ptep, pgste);
952 dirty = !!(pgste_val(pgste) & KVM_UC_BIT);
953 pgste_val(pgste) &= ~KVM_UC_BIT;
954 pgste_set_unlock(ptep, pgste);
955 return dirty;
956 }
957 return dirty;
958 }
959
960 /*
961 * Get (and clear) the user referenced bit for a pte.
962 */
963 static inline int ptep_test_and_clear_user_young(struct mm_struct *mm,
964 pte_t *ptep)
965 {
966 pgste_t pgste;
967 int young = 0;
968
969 if (mm_has_pgste(mm)) {
970 pgste = pgste_get_lock(ptep);
971 pgste = pgste_update_young(ptep, pgste);
972 young = !!(pgste_val(pgste) & KVM_UR_BIT);
973 pgste_val(pgste) &= ~KVM_UR_BIT;
974 pgste_set_unlock(ptep, pgste);
975 }
976 return young;
977 }
978
979 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
980 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
981 unsigned long addr, pte_t *ptep)
982 {
983 pgste_t pgste;
984 pte_t pte;
985
986 if (mm_has_pgste(vma->vm_mm)) {
987 pgste = pgste_get_lock(ptep);
988 pgste = pgste_update_young(ptep, pgste);
989 pte = *ptep;
990 *ptep = pte_mkold(pte);
991 pgste_set_unlock(ptep, pgste);
992 return pte_young(pte);
993 }
994 return 0;
995 }
996
997 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
998 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
999 unsigned long address, pte_t *ptep)
1000 {
1001 /* No need to flush TLB
1002 * On s390 reference bits are in storage key and never in TLB
1003 * With virtualization we handle the reference bit, without we
1004 * we can simply return */
1005 return ptep_test_and_clear_young(vma, address, ptep);
1006 }
1007
1008 static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
1009 {
1010 if (!(pte_val(*ptep) & _PAGE_INVALID)) {
1011 #ifndef CONFIG_64BIT
1012 /* pto must point to the start of the segment table */
1013 pte_t *pto = (pte_t *) (((unsigned long) ptep) & 0x7ffffc00);
1014 #else
1015 /* ipte in zarch mode can do the math */
1016 pte_t *pto = ptep;
1017 #endif
1018 asm volatile(
1019 " ipte %2,%3"
1020 : "=m" (*ptep) : "m" (*ptep),
1021 "a" (pto), "a" (address));
1022 }
1023 }
1024
1025 /*
1026 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1027 * both clear the TLB for the unmapped pte. The reason is that
1028 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1029 * to modify an active pte. The sequence is
1030 * 1) ptep_get_and_clear
1031 * 2) set_pte_at
1032 * 3) flush_tlb_range
1033 * On s390 the tlb needs to get flushed with the modification of the pte
1034 * if the pte is active. The only way how this can be implemented is to
1035 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1036 * is a nop.
1037 */
1038 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1039 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1040 unsigned long address, pte_t *ptep)
1041 {
1042 pgste_t pgste;
1043 pte_t pte;
1044
1045 mm->context.flush_mm = 1;
1046 if (mm_has_pgste(mm))
1047 pgste = pgste_get_lock(ptep);
1048
1049 pte = *ptep;
1050 if (!mm_exclusive(mm))
1051 __ptep_ipte(address, ptep);
1052 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
1053
1054 if (mm_has_pgste(mm)) {
1055 pgste = pgste_update_all(&pte, pgste);
1056 pgste_set_unlock(ptep, pgste);
1057 }
1058 return pte;
1059 }
1060
1061 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1062 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
1063 unsigned long address,
1064 pte_t *ptep)
1065 {
1066 pte_t pte;
1067
1068 mm->context.flush_mm = 1;
1069 if (mm_has_pgste(mm))
1070 pgste_get_lock(ptep);
1071
1072 pte = *ptep;
1073 if (!mm_exclusive(mm))
1074 __ptep_ipte(address, ptep);
1075 return pte;
1076 }
1077
1078 static inline void ptep_modify_prot_commit(struct mm_struct *mm,
1079 unsigned long address,
1080 pte_t *ptep, pte_t pte)
1081 {
1082 if (mm_has_pgste(mm)) {
1083 pgste_set_pte(ptep, pte);
1084 pgste_set_unlock(ptep, *(pgste_t *)(ptep + PTRS_PER_PTE));
1085 } else
1086 *ptep = pte;
1087 }
1088
1089 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1090 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1091 unsigned long address, pte_t *ptep)
1092 {
1093 pgste_t pgste;
1094 pte_t pte;
1095
1096 if (mm_has_pgste(vma->vm_mm))
1097 pgste = pgste_get_lock(ptep);
1098
1099 pte = *ptep;
1100 __ptep_ipte(address, ptep);
1101 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
1102
1103 if (mm_has_pgste(vma->vm_mm)) {
1104 pgste = pgste_update_all(&pte, pgste);
1105 pgste_set_unlock(ptep, pgste);
1106 }
1107 return pte;
1108 }
1109
1110 /*
1111 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1112 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1113 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1114 * cannot be accessed while the batched unmap is running. In this case
1115 * full==1 and a simple pte_clear is enough. See tlb.h.
1116 */
1117 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1118 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1119 unsigned long address,
1120 pte_t *ptep, int full)
1121 {
1122 pgste_t pgste;
1123 pte_t pte;
1124
1125 if (mm_has_pgste(mm))
1126 pgste = pgste_get_lock(ptep);
1127
1128 pte = *ptep;
1129 if (!full)
1130 __ptep_ipte(address, ptep);
1131 pte_val(*ptep) = _PAGE_TYPE_EMPTY;
1132
1133 if (mm_has_pgste(mm)) {
1134 pgste = pgste_update_all(&pte, pgste);
1135 pgste_set_unlock(ptep, pgste);
1136 }
1137 return pte;
1138 }
1139
1140 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1141 static inline pte_t ptep_set_wrprotect(struct mm_struct *mm,
1142 unsigned long address, pte_t *ptep)
1143 {
1144 pgste_t pgste;
1145 pte_t pte = *ptep;
1146
1147 if (pte_write(pte)) {
1148 mm->context.flush_mm = 1;
1149 if (mm_has_pgste(mm))
1150 pgste = pgste_get_lock(ptep);
1151
1152 if (!mm_exclusive(mm))
1153 __ptep_ipte(address, ptep);
1154 pte = pte_wrprotect(pte);
1155
1156 if (mm_has_pgste(mm)) {
1157 pgste_set_pte(ptep, pte);
1158 pgste_set_unlock(ptep, pgste);
1159 } else
1160 *ptep = pte;
1161 }
1162 return pte;
1163 }
1164
1165 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1166 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1167 unsigned long address, pte_t *ptep,
1168 pte_t entry, int dirty)
1169 {
1170 pgste_t pgste;
1171
1172 if (pte_same(*ptep, entry))
1173 return 0;
1174 if (mm_has_pgste(vma->vm_mm))
1175 pgste = pgste_get_lock(ptep);
1176
1177 __ptep_ipte(address, ptep);
1178
1179 if (mm_has_pgste(vma->vm_mm)) {
1180 pgste_set_pte(ptep, entry);
1181 pgste_set_unlock(ptep, pgste);
1182 } else
1183 *ptep = entry;
1184 return 1;
1185 }
1186
1187 /*
1188 * Conversion functions: convert a page and protection to a page entry,
1189 * and a page entry and page directory to the page they refer to.
1190 */
1191 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1192 {
1193 pte_t __pte;
1194 pte_val(__pte) = physpage + pgprot_val(pgprot);
1195 return __pte;
1196 }
1197
1198 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1199 {
1200 unsigned long physpage = page_to_phys(page);
1201 pte_t __pte = mk_pte_phys(physpage, pgprot);
1202
1203 if ((pte_val(__pte) & _PAGE_SWW) && PageDirty(page)) {
1204 pte_val(__pte) |= _PAGE_SWC;
1205 pte_val(__pte) &= ~_PAGE_RO;
1206 }
1207 return __pte;
1208 }
1209
1210 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1211 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1212 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1213 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1214
1215 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1216 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1217
1218 #ifndef CONFIG_64BIT
1219
1220 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1221 #define pud_deref(pmd) ({ BUG(); 0UL; })
1222 #define pgd_deref(pmd) ({ BUG(); 0UL; })
1223
1224 #define pud_offset(pgd, address) ((pud_t *) pgd)
1225 #define pmd_offset(pud, address) ((pmd_t *) pud + pmd_index(address))
1226
1227 #else /* CONFIG_64BIT */
1228
1229 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1230 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1231 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1232
1233 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1234 {
1235 pud_t *pud = (pud_t *) pgd;
1236 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1237 pud = (pud_t *) pgd_deref(*pgd);
1238 return pud + pud_index(address);
1239 }
1240
1241 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1242 {
1243 pmd_t *pmd = (pmd_t *) pud;
1244 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1245 pmd = (pmd_t *) pud_deref(*pud);
1246 return pmd + pmd_index(address);
1247 }
1248
1249 #endif /* CONFIG_64BIT */
1250
1251 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1252 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1253 #define pte_page(x) pfn_to_page(pte_pfn(x))
1254
1255 #define pmd_page(pmd) pfn_to_page(pmd_val(pmd) >> PAGE_SHIFT)
1256
1257 /* Find an entry in the lowest level page table.. */
1258 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1259 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1260 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1261 #define pte_unmap(pte) do { } while (0)
1262
1263 static inline void __pmd_idte(unsigned long address, pmd_t *pmdp)
1264 {
1265 unsigned long sto = (unsigned long) pmdp -
1266 pmd_index(address) * sizeof(pmd_t);
1267
1268 if (!(pmd_val(*pmdp) & _SEGMENT_ENTRY_INV)) {
1269 asm volatile(
1270 " .insn rrf,0xb98e0000,%2,%3,0,0"
1271 : "=m" (*pmdp)
1272 : "m" (*pmdp), "a" (sto),
1273 "a" ((address & HPAGE_MASK))
1274 : "cc"
1275 );
1276 }
1277 }
1278
1279 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1280
1281 #define SEGMENT_NONE __pgprot(_HPAGE_TYPE_NONE)
1282 #define SEGMENT_RO __pgprot(_HPAGE_TYPE_RO)
1283 #define SEGMENT_RW __pgprot(_HPAGE_TYPE_RW)
1284
1285 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1286 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pgtable_t pgtable);
1287
1288 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1289 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm);
1290
1291 static inline int pmd_trans_splitting(pmd_t pmd)
1292 {
1293 return pmd_val(pmd) & _SEGMENT_ENTRY_SPLIT;
1294 }
1295
1296 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1297 pmd_t *pmdp, pmd_t entry)
1298 {
1299 if (!(pmd_val(entry) & _SEGMENT_ENTRY_INV) && MACHINE_HAS_EDAT1)
1300 pmd_val(entry) |= _SEGMENT_ENTRY_CO;
1301 *pmdp = entry;
1302 }
1303
1304 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1305 {
1306 /*
1307 * pgprot is PAGE_NONE, PAGE_RO, or PAGE_RW (see __Pxxx / __Sxxx)
1308 * Convert to segment table entry format.
1309 */
1310 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1311 return pgprot_val(SEGMENT_NONE);
1312 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1313 return pgprot_val(SEGMENT_RO);
1314 return pgprot_val(SEGMENT_RW);
1315 }
1316
1317 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1318 {
1319 pmd_val(pmd) &= _SEGMENT_CHG_MASK;
1320 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1321 return pmd;
1322 }
1323
1324 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1325 {
1326 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1327 return pmd;
1328 }
1329
1330 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1331 {
1332 /* Do not clobber _HPAGE_TYPE_NONE pages! */
1333 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_INV))
1334 pmd_val(pmd) &= ~_SEGMENT_ENTRY_RO;
1335 return pmd;
1336 }
1337
1338 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1339 {
1340 pmd_val(pmd) |= _SEGMENT_ENTRY_RO;
1341 return pmd;
1342 }
1343
1344 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1345 {
1346 /* No dirty bit in the segment table entry. */
1347 return pmd;
1348 }
1349
1350 static inline pmd_t pmd_mkold(pmd_t pmd)
1351 {
1352 /* No referenced bit in the segment table entry. */
1353 return pmd;
1354 }
1355
1356 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1357 {
1358 /* No referenced bit in the segment table entry. */
1359 return pmd;
1360 }
1361
1362 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1363 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1364 unsigned long address, pmd_t *pmdp)
1365 {
1366 unsigned long pmd_addr = pmd_val(*pmdp) & HPAGE_MASK;
1367 long tmp, rc;
1368 int counter;
1369
1370 rc = 0;
1371 if (MACHINE_HAS_RRBM) {
1372 counter = PTRS_PER_PTE >> 6;
1373 asm volatile(
1374 "0: .insn rre,0xb9ae0000,%0,%3\n" /* rrbm */
1375 " ogr %1,%0\n"
1376 " la %3,0(%4,%3)\n"
1377 " brct %2,0b\n"
1378 : "=&d" (tmp), "+&d" (rc), "+d" (counter),
1379 "+a" (pmd_addr)
1380 : "a" (64 * 4096UL) : "cc");
1381 rc = !!rc;
1382 } else {
1383 counter = PTRS_PER_PTE;
1384 asm volatile(
1385 "0: rrbe 0,%2\n"
1386 " la %2,0(%3,%2)\n"
1387 " brc 12,1f\n"
1388 " lhi %0,1\n"
1389 "1: brct %1,0b\n"
1390 : "+d" (rc), "+d" (counter), "+a" (pmd_addr)
1391 : "a" (4096UL) : "cc");
1392 }
1393 return rc;
1394 }
1395
1396 #define __HAVE_ARCH_PMDP_GET_AND_CLEAR
1397 static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
1398 unsigned long address, pmd_t *pmdp)
1399 {
1400 pmd_t pmd = *pmdp;
1401
1402 __pmd_idte(address, pmdp);
1403 pmd_clear(pmdp);
1404 return pmd;
1405 }
1406
1407 #define __HAVE_ARCH_PMDP_CLEAR_FLUSH
1408 static inline pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
1409 unsigned long address, pmd_t *pmdp)
1410 {
1411 return pmdp_get_and_clear(vma->vm_mm, address, pmdp);
1412 }
1413
1414 #define __HAVE_ARCH_PMDP_INVALIDATE
1415 static inline void pmdp_invalidate(struct vm_area_struct *vma,
1416 unsigned long address, pmd_t *pmdp)
1417 {
1418 __pmd_idte(address, pmdp);
1419 }
1420
1421 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1422 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1423 unsigned long address, pmd_t *pmdp)
1424 {
1425 pmd_t pmd = *pmdp;
1426
1427 if (pmd_write(pmd)) {
1428 __pmd_idte(address, pmdp);
1429 set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd));
1430 }
1431 }
1432
1433 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1434 {
1435 pmd_t __pmd;
1436 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1437 return __pmd;
1438 }
1439
1440 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1441 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1442
1443 static inline int pmd_trans_huge(pmd_t pmd)
1444 {
1445 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1446 }
1447
1448 static inline int has_transparent_hugepage(void)
1449 {
1450 return MACHINE_HAS_HPAGE ? 1 : 0;
1451 }
1452
1453 static inline unsigned long pmd_pfn(pmd_t pmd)
1454 {
1455 return pmd_val(pmd) >> PAGE_SHIFT;
1456 }
1457 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1458
1459 /*
1460 * 31 bit swap entry format:
1461 * A page-table entry has some bits we have to treat in a special way.
1462 * Bits 0, 20 and bit 23 have to be zero, otherwise an specification
1463 * exception will occur instead of a page translation exception. The
1464 * specifiation exception has the bad habit not to store necessary
1465 * information in the lowcore.
1466 * Bit 21 and bit 22 are the page invalid bit and the page protection
1467 * bit. We set both to indicate a swapped page.
1468 * Bit 30 and 31 are used to distinguish the different page types. For
1469 * a swapped page these bits need to be zero.
1470 * This leaves the bits 1-19 and bits 24-29 to store type and offset.
1471 * We use the 5 bits from 25-29 for the type and the 20 bits from 1-19
1472 * plus 24 for the offset.
1473 * 0| offset |0110|o|type |00|
1474 * 0 0000000001111111111 2222 2 22222 33
1475 * 0 1234567890123456789 0123 4 56789 01
1476 *
1477 * 64 bit swap entry format:
1478 * A page-table entry has some bits we have to treat in a special way.
1479 * Bits 52 and bit 55 have to be zero, otherwise an specification
1480 * exception will occur instead of a page translation exception. The
1481 * specifiation exception has the bad habit not to store necessary
1482 * information in the lowcore.
1483 * Bit 53 and bit 54 are the page invalid bit and the page protection
1484 * bit. We set both to indicate a swapped page.
1485 * Bit 62 and 63 are used to distinguish the different page types. For
1486 * a swapped page these bits need to be zero.
1487 * This leaves the bits 0-51 and bits 56-61 to store type and offset.
1488 * We use the 5 bits from 57-61 for the type and the 53 bits from 0-51
1489 * plus 56 for the offset.
1490 * | offset |0110|o|type |00|
1491 * 0000000000111111111122222222223333333333444444444455 5555 5 55566 66
1492 * 0123456789012345678901234567890123456789012345678901 2345 6 78901 23
1493 */
1494 #ifndef CONFIG_64BIT
1495 #define __SWP_OFFSET_MASK (~0UL >> 12)
1496 #else
1497 #define __SWP_OFFSET_MASK (~0UL >> 11)
1498 #endif
1499 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1500 {
1501 pte_t pte;
1502 offset &= __SWP_OFFSET_MASK;
1503 pte_val(pte) = _PAGE_TYPE_SWAP | ((type & 0x1f) << 2) |
1504 ((offset & 1UL) << 7) | ((offset & ~1UL) << 11);
1505 return pte;
1506 }
1507
1508 #define __swp_type(entry) (((entry).val >> 2) & 0x1f)
1509 #define __swp_offset(entry) (((entry).val >> 11) | (((entry).val >> 7) & 1))
1510 #define __swp_entry(type,offset) ((swp_entry_t) { pte_val(mk_swap_pte((type),(offset))) })
1511
1512 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1513 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1514
1515 #ifndef CONFIG_64BIT
1516 # define PTE_FILE_MAX_BITS 26
1517 #else /* CONFIG_64BIT */
1518 # define PTE_FILE_MAX_BITS 59
1519 #endif /* CONFIG_64BIT */
1520
1521 #define pte_to_pgoff(__pte) \
1522 ((((__pte).pte >> 12) << 7) + (((__pte).pte >> 1) & 0x7f))
1523
1524 #define pgoff_to_pte(__off) \
1525 ((pte_t) { ((((__off) & 0x7f) << 1) + (((__off) >> 7) << 12)) \
1526 | _PAGE_TYPE_FILE })
1527
1528 #endif /* !__ASSEMBLY__ */
1529
1530 #define kern_addr_valid(addr) (1)
1531
1532 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1533 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1534 extern int s390_enable_sie(void);
1535
1536 /*
1537 * No page table caches to initialise
1538 */
1539 static inline void pgtable_cache_init(void) { }
1540 static inline void check_pgt_cache(void) { }
1541
1542 #include <asm-generic/pgtable.h>
1543
1544 #endif /* _S390_PAGE_H */