]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/s390/include/asm/pgtable.h
s390/mm: correct return value of pmd_pfn
[mirror_ubuntu-artful-kernel.git] / arch / s390 / include / asm / pgtable.h
1 /*
2 * S390 version
3 * Copyright IBM Corp. 1999, 2000
4 * Author(s): Hartmut Penner (hp@de.ibm.com)
5 * Ulrich Weigand (weigand@de.ibm.com)
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 *
8 * Derived from "include/asm-i386/pgtable.h"
9 */
10
11 #ifndef _ASM_S390_PGTABLE_H
12 #define _ASM_S390_PGTABLE_H
13
14 /*
15 * The Linux memory management assumes a three-level page table setup.
16 * For s390 64 bit we use up to four of the five levels the hardware
17 * provides (region first tables are not used).
18 *
19 * The "pgd_xxx()" functions are trivial for a folded two-level
20 * setup: the pgd is never bad, and a pmd always exists (as it's folded
21 * into the pgd entry)
22 *
23 * This file contains the functions and defines necessary to modify and use
24 * the S390 page table tree.
25 */
26 #ifndef __ASSEMBLY__
27 #include <linux/sched.h>
28 #include <linux/mm_types.h>
29 #include <linux/page-flags.h>
30 #include <linux/radix-tree.h>
31 #include <asm/bug.h>
32 #include <asm/page.h>
33
34 extern pgd_t swapper_pg_dir[] __attribute__ ((aligned (4096)));
35 extern void paging_init(void);
36 extern void vmem_map_init(void);
37
38 /*
39 * The S390 doesn't have any external MMU info: the kernel page
40 * tables contain all the necessary information.
41 */
42 #define update_mmu_cache(vma, address, ptep) do { } while (0)
43 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
44
45 /*
46 * ZERO_PAGE is a global shared page that is always zero; used
47 * for zero-mapped memory areas etc..
48 */
49
50 extern unsigned long empty_zero_page;
51 extern unsigned long zero_page_mask;
52
53 #define ZERO_PAGE(vaddr) \
54 (virt_to_page((void *)(empty_zero_page + \
55 (((unsigned long)(vaddr)) &zero_page_mask))))
56 #define __HAVE_COLOR_ZERO_PAGE
57
58 /* TODO: s390 cannot support io_remap_pfn_range... */
59 #endif /* !__ASSEMBLY__ */
60
61 /*
62 * PMD_SHIFT determines the size of the area a second-level page
63 * table can map
64 * PGDIR_SHIFT determines what a third-level page table entry can map
65 */
66 #define PMD_SHIFT 20
67 #define PUD_SHIFT 31
68 #define PGDIR_SHIFT 42
69
70 #define PMD_SIZE (1UL << PMD_SHIFT)
71 #define PMD_MASK (~(PMD_SIZE-1))
72 #define PUD_SIZE (1UL << PUD_SHIFT)
73 #define PUD_MASK (~(PUD_SIZE-1))
74 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
75 #define PGDIR_MASK (~(PGDIR_SIZE-1))
76
77 /*
78 * entries per page directory level: the S390 is two-level, so
79 * we don't really have any PMD directory physically.
80 * for S390 segment-table entries are combined to one PGD
81 * that leads to 1024 pte per pgd
82 */
83 #define PTRS_PER_PTE 256
84 #define PTRS_PER_PMD 2048
85 #define PTRS_PER_PUD 2048
86 #define PTRS_PER_PGD 2048
87
88 #define FIRST_USER_ADDRESS 0UL
89
90 #define pte_ERROR(e) \
91 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
92 #define pmd_ERROR(e) \
93 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
94 #define pud_ERROR(e) \
95 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
96 #define pgd_ERROR(e) \
97 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
98
99 #ifndef __ASSEMBLY__
100 /*
101 * The vmalloc and module area will always be on the topmost area of the
102 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
103 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
104 * modules will reside. That makes sure that inter module branches always
105 * happen without trampolines and in addition the placement within a 2GB frame
106 * is branch prediction unit friendly.
107 */
108 extern unsigned long VMALLOC_START;
109 extern unsigned long VMALLOC_END;
110 extern struct page *vmemmap;
111
112 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
113
114 extern unsigned long MODULES_VADDR;
115 extern unsigned long MODULES_END;
116 #define MODULES_VADDR MODULES_VADDR
117 #define MODULES_END MODULES_END
118 #define MODULES_LEN (1UL << 31)
119
120 static inline int is_module_addr(void *addr)
121 {
122 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
123 if (addr < (void *)MODULES_VADDR)
124 return 0;
125 if (addr > (void *)MODULES_END)
126 return 0;
127 return 1;
128 }
129
130 /*
131 * A 64 bit pagetable entry of S390 has following format:
132 * | PFRA |0IPC| OS |
133 * 0000000000111111111122222222223333333333444444444455555555556666
134 * 0123456789012345678901234567890123456789012345678901234567890123
135 *
136 * I Page-Invalid Bit: Page is not available for address-translation
137 * P Page-Protection Bit: Store access not possible for page
138 * C Change-bit override: HW is not required to set change bit
139 *
140 * A 64 bit segmenttable entry of S390 has following format:
141 * | P-table origin | TT
142 * 0000000000111111111122222222223333333333444444444455555555556666
143 * 0123456789012345678901234567890123456789012345678901234567890123
144 *
145 * I Segment-Invalid Bit: Segment is not available for address-translation
146 * C Common-Segment Bit: Segment is not private (PoP 3-30)
147 * P Page-Protection Bit: Store access not possible for page
148 * TT Type 00
149 *
150 * A 64 bit region table entry of S390 has following format:
151 * | S-table origin | TF TTTL
152 * 0000000000111111111122222222223333333333444444444455555555556666
153 * 0123456789012345678901234567890123456789012345678901234567890123
154 *
155 * I Segment-Invalid Bit: Segment is not available for address-translation
156 * TT Type 01
157 * TF
158 * TL Table length
159 *
160 * The 64 bit regiontable origin of S390 has following format:
161 * | region table origon | DTTL
162 * 0000000000111111111122222222223333333333444444444455555555556666
163 * 0123456789012345678901234567890123456789012345678901234567890123
164 *
165 * X Space-Switch event:
166 * G Segment-Invalid Bit:
167 * P Private-Space Bit:
168 * S Storage-Alteration:
169 * R Real space
170 * TL Table-Length:
171 *
172 * A storage key has the following format:
173 * | ACC |F|R|C|0|
174 * 0 3 4 5 6 7
175 * ACC: access key
176 * F : fetch protection bit
177 * R : referenced bit
178 * C : changed bit
179 */
180
181 /* Hardware bits in the page table entry */
182 #define _PAGE_PROTECT 0x200 /* HW read-only bit */
183 #define _PAGE_INVALID 0x400 /* HW invalid bit */
184 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
185
186 /* Software bits in the page table entry */
187 #define _PAGE_PRESENT 0x001 /* SW pte present bit */
188 #define _PAGE_YOUNG 0x004 /* SW pte young bit */
189 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
190 #define _PAGE_READ 0x010 /* SW pte read bit */
191 #define _PAGE_WRITE 0x020 /* SW pte write bit */
192 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
193 #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
194 #define __HAVE_ARCH_PTE_SPECIAL
195
196 /* Set of bits not changed in pte_modify */
197 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
198 _PAGE_YOUNG)
199
200 /*
201 * handle_pte_fault uses pte_present and pte_none to find out the pte type
202 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
203 * distinguish present from not-present ptes. It is changed only with the page
204 * table lock held.
205 *
206 * The following table gives the different possible bit combinations for
207 * the pte hardware and software bits in the last 12 bits of a pte
208 * (. unassigned bit, x don't care, t swap type):
209 *
210 * 842100000000
211 * 000084210000
212 * 000000008421
213 * .IR.uswrdy.p
214 * empty .10.00000000
215 * swap .11..ttttt.0
216 * prot-none, clean, old .11.xx0000.1
217 * prot-none, clean, young .11.xx0001.1
218 * prot-none, dirty, old .10.xx0010.1
219 * prot-none, dirty, young .10.xx0011.1
220 * read-only, clean, old .11.xx0100.1
221 * read-only, clean, young .01.xx0101.1
222 * read-only, dirty, old .11.xx0110.1
223 * read-only, dirty, young .01.xx0111.1
224 * read-write, clean, old .11.xx1100.1
225 * read-write, clean, young .01.xx1101.1
226 * read-write, dirty, old .10.xx1110.1
227 * read-write, dirty, young .00.xx1111.1
228 * HW-bits: R read-only, I invalid
229 * SW-bits: p present, y young, d dirty, r read, w write, s special,
230 * u unused, l large
231 *
232 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
233 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
234 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
235 */
236
237 /* Bits in the segment/region table address-space-control-element */
238 #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
239 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
240 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
241 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
242 #define _ASCE_REAL_SPACE 0x20 /* real space control */
243 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
244 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
245 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
246 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
247 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
248 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
249
250 /* Bits in the region table entry */
251 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
252 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
253 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
254 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
255 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
256 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
257 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
258 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
259
260 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
261 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
262 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
263 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
264 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
265 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
266
267 #define _REGION3_ENTRY_LARGE 0x400 /* RTTE-format control, large page */
268 #define _REGION3_ENTRY_RO 0x200 /* page protection bit */
269
270 /* Bits in the segment table entry */
271 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
272 #define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
273 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
274 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
275 #define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
276 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
277
278 #define _SEGMENT_ENTRY (0)
279 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
280
281 #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
282 #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
283 #define _SEGMENT_ENTRY_SPLIT 0x0800 /* THP splitting bit */
284 #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
285 #define _SEGMENT_ENTRY_READ 0x0002 /* SW segment read bit */
286 #define _SEGMENT_ENTRY_WRITE 0x0001 /* SW segment write bit */
287
288 /*
289 * Segment table entry encoding (R = read-only, I = invalid, y = young bit):
290 * dy..R...I...wr
291 * prot-none, clean, old 00..1...1...00
292 * prot-none, clean, young 01..1...1...00
293 * prot-none, dirty, old 10..1...1...00
294 * prot-none, dirty, young 11..1...1...00
295 * read-only, clean, old 00..1...1...01
296 * read-only, clean, young 01..1...0...01
297 * read-only, dirty, old 10..1...1...01
298 * read-only, dirty, young 11..1...0...01
299 * read-write, clean, old 00..1...1...11
300 * read-write, clean, young 01..1...0...11
301 * read-write, dirty, old 10..0...1...11
302 * read-write, dirty, young 11..0...0...11
303 * The segment table origin is used to distinguish empty (origin==0) from
304 * read-write, old segment table entries (origin!=0)
305 * HW-bits: R read-only, I invalid
306 * SW-bits: y young, d dirty, r read, w write
307 */
308
309 #define _SEGMENT_ENTRY_SPLIT_BIT 11 /* THP splitting bit number */
310
311 /* Page status table bits for virtualization */
312 #define PGSTE_ACC_BITS 0xf000000000000000UL
313 #define PGSTE_FP_BIT 0x0800000000000000UL
314 #define PGSTE_PCL_BIT 0x0080000000000000UL
315 #define PGSTE_HR_BIT 0x0040000000000000UL
316 #define PGSTE_HC_BIT 0x0020000000000000UL
317 #define PGSTE_GR_BIT 0x0004000000000000UL
318 #define PGSTE_GC_BIT 0x0002000000000000UL
319 #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
320 #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
321
322 /* Guest Page State used for virtualization */
323 #define _PGSTE_GPS_ZERO 0x0000000080000000UL
324 #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
325 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
326 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
327
328 /*
329 * A user page table pointer has the space-switch-event bit, the
330 * private-space-control bit and the storage-alteration-event-control
331 * bit set. A kernel page table pointer doesn't need them.
332 */
333 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
334 _ASCE_ALT_EVENT)
335
336 /*
337 * Page protection definitions.
338 */
339 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID)
340 #define PAGE_READ __pgprot(_PAGE_PRESENT | _PAGE_READ | \
341 _PAGE_INVALID | _PAGE_PROTECT)
342 #define PAGE_WRITE __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
343 _PAGE_INVALID | _PAGE_PROTECT)
344
345 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
346 _PAGE_YOUNG | _PAGE_DIRTY)
347 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
348 _PAGE_YOUNG | _PAGE_DIRTY)
349 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
350 _PAGE_PROTECT)
351
352 /*
353 * On s390 the page table entry has an invalid bit and a read-only bit.
354 * Read permission implies execute permission and write permission
355 * implies read permission.
356 */
357 /*xwr*/
358 #define __P000 PAGE_NONE
359 #define __P001 PAGE_READ
360 #define __P010 PAGE_READ
361 #define __P011 PAGE_READ
362 #define __P100 PAGE_READ
363 #define __P101 PAGE_READ
364 #define __P110 PAGE_READ
365 #define __P111 PAGE_READ
366
367 #define __S000 PAGE_NONE
368 #define __S001 PAGE_READ
369 #define __S010 PAGE_WRITE
370 #define __S011 PAGE_WRITE
371 #define __S100 PAGE_READ
372 #define __S101 PAGE_READ
373 #define __S110 PAGE_WRITE
374 #define __S111 PAGE_WRITE
375
376 /*
377 * Segment entry (large page) protection definitions.
378 */
379 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
380 _SEGMENT_ENTRY_PROTECT)
381 #define SEGMENT_READ __pgprot(_SEGMENT_ENTRY_PROTECT | \
382 _SEGMENT_ENTRY_READ)
383 #define SEGMENT_WRITE __pgprot(_SEGMENT_ENTRY_READ | \
384 _SEGMENT_ENTRY_WRITE)
385
386 static inline int mm_has_pgste(struct mm_struct *mm)
387 {
388 #ifdef CONFIG_PGSTE
389 if (unlikely(mm->context.has_pgste))
390 return 1;
391 #endif
392 return 0;
393 }
394
395 static inline int mm_alloc_pgste(struct mm_struct *mm)
396 {
397 #ifdef CONFIG_PGSTE
398 if (unlikely(mm->context.alloc_pgste))
399 return 1;
400 #endif
401 return 0;
402 }
403
404 /*
405 * In the case that a guest uses storage keys
406 * faults should no longer be backed by zero pages
407 */
408 #define mm_forbids_zeropage mm_use_skey
409 static inline int mm_use_skey(struct mm_struct *mm)
410 {
411 #ifdef CONFIG_PGSTE
412 if (mm->context.use_skey)
413 return 1;
414 #endif
415 return 0;
416 }
417
418 /*
419 * pgd/pmd/pte query functions
420 */
421 static inline int pgd_present(pgd_t pgd)
422 {
423 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
424 return 1;
425 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
426 }
427
428 static inline int pgd_none(pgd_t pgd)
429 {
430 if ((pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
431 return 0;
432 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
433 }
434
435 static inline int pgd_bad(pgd_t pgd)
436 {
437 /*
438 * With dynamic page table levels the pgd can be a region table
439 * entry or a segment table entry. Check for the bit that are
440 * invalid for either table entry.
441 */
442 unsigned long mask =
443 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
444 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
445 return (pgd_val(pgd) & mask) != 0;
446 }
447
448 static inline int pud_present(pud_t pud)
449 {
450 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
451 return 1;
452 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
453 }
454
455 static inline int pud_none(pud_t pud)
456 {
457 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
458 return 0;
459 return (pud_val(pud) & _REGION_ENTRY_INVALID) != 0UL;
460 }
461
462 static inline int pud_large(pud_t pud)
463 {
464 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
465 return 0;
466 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
467 }
468
469 static inline int pud_bad(pud_t pud)
470 {
471 /*
472 * With dynamic page table levels the pud can be a region table
473 * entry or a segment table entry. Check for the bit that are
474 * invalid for either table entry.
475 */
476 unsigned long mask =
477 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
478 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
479 return (pud_val(pud) & mask) != 0;
480 }
481
482 static inline int pmd_present(pmd_t pmd)
483 {
484 return pmd_val(pmd) != _SEGMENT_ENTRY_INVALID;
485 }
486
487 static inline int pmd_none(pmd_t pmd)
488 {
489 return pmd_val(pmd) == _SEGMENT_ENTRY_INVALID;
490 }
491
492 static inline int pmd_large(pmd_t pmd)
493 {
494 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
495 }
496
497 static inline unsigned long pmd_pfn(pmd_t pmd)
498 {
499 unsigned long origin_mask;
500
501 origin_mask = _SEGMENT_ENTRY_ORIGIN;
502 if (pmd_large(pmd))
503 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
504 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
505 }
506
507 static inline int pmd_bad(pmd_t pmd)
508 {
509 if (pmd_large(pmd))
510 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
511 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
512 }
513
514 #define __HAVE_ARCH_PMDP_SPLITTING_FLUSH
515 extern void pmdp_splitting_flush(struct vm_area_struct *vma,
516 unsigned long addr, pmd_t *pmdp);
517
518 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
519 extern int pmdp_set_access_flags(struct vm_area_struct *vma,
520 unsigned long address, pmd_t *pmdp,
521 pmd_t entry, int dirty);
522
523 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
524 extern int pmdp_clear_flush_young(struct vm_area_struct *vma,
525 unsigned long address, pmd_t *pmdp);
526
527 #define __HAVE_ARCH_PMD_WRITE
528 static inline int pmd_write(pmd_t pmd)
529 {
530 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
531 }
532
533 static inline int pmd_dirty(pmd_t pmd)
534 {
535 int dirty = 1;
536 if (pmd_large(pmd))
537 dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
538 return dirty;
539 }
540
541 static inline int pmd_young(pmd_t pmd)
542 {
543 int young = 1;
544 if (pmd_large(pmd))
545 young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
546 return young;
547 }
548
549 static inline int pte_present(pte_t pte)
550 {
551 /* Bit pattern: (pte & 0x001) == 0x001 */
552 return (pte_val(pte) & _PAGE_PRESENT) != 0;
553 }
554
555 static inline int pte_none(pte_t pte)
556 {
557 /* Bit pattern: pte == 0x400 */
558 return pte_val(pte) == _PAGE_INVALID;
559 }
560
561 static inline int pte_swap(pte_t pte)
562 {
563 /* Bit pattern: (pte & 0x201) == 0x200 */
564 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
565 == _PAGE_PROTECT;
566 }
567
568 static inline int pte_special(pte_t pte)
569 {
570 return (pte_val(pte) & _PAGE_SPECIAL);
571 }
572
573 #define __HAVE_ARCH_PTE_SAME
574 static inline int pte_same(pte_t a, pte_t b)
575 {
576 return pte_val(a) == pte_val(b);
577 }
578
579 static inline pgste_t pgste_get_lock(pte_t *ptep)
580 {
581 unsigned long new = 0;
582 #ifdef CONFIG_PGSTE
583 unsigned long old;
584
585 preempt_disable();
586 asm(
587 " lg %0,%2\n"
588 "0: lgr %1,%0\n"
589 " nihh %0,0xff7f\n" /* clear PCL bit in old */
590 " oihh %1,0x0080\n" /* set PCL bit in new */
591 " csg %0,%1,%2\n"
592 " jl 0b\n"
593 : "=&d" (old), "=&d" (new), "=Q" (ptep[PTRS_PER_PTE])
594 : "Q" (ptep[PTRS_PER_PTE]) : "cc", "memory");
595 #endif
596 return __pgste(new);
597 }
598
599 static inline void pgste_set_unlock(pte_t *ptep, pgste_t pgste)
600 {
601 #ifdef CONFIG_PGSTE
602 asm(
603 " nihh %1,0xff7f\n" /* clear PCL bit */
604 " stg %1,%0\n"
605 : "=Q" (ptep[PTRS_PER_PTE])
606 : "d" (pgste_val(pgste)), "Q" (ptep[PTRS_PER_PTE])
607 : "cc", "memory");
608 preempt_enable();
609 #endif
610 }
611
612 static inline pgste_t pgste_get(pte_t *ptep)
613 {
614 unsigned long pgste = 0;
615 #ifdef CONFIG_PGSTE
616 pgste = *(unsigned long *)(ptep + PTRS_PER_PTE);
617 #endif
618 return __pgste(pgste);
619 }
620
621 static inline void pgste_set(pte_t *ptep, pgste_t pgste)
622 {
623 #ifdef CONFIG_PGSTE
624 *(pgste_t *)(ptep + PTRS_PER_PTE) = pgste;
625 #endif
626 }
627
628 static inline pgste_t pgste_update_all(pte_t *ptep, pgste_t pgste,
629 struct mm_struct *mm)
630 {
631 #ifdef CONFIG_PGSTE
632 unsigned long address, bits, skey;
633
634 if (!mm_use_skey(mm) || pte_val(*ptep) & _PAGE_INVALID)
635 return pgste;
636 address = pte_val(*ptep) & PAGE_MASK;
637 skey = (unsigned long) page_get_storage_key(address);
638 bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
639 /* Transfer page changed & referenced bit to guest bits in pgste */
640 pgste_val(pgste) |= bits << 48; /* GR bit & GC bit */
641 /* Copy page access key and fetch protection bit to pgste */
642 pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT);
643 pgste_val(pgste) |= (skey & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
644 #endif
645 return pgste;
646
647 }
648
649 static inline void pgste_set_key(pte_t *ptep, pgste_t pgste, pte_t entry,
650 struct mm_struct *mm)
651 {
652 #ifdef CONFIG_PGSTE
653 unsigned long address;
654 unsigned long nkey;
655
656 if (!mm_use_skey(mm) || pte_val(entry) & _PAGE_INVALID)
657 return;
658 VM_BUG_ON(!(pte_val(*ptep) & _PAGE_INVALID));
659 address = pte_val(entry) & PAGE_MASK;
660 /*
661 * Set page access key and fetch protection bit from pgste.
662 * The guest C/R information is still in the PGSTE, set real
663 * key C/R to 0.
664 */
665 nkey = (pgste_val(pgste) & (PGSTE_ACC_BITS | PGSTE_FP_BIT)) >> 56;
666 nkey |= (pgste_val(pgste) & (PGSTE_GR_BIT | PGSTE_GC_BIT)) >> 48;
667 page_set_storage_key(address, nkey, 0);
668 #endif
669 }
670
671 static inline pgste_t pgste_set_pte(pte_t *ptep, pgste_t pgste, pte_t entry)
672 {
673 if ((pte_val(entry) & _PAGE_PRESENT) &&
674 (pte_val(entry) & _PAGE_WRITE) &&
675 !(pte_val(entry) & _PAGE_INVALID)) {
676 if (!MACHINE_HAS_ESOP) {
677 /*
678 * Without enhanced suppression-on-protection force
679 * the dirty bit on for all writable ptes.
680 */
681 pte_val(entry) |= _PAGE_DIRTY;
682 pte_val(entry) &= ~_PAGE_PROTECT;
683 }
684 if (!(pte_val(entry) & _PAGE_PROTECT))
685 /* This pte allows write access, set user-dirty */
686 pgste_val(pgste) |= PGSTE_UC_BIT;
687 }
688 *ptep = entry;
689 return pgste;
690 }
691
692 /**
693 * struct gmap_struct - guest address space
694 * @crst_list: list of all crst tables used in the guest address space
695 * @mm: pointer to the parent mm_struct
696 * @guest_to_host: radix tree with guest to host address translation
697 * @host_to_guest: radix tree with pointer to segment table entries
698 * @guest_table_lock: spinlock to protect all entries in the guest page table
699 * @table: pointer to the page directory
700 * @asce: address space control element for gmap page table
701 * @pfault_enabled: defines if pfaults are applicable for the guest
702 */
703 struct gmap {
704 struct list_head list;
705 struct list_head crst_list;
706 struct mm_struct *mm;
707 struct radix_tree_root guest_to_host;
708 struct radix_tree_root host_to_guest;
709 spinlock_t guest_table_lock;
710 unsigned long *table;
711 unsigned long asce;
712 unsigned long asce_end;
713 void *private;
714 bool pfault_enabled;
715 };
716
717 /**
718 * struct gmap_notifier - notify function block for page invalidation
719 * @notifier_call: address of callback function
720 */
721 struct gmap_notifier {
722 struct list_head list;
723 void (*notifier_call)(struct gmap *gmap, unsigned long gaddr);
724 };
725
726 struct gmap *gmap_alloc(struct mm_struct *mm, unsigned long limit);
727 void gmap_free(struct gmap *gmap);
728 void gmap_enable(struct gmap *gmap);
729 void gmap_disable(struct gmap *gmap);
730 int gmap_map_segment(struct gmap *gmap, unsigned long from,
731 unsigned long to, unsigned long len);
732 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len);
733 unsigned long __gmap_translate(struct gmap *, unsigned long gaddr);
734 unsigned long gmap_translate(struct gmap *, unsigned long gaddr);
735 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr);
736 int gmap_fault(struct gmap *, unsigned long gaddr, unsigned int fault_flags);
737 void gmap_discard(struct gmap *, unsigned long from, unsigned long to);
738 void __gmap_zap(struct gmap *, unsigned long gaddr);
739 bool gmap_test_and_clear_dirty(unsigned long address, struct gmap *);
740
741
742 void gmap_register_ipte_notifier(struct gmap_notifier *);
743 void gmap_unregister_ipte_notifier(struct gmap_notifier *);
744 int gmap_ipte_notify(struct gmap *, unsigned long start, unsigned long len);
745 void gmap_do_ipte_notify(struct mm_struct *, unsigned long addr, pte_t *);
746
747 static inline pgste_t pgste_ipte_notify(struct mm_struct *mm,
748 unsigned long addr,
749 pte_t *ptep, pgste_t pgste)
750 {
751 #ifdef CONFIG_PGSTE
752 if (pgste_val(pgste) & PGSTE_IN_BIT) {
753 pgste_val(pgste) &= ~PGSTE_IN_BIT;
754 gmap_do_ipte_notify(mm, addr, ptep);
755 }
756 #endif
757 return pgste;
758 }
759
760 /*
761 * Certain architectures need to do special things when PTEs
762 * within a page table are directly modified. Thus, the following
763 * hook is made available.
764 */
765 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
766 pte_t *ptep, pte_t entry)
767 {
768 pgste_t pgste;
769
770 if (mm_has_pgste(mm)) {
771 pgste = pgste_get_lock(ptep);
772 pgste_val(pgste) &= ~_PGSTE_GPS_ZERO;
773 pgste_set_key(ptep, pgste, entry, mm);
774 pgste = pgste_set_pte(ptep, pgste, entry);
775 pgste_set_unlock(ptep, pgste);
776 } else {
777 *ptep = entry;
778 }
779 }
780
781 /*
782 * query functions pte_write/pte_dirty/pte_young only work if
783 * pte_present() is true. Undefined behaviour if not..
784 */
785 static inline int pte_write(pte_t pte)
786 {
787 return (pte_val(pte) & _PAGE_WRITE) != 0;
788 }
789
790 static inline int pte_dirty(pte_t pte)
791 {
792 return (pte_val(pte) & _PAGE_DIRTY) != 0;
793 }
794
795 static inline int pte_young(pte_t pte)
796 {
797 return (pte_val(pte) & _PAGE_YOUNG) != 0;
798 }
799
800 #define __HAVE_ARCH_PTE_UNUSED
801 static inline int pte_unused(pte_t pte)
802 {
803 return pte_val(pte) & _PAGE_UNUSED;
804 }
805
806 /*
807 * pgd/pmd/pte modification functions
808 */
809
810 static inline void pgd_clear(pgd_t *pgd)
811 {
812 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
813 pgd_val(*pgd) = _REGION2_ENTRY_EMPTY;
814 }
815
816 static inline void pud_clear(pud_t *pud)
817 {
818 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
819 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
820 }
821
822 static inline void pmd_clear(pmd_t *pmdp)
823 {
824 pmd_val(*pmdp) = _SEGMENT_ENTRY_INVALID;
825 }
826
827 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
828 {
829 pte_val(*ptep) = _PAGE_INVALID;
830 }
831
832 /*
833 * The following pte modification functions only work if
834 * pte_present() is true. Undefined behaviour if not..
835 */
836 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
837 {
838 pte_val(pte) &= _PAGE_CHG_MASK;
839 pte_val(pte) |= pgprot_val(newprot);
840 /*
841 * newprot for PAGE_NONE, PAGE_READ and PAGE_WRITE has the
842 * invalid bit set, clear it again for readable, young pages
843 */
844 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
845 pte_val(pte) &= ~_PAGE_INVALID;
846 /*
847 * newprot for PAGE_READ and PAGE_WRITE has the page protection
848 * bit set, clear it again for writable, dirty pages
849 */
850 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
851 pte_val(pte) &= ~_PAGE_PROTECT;
852 return pte;
853 }
854
855 static inline pte_t pte_wrprotect(pte_t pte)
856 {
857 pte_val(pte) &= ~_PAGE_WRITE;
858 pte_val(pte) |= _PAGE_PROTECT;
859 return pte;
860 }
861
862 static inline pte_t pte_mkwrite(pte_t pte)
863 {
864 pte_val(pte) |= _PAGE_WRITE;
865 if (pte_val(pte) & _PAGE_DIRTY)
866 pte_val(pte) &= ~_PAGE_PROTECT;
867 return pte;
868 }
869
870 static inline pte_t pte_mkclean(pte_t pte)
871 {
872 pte_val(pte) &= ~_PAGE_DIRTY;
873 pte_val(pte) |= _PAGE_PROTECT;
874 return pte;
875 }
876
877 static inline pte_t pte_mkdirty(pte_t pte)
878 {
879 pte_val(pte) |= _PAGE_DIRTY;
880 if (pte_val(pte) & _PAGE_WRITE)
881 pte_val(pte) &= ~_PAGE_PROTECT;
882 return pte;
883 }
884
885 static inline pte_t pte_mkold(pte_t pte)
886 {
887 pte_val(pte) &= ~_PAGE_YOUNG;
888 pte_val(pte) |= _PAGE_INVALID;
889 return pte;
890 }
891
892 static inline pte_t pte_mkyoung(pte_t pte)
893 {
894 pte_val(pte) |= _PAGE_YOUNG;
895 if (pte_val(pte) & _PAGE_READ)
896 pte_val(pte) &= ~_PAGE_INVALID;
897 return pte;
898 }
899
900 static inline pte_t pte_mkspecial(pte_t pte)
901 {
902 pte_val(pte) |= _PAGE_SPECIAL;
903 return pte;
904 }
905
906 #ifdef CONFIG_HUGETLB_PAGE
907 static inline pte_t pte_mkhuge(pte_t pte)
908 {
909 pte_val(pte) |= _PAGE_LARGE;
910 return pte;
911 }
912 #endif
913
914 static inline void __ptep_ipte(unsigned long address, pte_t *ptep)
915 {
916 unsigned long pto = (unsigned long) ptep;
917
918 /* Invalidation + global TLB flush for the pte */
919 asm volatile(
920 " ipte %2,%3"
921 : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
922 }
923
924 static inline void __ptep_ipte_local(unsigned long address, pte_t *ptep)
925 {
926 unsigned long pto = (unsigned long) ptep;
927
928 /* Invalidation + local TLB flush for the pte */
929 asm volatile(
930 " .insn rrf,0xb2210000,%2,%3,0,1"
931 : "=m" (*ptep) : "m" (*ptep), "a" (pto), "a" (address));
932 }
933
934 static inline void __ptep_ipte_range(unsigned long address, int nr, pte_t *ptep)
935 {
936 unsigned long pto = (unsigned long) ptep;
937
938 /* Invalidate a range of ptes + global TLB flush of the ptes */
939 do {
940 asm volatile(
941 " .insn rrf,0xb2210000,%2,%0,%1,0"
942 : "+a" (address), "+a" (nr) : "a" (pto) : "memory");
943 } while (nr != 255);
944 }
945
946 static inline void ptep_flush_direct(struct mm_struct *mm,
947 unsigned long address, pte_t *ptep)
948 {
949 int active, count;
950
951 if (pte_val(*ptep) & _PAGE_INVALID)
952 return;
953 active = (mm == current->active_mm) ? 1 : 0;
954 count = atomic_add_return(0x10000, &mm->context.attach_count);
955 if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
956 cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
957 __ptep_ipte_local(address, ptep);
958 else
959 __ptep_ipte(address, ptep);
960 atomic_sub(0x10000, &mm->context.attach_count);
961 }
962
963 static inline void ptep_flush_lazy(struct mm_struct *mm,
964 unsigned long address, pte_t *ptep)
965 {
966 int active, count;
967
968 if (pte_val(*ptep) & _PAGE_INVALID)
969 return;
970 active = (mm == current->active_mm) ? 1 : 0;
971 count = atomic_add_return(0x10000, &mm->context.attach_count);
972 if ((count & 0xffff) <= active) {
973 pte_val(*ptep) |= _PAGE_INVALID;
974 mm->context.flush_mm = 1;
975 } else
976 __ptep_ipte(address, ptep);
977 atomic_sub(0x10000, &mm->context.attach_count);
978 }
979
980 /*
981 * Get (and clear) the user dirty bit for a pte.
982 */
983 static inline int ptep_test_and_clear_user_dirty(struct mm_struct *mm,
984 unsigned long addr,
985 pte_t *ptep)
986 {
987 pgste_t pgste;
988 pte_t pte;
989 int dirty;
990
991 if (!mm_has_pgste(mm))
992 return 0;
993 pgste = pgste_get_lock(ptep);
994 dirty = !!(pgste_val(pgste) & PGSTE_UC_BIT);
995 pgste_val(pgste) &= ~PGSTE_UC_BIT;
996 pte = *ptep;
997 if (dirty && (pte_val(pte) & _PAGE_PRESENT)) {
998 pgste = pgste_ipte_notify(mm, addr, ptep, pgste);
999 __ptep_ipte(addr, ptep);
1000 if (MACHINE_HAS_ESOP || !(pte_val(pte) & _PAGE_WRITE))
1001 pte_val(pte) |= _PAGE_PROTECT;
1002 else
1003 pte_val(pte) |= _PAGE_INVALID;
1004 *ptep = pte;
1005 }
1006 pgste_set_unlock(ptep, pgste);
1007 return dirty;
1008 }
1009
1010 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
1011 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
1012 unsigned long addr, pte_t *ptep)
1013 {
1014 pgste_t pgste;
1015 pte_t pte, oldpte;
1016 int young;
1017
1018 if (mm_has_pgste(vma->vm_mm)) {
1019 pgste = pgste_get_lock(ptep);
1020 pgste = pgste_ipte_notify(vma->vm_mm, addr, ptep, pgste);
1021 }
1022
1023 oldpte = pte = *ptep;
1024 ptep_flush_direct(vma->vm_mm, addr, ptep);
1025 young = pte_young(pte);
1026 pte = pte_mkold(pte);
1027
1028 if (mm_has_pgste(vma->vm_mm)) {
1029 pgste = pgste_update_all(&oldpte, pgste, vma->vm_mm);
1030 pgste = pgste_set_pte(ptep, pgste, pte);
1031 pgste_set_unlock(ptep, pgste);
1032 } else
1033 *ptep = pte;
1034
1035 return young;
1036 }
1037
1038 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1039 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1040 unsigned long address, pte_t *ptep)
1041 {
1042 return ptep_test_and_clear_young(vma, address, ptep);
1043 }
1044
1045 /*
1046 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
1047 * both clear the TLB for the unmapped pte. The reason is that
1048 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
1049 * to modify an active pte. The sequence is
1050 * 1) ptep_get_and_clear
1051 * 2) set_pte_at
1052 * 3) flush_tlb_range
1053 * On s390 the tlb needs to get flushed with the modification of the pte
1054 * if the pte is active. The only way how this can be implemented is to
1055 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
1056 * is a nop.
1057 */
1058 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1059 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1060 unsigned long address, pte_t *ptep)
1061 {
1062 pgste_t pgste;
1063 pte_t pte;
1064
1065 if (mm_has_pgste(mm)) {
1066 pgste = pgste_get_lock(ptep);
1067 pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1068 }
1069
1070 pte = *ptep;
1071 ptep_flush_lazy(mm, address, ptep);
1072 pte_val(*ptep) = _PAGE_INVALID;
1073
1074 if (mm_has_pgste(mm)) {
1075 pgste = pgste_update_all(&pte, pgste, mm);
1076 pgste_set_unlock(ptep, pgste);
1077 }
1078 return pte;
1079 }
1080
1081 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1082 static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
1083 unsigned long address,
1084 pte_t *ptep)
1085 {
1086 pgste_t pgste;
1087 pte_t pte;
1088
1089 if (mm_has_pgste(mm)) {
1090 pgste = pgste_get_lock(ptep);
1091 pgste_ipte_notify(mm, address, ptep, pgste);
1092 }
1093
1094 pte = *ptep;
1095 ptep_flush_lazy(mm, address, ptep);
1096
1097 if (mm_has_pgste(mm)) {
1098 pgste = pgste_update_all(&pte, pgste, mm);
1099 pgste_set(ptep, pgste);
1100 }
1101 return pte;
1102 }
1103
1104 static inline void ptep_modify_prot_commit(struct mm_struct *mm,
1105 unsigned long address,
1106 pte_t *ptep, pte_t pte)
1107 {
1108 pgste_t pgste;
1109
1110 if (mm_has_pgste(mm)) {
1111 pgste = pgste_get(ptep);
1112 pgste_set_key(ptep, pgste, pte, mm);
1113 pgste = pgste_set_pte(ptep, pgste, pte);
1114 pgste_set_unlock(ptep, pgste);
1115 } else
1116 *ptep = pte;
1117 }
1118
1119 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1120 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1121 unsigned long address, pte_t *ptep)
1122 {
1123 pgste_t pgste;
1124 pte_t pte;
1125
1126 if (mm_has_pgste(vma->vm_mm)) {
1127 pgste = pgste_get_lock(ptep);
1128 pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1129 }
1130
1131 pte = *ptep;
1132 ptep_flush_direct(vma->vm_mm, address, ptep);
1133 pte_val(*ptep) = _PAGE_INVALID;
1134
1135 if (mm_has_pgste(vma->vm_mm)) {
1136 if ((pgste_val(pgste) & _PGSTE_GPS_USAGE_MASK) ==
1137 _PGSTE_GPS_USAGE_UNUSED)
1138 pte_val(pte) |= _PAGE_UNUSED;
1139 pgste = pgste_update_all(&pte, pgste, vma->vm_mm);
1140 pgste_set_unlock(ptep, pgste);
1141 }
1142 return pte;
1143 }
1144
1145 /*
1146 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1147 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1148 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1149 * cannot be accessed while the batched unmap is running. In this case
1150 * full==1 and a simple pte_clear is enough. See tlb.h.
1151 */
1152 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1153 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1154 unsigned long address,
1155 pte_t *ptep, int full)
1156 {
1157 pgste_t pgste;
1158 pte_t pte;
1159
1160 if (!full && mm_has_pgste(mm)) {
1161 pgste = pgste_get_lock(ptep);
1162 pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1163 }
1164
1165 pte = *ptep;
1166 if (!full)
1167 ptep_flush_lazy(mm, address, ptep);
1168 pte_val(*ptep) = _PAGE_INVALID;
1169
1170 if (!full && mm_has_pgste(mm)) {
1171 pgste = pgste_update_all(&pte, pgste, mm);
1172 pgste_set_unlock(ptep, pgste);
1173 }
1174 return pte;
1175 }
1176
1177 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1178 static inline pte_t ptep_set_wrprotect(struct mm_struct *mm,
1179 unsigned long address, pte_t *ptep)
1180 {
1181 pgste_t pgste;
1182 pte_t pte = *ptep;
1183
1184 if (pte_write(pte)) {
1185 if (mm_has_pgste(mm)) {
1186 pgste = pgste_get_lock(ptep);
1187 pgste = pgste_ipte_notify(mm, address, ptep, pgste);
1188 }
1189
1190 ptep_flush_lazy(mm, address, ptep);
1191 pte = pte_wrprotect(pte);
1192
1193 if (mm_has_pgste(mm)) {
1194 pgste = pgste_set_pte(ptep, pgste, pte);
1195 pgste_set_unlock(ptep, pgste);
1196 } else
1197 *ptep = pte;
1198 }
1199 return pte;
1200 }
1201
1202 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1203 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1204 unsigned long address, pte_t *ptep,
1205 pte_t entry, int dirty)
1206 {
1207 pgste_t pgste;
1208
1209 if (pte_same(*ptep, entry))
1210 return 0;
1211 if (mm_has_pgste(vma->vm_mm)) {
1212 pgste = pgste_get_lock(ptep);
1213 pgste = pgste_ipte_notify(vma->vm_mm, address, ptep, pgste);
1214 }
1215
1216 ptep_flush_direct(vma->vm_mm, address, ptep);
1217
1218 if (mm_has_pgste(vma->vm_mm)) {
1219 pgste_set_key(ptep, pgste, entry, vma->vm_mm);
1220 pgste = pgste_set_pte(ptep, pgste, entry);
1221 pgste_set_unlock(ptep, pgste);
1222 } else
1223 *ptep = entry;
1224 return 1;
1225 }
1226
1227 /*
1228 * Conversion functions: convert a page and protection to a page entry,
1229 * and a page entry and page directory to the page they refer to.
1230 */
1231 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1232 {
1233 pte_t __pte;
1234 pte_val(__pte) = physpage + pgprot_val(pgprot);
1235 return pte_mkyoung(__pte);
1236 }
1237
1238 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1239 {
1240 unsigned long physpage = page_to_phys(page);
1241 pte_t __pte = mk_pte_phys(physpage, pgprot);
1242
1243 if (pte_write(__pte) && PageDirty(page))
1244 __pte = pte_mkdirty(__pte);
1245 return __pte;
1246 }
1247
1248 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1249 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1250 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1251 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1252
1253 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1254 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1255
1256 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1257 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1258 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1259
1260 static inline pud_t *pud_offset(pgd_t *pgd, unsigned long address)
1261 {
1262 pud_t *pud = (pud_t *) pgd;
1263 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1264 pud = (pud_t *) pgd_deref(*pgd);
1265 return pud + pud_index(address);
1266 }
1267
1268 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1269 {
1270 pmd_t *pmd = (pmd_t *) pud;
1271 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1272 pmd = (pmd_t *) pud_deref(*pud);
1273 return pmd + pmd_index(address);
1274 }
1275
1276 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1277 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1278 #define pte_page(x) pfn_to_page(pte_pfn(x))
1279
1280 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1281
1282 /* Find an entry in the lowest level page table.. */
1283 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1284 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1285 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1286 #define pte_unmap(pte) do { } while (0)
1287
1288 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1289 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1290 {
1291 /*
1292 * pgprot is PAGE_NONE, PAGE_READ, or PAGE_WRITE (see __Pxxx / __Sxxx)
1293 * Convert to segment table entry format.
1294 */
1295 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1296 return pgprot_val(SEGMENT_NONE);
1297 if (pgprot_val(pgprot) == pgprot_val(PAGE_READ))
1298 return pgprot_val(SEGMENT_READ);
1299 return pgprot_val(SEGMENT_WRITE);
1300 }
1301
1302 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1303 {
1304 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1305 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1306 return pmd;
1307 }
1308
1309 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1310 {
1311 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1312 if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1313 return pmd;
1314 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1315 return pmd;
1316 }
1317
1318 static inline pmd_t pmd_mkclean(pmd_t pmd)
1319 {
1320 if (pmd_large(pmd)) {
1321 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1322 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1323 }
1324 return pmd;
1325 }
1326
1327 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1328 {
1329 if (pmd_large(pmd)) {
1330 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY;
1331 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1332 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1333 }
1334 return pmd;
1335 }
1336
1337 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1338 {
1339 if (pmd_large(pmd)) {
1340 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1341 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1342 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1343 }
1344 return pmd;
1345 }
1346
1347 static inline pmd_t pmd_mkold(pmd_t pmd)
1348 {
1349 if (pmd_large(pmd)) {
1350 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1351 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1352 }
1353 return pmd;
1354 }
1355
1356 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1357 {
1358 if (pmd_large(pmd)) {
1359 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1360 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1361 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SPLIT;
1362 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1363 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1364 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1365 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1366 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1367 return pmd;
1368 }
1369 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1370 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1371 return pmd;
1372 }
1373
1374 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1375 {
1376 pmd_t __pmd;
1377 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1378 return __pmd;
1379 }
1380
1381 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1382
1383 static inline void __pmdp_csp(pmd_t *pmdp)
1384 {
1385 register unsigned long reg2 asm("2") = pmd_val(*pmdp);
1386 register unsigned long reg3 asm("3") = pmd_val(*pmdp) |
1387 _SEGMENT_ENTRY_INVALID;
1388 register unsigned long reg4 asm("4") = ((unsigned long) pmdp) + 5;
1389
1390 asm volatile(
1391 " csp %1,%3"
1392 : "=m" (*pmdp)
1393 : "d" (reg2), "d" (reg3), "d" (reg4), "m" (*pmdp) : "cc");
1394 }
1395
1396 static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp)
1397 {
1398 unsigned long sto;
1399
1400 sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1401 asm volatile(
1402 " .insn rrf,0xb98e0000,%2,%3,0,0"
1403 : "=m" (*pmdp)
1404 : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1405 : "cc" );
1406 }
1407
1408 static inline void __pmdp_idte_local(unsigned long address, pmd_t *pmdp)
1409 {
1410 unsigned long sto;
1411
1412 sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1413 asm volatile(
1414 " .insn rrf,0xb98e0000,%2,%3,0,1"
1415 : "=m" (*pmdp)
1416 : "m" (*pmdp), "a" (sto), "a" ((address & HPAGE_MASK))
1417 : "cc" );
1418 }
1419
1420 static inline void pmdp_flush_direct(struct mm_struct *mm,
1421 unsigned long address, pmd_t *pmdp)
1422 {
1423 int active, count;
1424
1425 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1426 return;
1427 if (!MACHINE_HAS_IDTE) {
1428 __pmdp_csp(pmdp);
1429 return;
1430 }
1431 active = (mm == current->active_mm) ? 1 : 0;
1432 count = atomic_add_return(0x10000, &mm->context.attach_count);
1433 if (MACHINE_HAS_TLB_LC && (count & 0xffff) <= active &&
1434 cpumask_equal(mm_cpumask(mm), cpumask_of(smp_processor_id())))
1435 __pmdp_idte_local(address, pmdp);
1436 else
1437 __pmdp_idte(address, pmdp);
1438 atomic_sub(0x10000, &mm->context.attach_count);
1439 }
1440
1441 static inline void pmdp_flush_lazy(struct mm_struct *mm,
1442 unsigned long address, pmd_t *pmdp)
1443 {
1444 int active, count;
1445
1446 if (pmd_val(*pmdp) & _SEGMENT_ENTRY_INVALID)
1447 return;
1448 active = (mm == current->active_mm) ? 1 : 0;
1449 count = atomic_add_return(0x10000, &mm->context.attach_count);
1450 if ((count & 0xffff) <= active) {
1451 pmd_val(*pmdp) |= _SEGMENT_ENTRY_INVALID;
1452 mm->context.flush_mm = 1;
1453 } else if (MACHINE_HAS_IDTE)
1454 __pmdp_idte(address, pmdp);
1455 else
1456 __pmdp_csp(pmdp);
1457 atomic_sub(0x10000, &mm->context.attach_count);
1458 }
1459
1460 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1461
1462 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1463 extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1464 pgtable_t pgtable);
1465
1466 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1467 extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1468
1469 static inline int pmd_trans_splitting(pmd_t pmd)
1470 {
1471 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) &&
1472 (pmd_val(pmd) & _SEGMENT_ENTRY_SPLIT);
1473 }
1474
1475 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1476 pmd_t *pmdp, pmd_t entry)
1477 {
1478 *pmdp = entry;
1479 }
1480
1481 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1482 {
1483 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1484 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1485 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1486 return pmd;
1487 }
1488
1489 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1490 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1491 unsigned long address, pmd_t *pmdp)
1492 {
1493 pmd_t pmd;
1494
1495 pmd = *pmdp;
1496 pmdp_flush_direct(vma->vm_mm, address, pmdp);
1497 *pmdp = pmd_mkold(pmd);
1498 return pmd_young(pmd);
1499 }
1500
1501 #define __HAVE_ARCH_PMDP_GET_AND_CLEAR
1502 static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
1503 unsigned long address, pmd_t *pmdp)
1504 {
1505 pmd_t pmd = *pmdp;
1506
1507 pmdp_flush_direct(mm, address, pmdp);
1508 pmd_clear(pmdp);
1509 return pmd;
1510 }
1511
1512 #define __HAVE_ARCH_PMDP_GET_AND_CLEAR_FULL
1513 static inline pmd_t pmdp_get_and_clear_full(struct mm_struct *mm,
1514 unsigned long address,
1515 pmd_t *pmdp, int full)
1516 {
1517 pmd_t pmd = *pmdp;
1518
1519 if (!full)
1520 pmdp_flush_lazy(mm, address, pmdp);
1521 pmd_clear(pmdp);
1522 return pmd;
1523 }
1524
1525 #define __HAVE_ARCH_PMDP_CLEAR_FLUSH
1526 static inline pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
1527 unsigned long address, pmd_t *pmdp)
1528 {
1529 return pmdp_get_and_clear(vma->vm_mm, address, pmdp);
1530 }
1531
1532 #define __HAVE_ARCH_PMDP_INVALIDATE
1533 static inline void pmdp_invalidate(struct vm_area_struct *vma,
1534 unsigned long address, pmd_t *pmdp)
1535 {
1536 pmdp_flush_direct(vma->vm_mm, address, pmdp);
1537 }
1538
1539 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1540 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1541 unsigned long address, pmd_t *pmdp)
1542 {
1543 pmd_t pmd = *pmdp;
1544
1545 if (pmd_write(pmd)) {
1546 pmdp_flush_direct(mm, address, pmdp);
1547 set_pmd_at(mm, address, pmdp, pmd_wrprotect(pmd));
1548 }
1549 }
1550
1551 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1552 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1553
1554 static inline int pmd_trans_huge(pmd_t pmd)
1555 {
1556 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1557 }
1558
1559 static inline int has_transparent_hugepage(void)
1560 {
1561 return MACHINE_HAS_HPAGE ? 1 : 0;
1562 }
1563 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1564
1565 /*
1566 * 64 bit swap entry format:
1567 * A page-table entry has some bits we have to treat in a special way.
1568 * Bits 52 and bit 55 have to be zero, otherwise an specification
1569 * exception will occur instead of a page translation exception. The
1570 * specifiation exception has the bad habit not to store necessary
1571 * information in the lowcore.
1572 * Bits 54 and 63 are used to indicate the page type.
1573 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1574 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1575 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1576 * for the offset.
1577 * | offset |01100|type |00|
1578 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1579 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1580 */
1581
1582 #define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1583 #define __SWP_OFFSET_SHIFT 12
1584 #define __SWP_TYPE_MASK ((1UL << 5) - 1)
1585 #define __SWP_TYPE_SHIFT 2
1586
1587 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1588 {
1589 pte_t pte;
1590
1591 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1592 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1593 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1594 return pte;
1595 }
1596
1597 static inline unsigned long __swp_type(swp_entry_t entry)
1598 {
1599 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1600 }
1601
1602 static inline unsigned long __swp_offset(swp_entry_t entry)
1603 {
1604 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1605 }
1606
1607 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1608 {
1609 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1610 }
1611
1612 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1613 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1614
1615 #endif /* !__ASSEMBLY__ */
1616
1617 #define kern_addr_valid(addr) (1)
1618
1619 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1620 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1621 extern int s390_enable_sie(void);
1622 extern int s390_enable_skey(void);
1623 extern void s390_reset_cmma(struct mm_struct *mm);
1624
1625 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1626 #define HAVE_ARCH_UNMAPPED_AREA
1627 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1628
1629 /*
1630 * No page table caches to initialise
1631 */
1632 static inline void pgtable_cache_init(void) { }
1633 static inline void check_pgt_cache(void) { }
1634
1635 #include <asm-generic/pgtable.h>
1636
1637 #endif /* _S390_PAGE_H */