]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/s390/include/asm/pgtable.h
UBUNTU: Ubuntu-4.13.0-45.50
[mirror_ubuntu-artful-kernel.git] / arch / s390 / include / asm / pgtable.h
1 /*
2 * S390 version
3 * Copyright IBM Corp. 1999, 2000
4 * Author(s): Hartmut Penner (hp@de.ibm.com)
5 * Ulrich Weigand (weigand@de.ibm.com)
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 *
8 * Derived from "include/asm-i386/pgtable.h"
9 */
10
11 #ifndef _ASM_S390_PGTABLE_H
12 #define _ASM_S390_PGTABLE_H
13
14 /*
15 * The Linux memory management assumes a three-level page table setup.
16 * For s390 64 bit we use up to four of the five levels the hardware
17 * provides (region first tables are not used).
18 *
19 * The "pgd_xxx()" functions are trivial for a folded two-level
20 * setup: the pgd is never bad, and a pmd always exists (as it's folded
21 * into the pgd entry)
22 *
23 * This file contains the functions and defines necessary to modify and use
24 * the S390 page table tree.
25 */
26 #ifndef __ASSEMBLY__
27 #include <linux/sched.h>
28 #include <linux/mm_types.h>
29 #include <linux/page-flags.h>
30 #include <linux/radix-tree.h>
31 #include <linux/atomic.h>
32 #include <asm/bug.h>
33 #include <asm/page.h>
34
35 extern pgd_t swapper_pg_dir[];
36 extern void paging_init(void);
37 extern void vmem_map_init(void);
38 pmd_t *vmem_pmd_alloc(void);
39 pte_t *vmem_pte_alloc(void);
40
41 enum {
42 PG_DIRECT_MAP_4K = 0,
43 PG_DIRECT_MAP_1M,
44 PG_DIRECT_MAP_2G,
45 PG_DIRECT_MAP_MAX
46 };
47
48 extern atomic_long_t direct_pages_count[PG_DIRECT_MAP_MAX];
49
50 static inline void update_page_count(int level, long count)
51 {
52 if (IS_ENABLED(CONFIG_PROC_FS))
53 atomic_long_add(count, &direct_pages_count[level]);
54 }
55
56 struct seq_file;
57 void arch_report_meminfo(struct seq_file *m);
58
59 /*
60 * The S390 doesn't have any external MMU info: the kernel page
61 * tables contain all the necessary information.
62 */
63 #define update_mmu_cache(vma, address, ptep) do { } while (0)
64 #define update_mmu_cache_pmd(vma, address, ptep) do { } while (0)
65
66 /*
67 * ZERO_PAGE is a global shared page that is always zero; used
68 * for zero-mapped memory areas etc..
69 */
70
71 extern unsigned long empty_zero_page;
72 extern unsigned long zero_page_mask;
73
74 #define ZERO_PAGE(vaddr) \
75 (virt_to_page((void *)(empty_zero_page + \
76 (((unsigned long)(vaddr)) &zero_page_mask))))
77 #define __HAVE_COLOR_ZERO_PAGE
78
79 /* TODO: s390 cannot support io_remap_pfn_range... */
80 #endif /* !__ASSEMBLY__ */
81
82 /*
83 * PMD_SHIFT determines the size of the area a second-level page
84 * table can map
85 * PGDIR_SHIFT determines what a third-level page table entry can map
86 */
87 #define PMD_SHIFT 20
88 #define PUD_SHIFT 31
89 #define P4D_SHIFT 42
90 #define PGDIR_SHIFT 53
91
92 #define PMD_SIZE (1UL << PMD_SHIFT)
93 #define PMD_MASK (~(PMD_SIZE-1))
94 #define PUD_SIZE (1UL << PUD_SHIFT)
95 #define PUD_MASK (~(PUD_SIZE-1))
96 #define P4D_SIZE (1UL << P4D_SHIFT)
97 #define P4D_MASK (~(P4D_SIZE-1))
98 #define PGDIR_SIZE (1UL << PGDIR_SHIFT)
99 #define PGDIR_MASK (~(PGDIR_SIZE-1))
100
101 /*
102 * entries per page directory level: the S390 is two-level, so
103 * we don't really have any PMD directory physically.
104 * for S390 segment-table entries are combined to one PGD
105 * that leads to 1024 pte per pgd
106 */
107 #define PTRS_PER_PTE 256
108 #define PTRS_PER_PMD 2048
109 #define PTRS_PER_PUD 2048
110 #define PTRS_PER_P4D 2048
111 #define PTRS_PER_PGD 2048
112
113 #define FIRST_USER_ADDRESS 0UL
114
115 #define pte_ERROR(e) \
116 printk("%s:%d: bad pte %p.\n", __FILE__, __LINE__, (void *) pte_val(e))
117 #define pmd_ERROR(e) \
118 printk("%s:%d: bad pmd %p.\n", __FILE__, __LINE__, (void *) pmd_val(e))
119 #define pud_ERROR(e) \
120 printk("%s:%d: bad pud %p.\n", __FILE__, __LINE__, (void *) pud_val(e))
121 #define p4d_ERROR(e) \
122 printk("%s:%d: bad p4d %p.\n", __FILE__, __LINE__, (void *) p4d_val(e))
123 #define pgd_ERROR(e) \
124 printk("%s:%d: bad pgd %p.\n", __FILE__, __LINE__, (void *) pgd_val(e))
125
126 #ifndef __ASSEMBLY__
127 /*
128 * The vmalloc and module area will always be on the topmost area of the
129 * kernel mapping. We reserve 128GB (64bit) for vmalloc and modules.
130 * On 64 bit kernels we have a 2GB area at the top of the vmalloc area where
131 * modules will reside. That makes sure that inter module branches always
132 * happen without trampolines and in addition the placement within a 2GB frame
133 * is branch prediction unit friendly.
134 */
135 extern unsigned long VMALLOC_START;
136 extern unsigned long VMALLOC_END;
137 extern struct page *vmemmap;
138
139 #define VMEM_MAX_PHYS ((unsigned long) vmemmap)
140
141 extern unsigned long MODULES_VADDR;
142 extern unsigned long MODULES_END;
143 #define MODULES_VADDR MODULES_VADDR
144 #define MODULES_END MODULES_END
145 #define MODULES_LEN (1UL << 31)
146
147 static inline int is_module_addr(void *addr)
148 {
149 BUILD_BUG_ON(MODULES_LEN > (1UL << 31));
150 if (addr < (void *)MODULES_VADDR)
151 return 0;
152 if (addr > (void *)MODULES_END)
153 return 0;
154 return 1;
155 }
156
157 /*
158 * A 64 bit pagetable entry of S390 has following format:
159 * | PFRA |0IPC| OS |
160 * 0000000000111111111122222222223333333333444444444455555555556666
161 * 0123456789012345678901234567890123456789012345678901234567890123
162 *
163 * I Page-Invalid Bit: Page is not available for address-translation
164 * P Page-Protection Bit: Store access not possible for page
165 * C Change-bit override: HW is not required to set change bit
166 *
167 * A 64 bit segmenttable entry of S390 has following format:
168 * | P-table origin | TT
169 * 0000000000111111111122222222223333333333444444444455555555556666
170 * 0123456789012345678901234567890123456789012345678901234567890123
171 *
172 * I Segment-Invalid Bit: Segment is not available for address-translation
173 * C Common-Segment Bit: Segment is not private (PoP 3-30)
174 * P Page-Protection Bit: Store access not possible for page
175 * TT Type 00
176 *
177 * A 64 bit region table entry of S390 has following format:
178 * | S-table origin | TF TTTL
179 * 0000000000111111111122222222223333333333444444444455555555556666
180 * 0123456789012345678901234567890123456789012345678901234567890123
181 *
182 * I Segment-Invalid Bit: Segment is not available for address-translation
183 * TT Type 01
184 * TF
185 * TL Table length
186 *
187 * The 64 bit regiontable origin of S390 has following format:
188 * | region table origon | DTTL
189 * 0000000000111111111122222222223333333333444444444455555555556666
190 * 0123456789012345678901234567890123456789012345678901234567890123
191 *
192 * X Space-Switch event:
193 * G Segment-Invalid Bit:
194 * P Private-Space Bit:
195 * S Storage-Alteration:
196 * R Real space
197 * TL Table-Length:
198 *
199 * A storage key has the following format:
200 * | ACC |F|R|C|0|
201 * 0 3 4 5 6 7
202 * ACC: access key
203 * F : fetch protection bit
204 * R : referenced bit
205 * C : changed bit
206 */
207
208 /* Hardware bits in the page table entry */
209 #define _PAGE_NOEXEC 0x100 /* HW no-execute bit */
210 #define _PAGE_PROTECT 0x200 /* HW read-only bit */
211 #define _PAGE_INVALID 0x400 /* HW invalid bit */
212 #define _PAGE_LARGE 0x800 /* Bit to mark a large pte */
213
214 /* Software bits in the page table entry */
215 #define _PAGE_PRESENT 0x001 /* SW pte present bit */
216 #define _PAGE_YOUNG 0x004 /* SW pte young bit */
217 #define _PAGE_DIRTY 0x008 /* SW pte dirty bit */
218 #define _PAGE_READ 0x010 /* SW pte read bit */
219 #define _PAGE_WRITE 0x020 /* SW pte write bit */
220 #define _PAGE_SPECIAL 0x040 /* SW associated with special page */
221 #define _PAGE_UNUSED 0x080 /* SW bit for pgste usage state */
222 #define __HAVE_ARCH_PTE_SPECIAL
223
224 #ifdef CONFIG_MEM_SOFT_DIRTY
225 #define _PAGE_SOFT_DIRTY 0x002 /* SW pte soft dirty bit */
226 #else
227 #define _PAGE_SOFT_DIRTY 0x000
228 #endif
229
230 /* Set of bits not changed in pte_modify */
231 #define _PAGE_CHG_MASK (PAGE_MASK | _PAGE_SPECIAL | _PAGE_DIRTY | \
232 _PAGE_YOUNG | _PAGE_SOFT_DIRTY)
233
234 /*
235 * handle_pte_fault uses pte_present and pte_none to find out the pte type
236 * WITHOUT holding the page table lock. The _PAGE_PRESENT bit is used to
237 * distinguish present from not-present ptes. It is changed only with the page
238 * table lock held.
239 *
240 * The following table gives the different possible bit combinations for
241 * the pte hardware and software bits in the last 12 bits of a pte
242 * (. unassigned bit, x don't care, t swap type):
243 *
244 * 842100000000
245 * 000084210000
246 * 000000008421
247 * .IR.uswrdy.p
248 * empty .10.00000000
249 * swap .11..ttttt.0
250 * prot-none, clean, old .11.xx0000.1
251 * prot-none, clean, young .11.xx0001.1
252 * prot-none, dirty, old .11.xx0010.1
253 * prot-none, dirty, young .11.xx0011.1
254 * read-only, clean, old .11.xx0100.1
255 * read-only, clean, young .01.xx0101.1
256 * read-only, dirty, old .11.xx0110.1
257 * read-only, dirty, young .01.xx0111.1
258 * read-write, clean, old .11.xx1100.1
259 * read-write, clean, young .01.xx1101.1
260 * read-write, dirty, old .10.xx1110.1
261 * read-write, dirty, young .00.xx1111.1
262 * HW-bits: R read-only, I invalid
263 * SW-bits: p present, y young, d dirty, r read, w write, s special,
264 * u unused, l large
265 *
266 * pte_none is true for the bit pattern .10.00000000, pte == 0x400
267 * pte_swap is true for the bit pattern .11..ooooo.0, (pte & 0x201) == 0x200
268 * pte_present is true for the bit pattern .xx.xxxxxx.1, (pte & 0x001) == 0x001
269 */
270
271 /* Bits in the segment/region table address-space-control-element */
272 #define _ASCE_ORIGIN ~0xfffUL/* segment table origin */
273 #define _ASCE_PRIVATE_SPACE 0x100 /* private space control */
274 #define _ASCE_ALT_EVENT 0x80 /* storage alteration event control */
275 #define _ASCE_SPACE_SWITCH 0x40 /* space switch event */
276 #define _ASCE_REAL_SPACE 0x20 /* real space control */
277 #define _ASCE_TYPE_MASK 0x0c /* asce table type mask */
278 #define _ASCE_TYPE_REGION1 0x0c /* region first table type */
279 #define _ASCE_TYPE_REGION2 0x08 /* region second table type */
280 #define _ASCE_TYPE_REGION3 0x04 /* region third table type */
281 #define _ASCE_TYPE_SEGMENT 0x00 /* segment table type */
282 #define _ASCE_TABLE_LENGTH 0x03 /* region table length */
283
284 /* Bits in the region table entry */
285 #define _REGION_ENTRY_ORIGIN ~0xfffUL/* region/segment table origin */
286 #define _REGION_ENTRY_PROTECT 0x200 /* region protection bit */
287 #define _REGION_ENTRY_NOEXEC 0x100 /* region no-execute bit */
288 #define _REGION_ENTRY_OFFSET 0xc0 /* region table offset */
289 #define _REGION_ENTRY_INVALID 0x20 /* invalid region table entry */
290 #define _REGION_ENTRY_TYPE_MASK 0x0c /* region/segment table type mask */
291 #define _REGION_ENTRY_TYPE_R1 0x0c /* region first table type */
292 #define _REGION_ENTRY_TYPE_R2 0x08 /* region second table type */
293 #define _REGION_ENTRY_TYPE_R3 0x04 /* region third table type */
294 #define _REGION_ENTRY_LENGTH 0x03 /* region third length */
295
296 #define _REGION1_ENTRY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_LENGTH)
297 #define _REGION1_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R1 | _REGION_ENTRY_INVALID)
298 #define _REGION2_ENTRY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_LENGTH)
299 #define _REGION2_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R2 | _REGION_ENTRY_INVALID)
300 #define _REGION3_ENTRY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_LENGTH)
301 #define _REGION3_ENTRY_EMPTY (_REGION_ENTRY_TYPE_R3 | _REGION_ENTRY_INVALID)
302
303 #define _REGION3_ENTRY_ORIGIN_LARGE ~0x7fffffffUL /* large page address */
304 #define _REGION3_ENTRY_DIRTY 0x2000 /* SW region dirty bit */
305 #define _REGION3_ENTRY_YOUNG 0x1000 /* SW region young bit */
306 #define _REGION3_ENTRY_LARGE 0x0400 /* RTTE-format control, large page */
307 #define _REGION3_ENTRY_READ 0x0002 /* SW region read bit */
308 #define _REGION3_ENTRY_WRITE 0x0001 /* SW region write bit */
309
310 #ifdef CONFIG_MEM_SOFT_DIRTY
311 #define _REGION3_ENTRY_SOFT_DIRTY 0x4000 /* SW region soft dirty bit */
312 #else
313 #define _REGION3_ENTRY_SOFT_DIRTY 0x0000 /* SW region soft dirty bit */
314 #endif
315
316 #define _REGION_ENTRY_BITS 0xfffffffffffff22fUL
317 #define _REGION_ENTRY_BITS_LARGE 0xffffffff8000fe2fUL
318
319 /* Bits in the segment table entry */
320 #define _SEGMENT_ENTRY_BITS 0xfffffffffffffe33UL
321 #define _SEGMENT_ENTRY_BITS_LARGE 0xfffffffffff0ff33UL
322 #define _SEGMENT_ENTRY_ORIGIN_LARGE ~0xfffffUL /* large page address */
323 #define _SEGMENT_ENTRY_ORIGIN ~0x7ffUL/* segment table origin */
324 #define _SEGMENT_ENTRY_PROTECT 0x200 /* page protection bit */
325 #define _SEGMENT_ENTRY_NOEXEC 0x100 /* region no-execute bit */
326 #define _SEGMENT_ENTRY_INVALID 0x20 /* invalid segment table entry */
327
328 #define _SEGMENT_ENTRY (0)
329 #define _SEGMENT_ENTRY_EMPTY (_SEGMENT_ENTRY_INVALID)
330
331 #define _SEGMENT_ENTRY_DIRTY 0x2000 /* SW segment dirty bit */
332 #define _SEGMENT_ENTRY_YOUNG 0x1000 /* SW segment young bit */
333 #define _SEGMENT_ENTRY_LARGE 0x0400 /* STE-format control, large page */
334 #define _SEGMENT_ENTRY_WRITE 0x0002 /* SW segment write bit */
335 #define _SEGMENT_ENTRY_READ 0x0001 /* SW segment read bit */
336
337 #ifdef CONFIG_MEM_SOFT_DIRTY
338 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x4000 /* SW segment soft dirty bit */
339 #else
340 #define _SEGMENT_ENTRY_SOFT_DIRTY 0x0000 /* SW segment soft dirty bit */
341 #endif
342
343 /*
344 * Segment table and region3 table entry encoding
345 * (R = read-only, I = invalid, y = young bit):
346 * dy..R...I...wr
347 * prot-none, clean, old 00..1...1...00
348 * prot-none, clean, young 01..1...1...00
349 * prot-none, dirty, old 10..1...1...00
350 * prot-none, dirty, young 11..1...1...00
351 * read-only, clean, old 00..1...1...01
352 * read-only, clean, young 01..1...0...01
353 * read-only, dirty, old 10..1...1...01
354 * read-only, dirty, young 11..1...0...01
355 * read-write, clean, old 00..1...1...11
356 * read-write, clean, young 01..1...0...11
357 * read-write, dirty, old 10..0...1...11
358 * read-write, dirty, young 11..0...0...11
359 * The segment table origin is used to distinguish empty (origin==0) from
360 * read-write, old segment table entries (origin!=0)
361 * HW-bits: R read-only, I invalid
362 * SW-bits: y young, d dirty, r read, w write
363 */
364
365 /* Page status table bits for virtualization */
366 #define PGSTE_ACC_BITS 0xf000000000000000UL
367 #define PGSTE_FP_BIT 0x0800000000000000UL
368 #define PGSTE_PCL_BIT 0x0080000000000000UL
369 #define PGSTE_HR_BIT 0x0040000000000000UL
370 #define PGSTE_HC_BIT 0x0020000000000000UL
371 #define PGSTE_GR_BIT 0x0004000000000000UL
372 #define PGSTE_GC_BIT 0x0002000000000000UL
373 #define PGSTE_UC_BIT 0x0000800000000000UL /* user dirty (migration) */
374 #define PGSTE_IN_BIT 0x0000400000000000UL /* IPTE notify bit */
375 #define PGSTE_VSIE_BIT 0x0000200000000000UL /* ref'd in a shadow table */
376
377 /* Guest Page State used for virtualization */
378 #define _PGSTE_GPS_ZERO 0x0000000080000000UL
379 #define _PGSTE_GPS_USAGE_MASK 0x0000000003000000UL
380 #define _PGSTE_GPS_USAGE_STABLE 0x0000000000000000UL
381 #define _PGSTE_GPS_USAGE_UNUSED 0x0000000001000000UL
382 #define _PGSTE_GPS_USAGE_POT_VOLATILE 0x0000000002000000UL
383 #define _PGSTE_GPS_USAGE_VOLATILE _PGSTE_GPS_USAGE_MASK
384
385 /*
386 * A user page table pointer has the space-switch-event bit, the
387 * private-space-control bit and the storage-alteration-event-control
388 * bit set. A kernel page table pointer doesn't need them.
389 */
390 #define _ASCE_USER_BITS (_ASCE_SPACE_SWITCH | _ASCE_PRIVATE_SPACE | \
391 _ASCE_ALT_EVENT)
392
393 /*
394 * Page protection definitions.
395 */
396 #define PAGE_NONE __pgprot(_PAGE_PRESENT | _PAGE_INVALID | _PAGE_PROTECT)
397 #define PAGE_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | \
398 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
399 #define PAGE_RX __pgprot(_PAGE_PRESENT | _PAGE_READ | \
400 _PAGE_INVALID | _PAGE_PROTECT)
401 #define PAGE_RW __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
402 _PAGE_NOEXEC | _PAGE_INVALID | _PAGE_PROTECT)
403 #define PAGE_RWX __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
404 _PAGE_INVALID | _PAGE_PROTECT)
405
406 #define PAGE_SHARED __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
407 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
408 #define PAGE_KERNEL __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
409 _PAGE_YOUNG | _PAGE_DIRTY | _PAGE_NOEXEC)
410 #define PAGE_KERNEL_RO __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_YOUNG | \
411 _PAGE_PROTECT | _PAGE_NOEXEC)
412 #define PAGE_KERNEL_EXEC __pgprot(_PAGE_PRESENT | _PAGE_READ | _PAGE_WRITE | \
413 _PAGE_YOUNG | _PAGE_DIRTY)
414
415 /*
416 * On s390 the page table entry has an invalid bit and a read-only bit.
417 * Read permission implies execute permission and write permission
418 * implies read permission.
419 */
420 /*xwr*/
421 #define __P000 PAGE_NONE
422 #define __P001 PAGE_RO
423 #define __P010 PAGE_RO
424 #define __P011 PAGE_RO
425 #define __P100 PAGE_RX
426 #define __P101 PAGE_RX
427 #define __P110 PAGE_RX
428 #define __P111 PAGE_RX
429
430 #define __S000 PAGE_NONE
431 #define __S001 PAGE_RO
432 #define __S010 PAGE_RW
433 #define __S011 PAGE_RW
434 #define __S100 PAGE_RX
435 #define __S101 PAGE_RX
436 #define __S110 PAGE_RWX
437 #define __S111 PAGE_RWX
438
439 /*
440 * Segment entry (large page) protection definitions.
441 */
442 #define SEGMENT_NONE __pgprot(_SEGMENT_ENTRY_INVALID | \
443 _SEGMENT_ENTRY_PROTECT)
444 #define SEGMENT_RO __pgprot(_SEGMENT_ENTRY_PROTECT | \
445 _SEGMENT_ENTRY_READ | \
446 _SEGMENT_ENTRY_NOEXEC)
447 #define SEGMENT_RX __pgprot(_SEGMENT_ENTRY_PROTECT | \
448 _SEGMENT_ENTRY_READ)
449 #define SEGMENT_RW __pgprot(_SEGMENT_ENTRY_READ | \
450 _SEGMENT_ENTRY_WRITE | \
451 _SEGMENT_ENTRY_NOEXEC)
452 #define SEGMENT_RWX __pgprot(_SEGMENT_ENTRY_READ | \
453 _SEGMENT_ENTRY_WRITE)
454 #define SEGMENT_KERNEL __pgprot(_SEGMENT_ENTRY | \
455 _SEGMENT_ENTRY_LARGE | \
456 _SEGMENT_ENTRY_READ | \
457 _SEGMENT_ENTRY_WRITE | \
458 _SEGMENT_ENTRY_YOUNG | \
459 _SEGMENT_ENTRY_DIRTY | \
460 _SEGMENT_ENTRY_NOEXEC)
461 #define SEGMENT_KERNEL_RO __pgprot(_SEGMENT_ENTRY | \
462 _SEGMENT_ENTRY_LARGE | \
463 _SEGMENT_ENTRY_READ | \
464 _SEGMENT_ENTRY_YOUNG | \
465 _SEGMENT_ENTRY_PROTECT | \
466 _SEGMENT_ENTRY_NOEXEC)
467
468 /*
469 * Region3 entry (large page) protection definitions.
470 */
471
472 #define REGION3_KERNEL __pgprot(_REGION_ENTRY_TYPE_R3 | \
473 _REGION3_ENTRY_LARGE | \
474 _REGION3_ENTRY_READ | \
475 _REGION3_ENTRY_WRITE | \
476 _REGION3_ENTRY_YOUNG | \
477 _REGION3_ENTRY_DIRTY | \
478 _REGION_ENTRY_NOEXEC)
479 #define REGION3_KERNEL_RO __pgprot(_REGION_ENTRY_TYPE_R3 | \
480 _REGION3_ENTRY_LARGE | \
481 _REGION3_ENTRY_READ | \
482 _REGION3_ENTRY_YOUNG | \
483 _REGION_ENTRY_PROTECT | \
484 _REGION_ENTRY_NOEXEC)
485
486 static inline int mm_has_pgste(struct mm_struct *mm)
487 {
488 #ifdef CONFIG_PGSTE
489 if (unlikely(mm->context.has_pgste))
490 return 1;
491 #endif
492 return 0;
493 }
494
495 static inline int mm_alloc_pgste(struct mm_struct *mm)
496 {
497 #ifdef CONFIG_PGSTE
498 if (unlikely(mm->context.alloc_pgste))
499 return 1;
500 #endif
501 return 0;
502 }
503
504 /*
505 * In the case that a guest uses storage keys
506 * faults should no longer be backed by zero pages
507 */
508 #define mm_forbids_zeropage mm_has_pgste
509 static inline int mm_use_skey(struct mm_struct *mm)
510 {
511 #ifdef CONFIG_PGSTE
512 if (mm->context.use_skey)
513 return 1;
514 #endif
515 return 0;
516 }
517
518 static inline void csp(unsigned int *ptr, unsigned int old, unsigned int new)
519 {
520 register unsigned long reg2 asm("2") = old;
521 register unsigned long reg3 asm("3") = new;
522 unsigned long address = (unsigned long)ptr | 1;
523
524 asm volatile(
525 " csp %0,%3"
526 : "+d" (reg2), "+m" (*ptr)
527 : "d" (reg3), "d" (address)
528 : "cc");
529 }
530
531 static inline void cspg(unsigned long *ptr, unsigned long old, unsigned long new)
532 {
533 register unsigned long reg2 asm("2") = old;
534 register unsigned long reg3 asm("3") = new;
535 unsigned long address = (unsigned long)ptr | 1;
536
537 asm volatile(
538 " .insn rre,0xb98a0000,%0,%3"
539 : "+d" (reg2), "+m" (*ptr)
540 : "d" (reg3), "d" (address)
541 : "cc");
542 }
543
544 #define CRDTE_DTT_PAGE 0x00UL
545 #define CRDTE_DTT_SEGMENT 0x10UL
546 #define CRDTE_DTT_REGION3 0x14UL
547 #define CRDTE_DTT_REGION2 0x18UL
548 #define CRDTE_DTT_REGION1 0x1cUL
549
550 static inline void crdte(unsigned long old, unsigned long new,
551 unsigned long table, unsigned long dtt,
552 unsigned long address, unsigned long asce)
553 {
554 register unsigned long reg2 asm("2") = old;
555 register unsigned long reg3 asm("3") = new;
556 register unsigned long reg4 asm("4") = table | dtt;
557 register unsigned long reg5 asm("5") = address;
558
559 asm volatile(".insn rrf,0xb98f0000,%0,%2,%4,0"
560 : "+d" (reg2)
561 : "d" (reg3), "d" (reg4), "d" (reg5), "a" (asce)
562 : "memory", "cc");
563 }
564
565 /*
566 * pgd/p4d/pud/pmd/pte query functions
567 */
568 static inline int pgd_folded(pgd_t pgd)
569 {
570 return (pgd_val(pgd) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R1;
571 }
572
573 static inline int pgd_present(pgd_t pgd)
574 {
575 if (pgd_folded(pgd))
576 return 1;
577 return (pgd_val(pgd) & _REGION_ENTRY_ORIGIN) != 0UL;
578 }
579
580 static inline int pgd_none(pgd_t pgd)
581 {
582 if (pgd_folded(pgd))
583 return 0;
584 return (pgd_val(pgd) & _REGION_ENTRY_INVALID) != 0UL;
585 }
586
587 static inline int pgd_bad(pgd_t pgd)
588 {
589 /*
590 * With dynamic page table levels the pgd can be a region table
591 * entry or a segment table entry. Check for the bit that are
592 * invalid for either table entry.
593 */
594 unsigned long mask =
595 ~_SEGMENT_ENTRY_ORIGIN & ~_REGION_ENTRY_INVALID &
596 ~_REGION_ENTRY_TYPE_MASK & ~_REGION_ENTRY_LENGTH;
597 return (pgd_val(pgd) & mask) != 0;
598 }
599
600 static inline int p4d_folded(p4d_t p4d)
601 {
602 return (p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2;
603 }
604
605 static inline int p4d_present(p4d_t p4d)
606 {
607 if (p4d_folded(p4d))
608 return 1;
609 return (p4d_val(p4d) & _REGION_ENTRY_ORIGIN) != 0UL;
610 }
611
612 static inline int p4d_none(p4d_t p4d)
613 {
614 if (p4d_folded(p4d))
615 return 0;
616 return p4d_val(p4d) == _REGION2_ENTRY_EMPTY;
617 }
618
619 static inline unsigned long p4d_pfn(p4d_t p4d)
620 {
621 unsigned long origin_mask;
622
623 origin_mask = _REGION_ENTRY_ORIGIN;
624 return (p4d_val(p4d) & origin_mask) >> PAGE_SHIFT;
625 }
626
627 static inline int pud_folded(pud_t pud)
628 {
629 return (pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3;
630 }
631
632 static inline int pud_present(pud_t pud)
633 {
634 if (pud_folded(pud))
635 return 1;
636 return (pud_val(pud) & _REGION_ENTRY_ORIGIN) != 0UL;
637 }
638
639 static inline int pud_none(pud_t pud)
640 {
641 if (pud_folded(pud))
642 return 0;
643 return pud_val(pud) == _REGION3_ENTRY_EMPTY;
644 }
645
646 static inline int pud_large(pud_t pud)
647 {
648 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) != _REGION_ENTRY_TYPE_R3)
649 return 0;
650 return !!(pud_val(pud) & _REGION3_ENTRY_LARGE);
651 }
652
653 static inline unsigned long pud_pfn(pud_t pud)
654 {
655 unsigned long origin_mask;
656
657 origin_mask = _REGION_ENTRY_ORIGIN;
658 if (pud_large(pud))
659 origin_mask = _REGION3_ENTRY_ORIGIN_LARGE;
660 return (pud_val(pud) & origin_mask) >> PAGE_SHIFT;
661 }
662
663 static inline int pmd_large(pmd_t pmd)
664 {
665 return (pmd_val(pmd) & _SEGMENT_ENTRY_LARGE) != 0;
666 }
667
668 static inline int pmd_bad(pmd_t pmd)
669 {
670 if (pmd_large(pmd))
671 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS_LARGE) != 0;
672 return (pmd_val(pmd) & ~_SEGMENT_ENTRY_BITS) != 0;
673 }
674
675 static inline int pud_bad(pud_t pud)
676 {
677 if ((pud_val(pud) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R3)
678 return pmd_bad(__pmd(pud_val(pud)));
679 if (pud_large(pud))
680 return (pud_val(pud) & ~_REGION_ENTRY_BITS_LARGE) != 0;
681 return (pud_val(pud) & ~_REGION_ENTRY_BITS) != 0;
682 }
683
684 static inline int p4d_bad(p4d_t p4d)
685 {
686 if ((p4d_val(p4d) & _REGION_ENTRY_TYPE_MASK) < _REGION_ENTRY_TYPE_R2)
687 return pud_bad(__pud(p4d_val(p4d)));
688 return (p4d_val(p4d) & ~_REGION_ENTRY_BITS) != 0;
689 }
690
691 static inline int pmd_present(pmd_t pmd)
692 {
693 return pmd_val(pmd) != _SEGMENT_ENTRY_EMPTY;
694 }
695
696 static inline int pmd_none(pmd_t pmd)
697 {
698 return pmd_val(pmd) == _SEGMENT_ENTRY_EMPTY;
699 }
700
701 static inline unsigned long pmd_pfn(pmd_t pmd)
702 {
703 unsigned long origin_mask;
704
705 origin_mask = _SEGMENT_ENTRY_ORIGIN;
706 if (pmd_large(pmd))
707 origin_mask = _SEGMENT_ENTRY_ORIGIN_LARGE;
708 return (pmd_val(pmd) & origin_mask) >> PAGE_SHIFT;
709 }
710
711 #define __HAVE_ARCH_PMD_WRITE
712 static inline int pmd_write(pmd_t pmd)
713 {
714 return (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE) != 0;
715 }
716
717 static inline int pmd_dirty(pmd_t pmd)
718 {
719 int dirty = 1;
720 if (pmd_large(pmd))
721 dirty = (pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY) != 0;
722 return dirty;
723 }
724
725 static inline int pmd_young(pmd_t pmd)
726 {
727 int young = 1;
728 if (pmd_large(pmd))
729 young = (pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG) != 0;
730 return young;
731 }
732
733 static inline int pte_present(pte_t pte)
734 {
735 /* Bit pattern: (pte & 0x001) == 0x001 */
736 return (pte_val(pte) & _PAGE_PRESENT) != 0;
737 }
738
739 static inline int pte_none(pte_t pte)
740 {
741 /* Bit pattern: pte == 0x400 */
742 return pte_val(pte) == _PAGE_INVALID;
743 }
744
745 static inline int pte_swap(pte_t pte)
746 {
747 /* Bit pattern: (pte & 0x201) == 0x200 */
748 return (pte_val(pte) & (_PAGE_PROTECT | _PAGE_PRESENT))
749 == _PAGE_PROTECT;
750 }
751
752 static inline int pte_special(pte_t pte)
753 {
754 return (pte_val(pte) & _PAGE_SPECIAL);
755 }
756
757 #define __HAVE_ARCH_PTE_SAME
758 static inline int pte_same(pte_t a, pte_t b)
759 {
760 return pte_val(a) == pte_val(b);
761 }
762
763 #ifdef CONFIG_NUMA_BALANCING
764 static inline int pte_protnone(pte_t pte)
765 {
766 return pte_present(pte) && !(pte_val(pte) & _PAGE_READ);
767 }
768
769 static inline int pmd_protnone(pmd_t pmd)
770 {
771 /* pmd_large(pmd) implies pmd_present(pmd) */
772 return pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_READ);
773 }
774 #endif
775
776 static inline int pte_soft_dirty(pte_t pte)
777 {
778 return pte_val(pte) & _PAGE_SOFT_DIRTY;
779 }
780 #define pte_swp_soft_dirty pte_soft_dirty
781
782 static inline pte_t pte_mksoft_dirty(pte_t pte)
783 {
784 pte_val(pte) |= _PAGE_SOFT_DIRTY;
785 return pte;
786 }
787 #define pte_swp_mksoft_dirty pte_mksoft_dirty
788
789 static inline pte_t pte_clear_soft_dirty(pte_t pte)
790 {
791 pte_val(pte) &= ~_PAGE_SOFT_DIRTY;
792 return pte;
793 }
794 #define pte_swp_clear_soft_dirty pte_clear_soft_dirty
795
796 static inline int pmd_soft_dirty(pmd_t pmd)
797 {
798 return pmd_val(pmd) & _SEGMENT_ENTRY_SOFT_DIRTY;
799 }
800
801 static inline pmd_t pmd_mksoft_dirty(pmd_t pmd)
802 {
803 pmd_val(pmd) |= _SEGMENT_ENTRY_SOFT_DIRTY;
804 return pmd;
805 }
806
807 static inline pmd_t pmd_clear_soft_dirty(pmd_t pmd)
808 {
809 pmd_val(pmd) &= ~_SEGMENT_ENTRY_SOFT_DIRTY;
810 return pmd;
811 }
812
813 /*
814 * query functions pte_write/pte_dirty/pte_young only work if
815 * pte_present() is true. Undefined behaviour if not..
816 */
817 static inline int pte_write(pte_t pte)
818 {
819 return (pte_val(pte) & _PAGE_WRITE) != 0;
820 }
821
822 static inline int pte_dirty(pte_t pte)
823 {
824 return (pte_val(pte) & _PAGE_DIRTY) != 0;
825 }
826
827 static inline int pte_young(pte_t pte)
828 {
829 return (pte_val(pte) & _PAGE_YOUNG) != 0;
830 }
831
832 #define __HAVE_ARCH_PTE_UNUSED
833 static inline int pte_unused(pte_t pte)
834 {
835 return pte_val(pte) & _PAGE_UNUSED;
836 }
837
838 /*
839 * pgd/pmd/pte modification functions
840 */
841
842 static inline void pgd_clear(pgd_t *pgd)
843 {
844 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
845 pgd_val(*pgd) = _REGION1_ENTRY_EMPTY;
846 }
847
848 static inline void p4d_clear(p4d_t *p4d)
849 {
850 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
851 p4d_val(*p4d) = _REGION2_ENTRY_EMPTY;
852 }
853
854 static inline void pud_clear(pud_t *pud)
855 {
856 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
857 pud_val(*pud) = _REGION3_ENTRY_EMPTY;
858 }
859
860 static inline void pmd_clear(pmd_t *pmdp)
861 {
862 pmd_val(*pmdp) = _SEGMENT_ENTRY_EMPTY;
863 }
864
865 static inline void pte_clear(struct mm_struct *mm, unsigned long addr, pte_t *ptep)
866 {
867 pte_val(*ptep) = _PAGE_INVALID;
868 }
869
870 /*
871 * The following pte modification functions only work if
872 * pte_present() is true. Undefined behaviour if not..
873 */
874 static inline pte_t pte_modify(pte_t pte, pgprot_t newprot)
875 {
876 pte_val(pte) &= _PAGE_CHG_MASK;
877 pte_val(pte) |= pgprot_val(newprot);
878 /*
879 * newprot for PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX
880 * has the invalid bit set, clear it again for readable, young pages
881 */
882 if ((pte_val(pte) & _PAGE_YOUNG) && (pte_val(pte) & _PAGE_READ))
883 pte_val(pte) &= ~_PAGE_INVALID;
884 /*
885 * newprot for PAGE_RO, PAGE_RX, PAGE_RW and PAGE_RWX has the page
886 * protection bit set, clear it again for writable, dirty pages
887 */
888 if ((pte_val(pte) & _PAGE_DIRTY) && (pte_val(pte) & _PAGE_WRITE))
889 pte_val(pte) &= ~_PAGE_PROTECT;
890 return pte;
891 }
892
893 static inline pte_t pte_wrprotect(pte_t pte)
894 {
895 pte_val(pte) &= ~_PAGE_WRITE;
896 pte_val(pte) |= _PAGE_PROTECT;
897 return pte;
898 }
899
900 static inline pte_t pte_mkwrite(pte_t pte)
901 {
902 pte_val(pte) |= _PAGE_WRITE;
903 if (pte_val(pte) & _PAGE_DIRTY)
904 pte_val(pte) &= ~_PAGE_PROTECT;
905 return pte;
906 }
907
908 static inline pte_t pte_mkclean(pte_t pte)
909 {
910 pte_val(pte) &= ~_PAGE_DIRTY;
911 pte_val(pte) |= _PAGE_PROTECT;
912 return pte;
913 }
914
915 static inline pte_t pte_mkdirty(pte_t pte)
916 {
917 pte_val(pte) |= _PAGE_DIRTY | _PAGE_SOFT_DIRTY;
918 if (pte_val(pte) & _PAGE_WRITE)
919 pte_val(pte) &= ~_PAGE_PROTECT;
920 return pte;
921 }
922
923 static inline pte_t pte_mkold(pte_t pte)
924 {
925 pte_val(pte) &= ~_PAGE_YOUNG;
926 pte_val(pte) |= _PAGE_INVALID;
927 return pte;
928 }
929
930 static inline pte_t pte_mkyoung(pte_t pte)
931 {
932 pte_val(pte) |= _PAGE_YOUNG;
933 if (pte_val(pte) & _PAGE_READ)
934 pte_val(pte) &= ~_PAGE_INVALID;
935 return pte;
936 }
937
938 static inline pte_t pte_mkspecial(pte_t pte)
939 {
940 pte_val(pte) |= _PAGE_SPECIAL;
941 return pte;
942 }
943
944 #ifdef CONFIG_HUGETLB_PAGE
945 static inline pte_t pte_mkhuge(pte_t pte)
946 {
947 pte_val(pte) |= _PAGE_LARGE;
948 return pte;
949 }
950 #endif
951
952 #define IPTE_GLOBAL 0
953 #define IPTE_LOCAL 1
954
955 static inline void __ptep_ipte(unsigned long address, pte_t *ptep, int local)
956 {
957 unsigned long pto = (unsigned long) ptep;
958
959 /* Invalidation + TLB flush for the pte */
960 asm volatile(
961 " .insn rrf,0xb2210000,%[r1],%[r2],0,%[m4]"
962 : "+m" (*ptep) : [r1] "a" (pto), [r2] "a" (address),
963 [m4] "i" (local));
964 }
965
966 static inline void __ptep_ipte_range(unsigned long address, int nr,
967 pte_t *ptep, int local)
968 {
969 unsigned long pto = (unsigned long) ptep;
970
971 /* Invalidate a range of ptes + TLB flush of the ptes */
972 do {
973 asm volatile(
974 " .insn rrf,0xb2210000,%[r1],%[r2],%[r3],%[m4]"
975 : [r2] "+a" (address), [r3] "+a" (nr)
976 : [r1] "a" (pto), [m4] "i" (local) : "memory");
977 } while (nr != 255);
978 }
979
980 /*
981 * This is hard to understand. ptep_get_and_clear and ptep_clear_flush
982 * both clear the TLB for the unmapped pte. The reason is that
983 * ptep_get_and_clear is used in common code (e.g. change_pte_range)
984 * to modify an active pte. The sequence is
985 * 1) ptep_get_and_clear
986 * 2) set_pte_at
987 * 3) flush_tlb_range
988 * On s390 the tlb needs to get flushed with the modification of the pte
989 * if the pte is active. The only way how this can be implemented is to
990 * have ptep_get_and_clear do the tlb flush. In exchange flush_tlb_range
991 * is a nop.
992 */
993 pte_t ptep_xchg_direct(struct mm_struct *, unsigned long, pte_t *, pte_t);
994 pte_t ptep_xchg_lazy(struct mm_struct *, unsigned long, pte_t *, pte_t);
995
996 #define __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
997 static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
998 unsigned long addr, pte_t *ptep)
999 {
1000 pte_t pte = *ptep;
1001
1002 pte = ptep_xchg_direct(vma->vm_mm, addr, ptep, pte_mkold(pte));
1003 return pte_young(pte);
1004 }
1005
1006 #define __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
1007 static inline int ptep_clear_flush_young(struct vm_area_struct *vma,
1008 unsigned long address, pte_t *ptep)
1009 {
1010 return ptep_test_and_clear_young(vma, address, ptep);
1011 }
1012
1013 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR
1014 static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
1015 unsigned long addr, pte_t *ptep)
1016 {
1017 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1018 }
1019
1020 #define __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
1021 pte_t ptep_modify_prot_start(struct mm_struct *, unsigned long, pte_t *);
1022 void ptep_modify_prot_commit(struct mm_struct *, unsigned long, pte_t *, pte_t);
1023
1024 #define __HAVE_ARCH_PTEP_CLEAR_FLUSH
1025 static inline pte_t ptep_clear_flush(struct vm_area_struct *vma,
1026 unsigned long addr, pte_t *ptep)
1027 {
1028 return ptep_xchg_direct(vma->vm_mm, addr, ptep, __pte(_PAGE_INVALID));
1029 }
1030
1031 /*
1032 * The batched pte unmap code uses ptep_get_and_clear_full to clear the
1033 * ptes. Here an optimization is possible. tlb_gather_mmu flushes all
1034 * tlbs of an mm if it can guarantee that the ptes of the mm_struct
1035 * cannot be accessed while the batched unmap is running. In this case
1036 * full==1 and a simple pte_clear is enough. See tlb.h.
1037 */
1038 #define __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
1039 static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
1040 unsigned long addr,
1041 pte_t *ptep, int full)
1042 {
1043 if (full) {
1044 pte_t pte = *ptep;
1045 *ptep = __pte(_PAGE_INVALID);
1046 return pte;
1047 }
1048 return ptep_xchg_lazy(mm, addr, ptep, __pte(_PAGE_INVALID));
1049 }
1050
1051 #define __HAVE_ARCH_PTEP_SET_WRPROTECT
1052 static inline void ptep_set_wrprotect(struct mm_struct *mm,
1053 unsigned long addr, pte_t *ptep)
1054 {
1055 pte_t pte = *ptep;
1056
1057 if (pte_write(pte))
1058 ptep_xchg_lazy(mm, addr, ptep, pte_wrprotect(pte));
1059 }
1060
1061 #define __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
1062 static inline int ptep_set_access_flags(struct vm_area_struct *vma,
1063 unsigned long addr, pte_t *ptep,
1064 pte_t entry, int dirty)
1065 {
1066 if (pte_same(*ptep, entry))
1067 return 0;
1068 ptep_xchg_direct(vma->vm_mm, addr, ptep, entry);
1069 return 1;
1070 }
1071
1072 /*
1073 * Additional functions to handle KVM guest page tables
1074 */
1075 void ptep_set_pte_at(struct mm_struct *mm, unsigned long addr,
1076 pte_t *ptep, pte_t entry);
1077 void ptep_set_notify(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1078 void ptep_notify(struct mm_struct *mm, unsigned long addr,
1079 pte_t *ptep, unsigned long bits);
1080 int ptep_force_prot(struct mm_struct *mm, unsigned long gaddr,
1081 pte_t *ptep, int prot, unsigned long bit);
1082 void ptep_zap_unused(struct mm_struct *mm, unsigned long addr,
1083 pte_t *ptep , int reset);
1084 void ptep_zap_key(struct mm_struct *mm, unsigned long addr, pte_t *ptep);
1085 int ptep_shadow_pte(struct mm_struct *mm, unsigned long saddr,
1086 pte_t *sptep, pte_t *tptep, pte_t pte);
1087 void ptep_unshadow_pte(struct mm_struct *mm, unsigned long saddr, pte_t *ptep);
1088
1089 bool test_and_clear_guest_dirty(struct mm_struct *mm, unsigned long address);
1090 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1091 unsigned char key, bool nq);
1092 int cond_set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1093 unsigned char key, unsigned char *oldkey,
1094 bool nq, bool mr, bool mc);
1095 int reset_guest_reference_bit(struct mm_struct *mm, unsigned long addr);
1096 int get_guest_storage_key(struct mm_struct *mm, unsigned long addr,
1097 unsigned char *key);
1098
1099 int set_pgste_bits(struct mm_struct *mm, unsigned long addr,
1100 unsigned long bits, unsigned long value);
1101 int get_pgste(struct mm_struct *mm, unsigned long hva, unsigned long *pgstep);
1102 int pgste_perform_essa(struct mm_struct *mm, unsigned long hva, int orc,
1103 unsigned long *oldpte, unsigned long *oldpgste);
1104
1105 /*
1106 * Certain architectures need to do special things when PTEs
1107 * within a page table are directly modified. Thus, the following
1108 * hook is made available.
1109 */
1110 static inline void set_pte_at(struct mm_struct *mm, unsigned long addr,
1111 pte_t *ptep, pte_t entry)
1112 {
1113 if (!MACHINE_HAS_NX)
1114 pte_val(entry) &= ~_PAGE_NOEXEC;
1115 if (pte_present(entry))
1116 pte_val(entry) &= ~_PAGE_UNUSED;
1117 if (mm_has_pgste(mm))
1118 ptep_set_pte_at(mm, addr, ptep, entry);
1119 else
1120 *ptep = entry;
1121 }
1122
1123 /*
1124 * Conversion functions: convert a page and protection to a page entry,
1125 * and a page entry and page directory to the page they refer to.
1126 */
1127 static inline pte_t mk_pte_phys(unsigned long physpage, pgprot_t pgprot)
1128 {
1129 pte_t __pte;
1130 pte_val(__pte) = physpage + pgprot_val(pgprot);
1131 return pte_mkyoung(__pte);
1132 }
1133
1134 static inline pte_t mk_pte(struct page *page, pgprot_t pgprot)
1135 {
1136 unsigned long physpage = page_to_phys(page);
1137 pte_t __pte = mk_pte_phys(physpage, pgprot);
1138
1139 if (pte_write(__pte) && PageDirty(page))
1140 __pte = pte_mkdirty(__pte);
1141 return __pte;
1142 }
1143
1144 #define pgd_index(address) (((address) >> PGDIR_SHIFT) & (PTRS_PER_PGD-1))
1145 #define p4d_index(address) (((address) >> P4D_SHIFT) & (PTRS_PER_P4D-1))
1146 #define pud_index(address) (((address) >> PUD_SHIFT) & (PTRS_PER_PUD-1))
1147 #define pmd_index(address) (((address) >> PMD_SHIFT) & (PTRS_PER_PMD-1))
1148 #define pte_index(address) (((address) >> PAGE_SHIFT) & (PTRS_PER_PTE-1))
1149
1150 #define pgd_offset(mm, address) ((mm)->pgd + pgd_index(address))
1151 #define pgd_offset_k(address) pgd_offset(&init_mm, address)
1152
1153 #define pmd_deref(pmd) (pmd_val(pmd) & _SEGMENT_ENTRY_ORIGIN)
1154 #define pud_deref(pud) (pud_val(pud) & _REGION_ENTRY_ORIGIN)
1155 #define p4d_deref(pud) (p4d_val(pud) & _REGION_ENTRY_ORIGIN)
1156 #define pgd_deref(pgd) (pgd_val(pgd) & _REGION_ENTRY_ORIGIN)
1157
1158 static inline p4d_t *p4d_offset(pgd_t *pgd, unsigned long address)
1159 {
1160 p4d_t *p4d = (p4d_t *) pgd;
1161
1162 if ((pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R1)
1163 p4d = (p4d_t *) pgd_deref(*pgd);
1164 return p4d + p4d_index(address);
1165 }
1166
1167 static inline pud_t *pud_offset(p4d_t *p4d, unsigned long address)
1168 {
1169 pud_t *pud = (pud_t *) p4d;
1170
1171 if ((p4d_val(*p4d) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R2)
1172 pud = (pud_t *) p4d_deref(*p4d);
1173 return pud + pud_index(address);
1174 }
1175
1176 static inline pmd_t *pmd_offset(pud_t *pud, unsigned long address)
1177 {
1178 pmd_t *pmd = (pmd_t *) pud;
1179
1180 if ((pud_val(*pud) & _REGION_ENTRY_TYPE_MASK) == _REGION_ENTRY_TYPE_R3)
1181 pmd = (pmd_t *) pud_deref(*pud);
1182 return pmd + pmd_index(address);
1183 }
1184
1185 #define pfn_pte(pfn,pgprot) mk_pte_phys(__pa((pfn) << PAGE_SHIFT),(pgprot))
1186 #define pte_pfn(x) (pte_val(x) >> PAGE_SHIFT)
1187 #define pte_page(x) pfn_to_page(pte_pfn(x))
1188
1189 #define pmd_page(pmd) pfn_to_page(pmd_pfn(pmd))
1190 #define pud_page(pud) pfn_to_page(pud_pfn(pud))
1191 #define p4d_page(pud) pfn_to_page(p4d_pfn(p4d))
1192
1193 /* Find an entry in the lowest level page table.. */
1194 #define pte_offset(pmd, addr) ((pte_t *) pmd_deref(*(pmd)) + pte_index(addr))
1195 #define pte_offset_kernel(pmd, address) pte_offset(pmd,address)
1196 #define pte_offset_map(pmd, address) pte_offset_kernel(pmd, address)
1197 #define pte_unmap(pte) do { } while (0)
1198
1199 static inline pmd_t pmd_wrprotect(pmd_t pmd)
1200 {
1201 pmd_val(pmd) &= ~_SEGMENT_ENTRY_WRITE;
1202 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1203 return pmd;
1204 }
1205
1206 static inline pmd_t pmd_mkwrite(pmd_t pmd)
1207 {
1208 pmd_val(pmd) |= _SEGMENT_ENTRY_WRITE;
1209 if (pmd_large(pmd) && !(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1210 return pmd;
1211 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1212 return pmd;
1213 }
1214
1215 static inline pmd_t pmd_mkclean(pmd_t pmd)
1216 {
1217 if (pmd_large(pmd)) {
1218 pmd_val(pmd) &= ~_SEGMENT_ENTRY_DIRTY;
1219 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1220 }
1221 return pmd;
1222 }
1223
1224 static inline pmd_t pmd_mkdirty(pmd_t pmd)
1225 {
1226 if (pmd_large(pmd)) {
1227 pmd_val(pmd) |= _SEGMENT_ENTRY_DIRTY |
1228 _SEGMENT_ENTRY_SOFT_DIRTY;
1229 if (pmd_val(pmd) & _SEGMENT_ENTRY_WRITE)
1230 pmd_val(pmd) &= ~_SEGMENT_ENTRY_PROTECT;
1231 }
1232 return pmd;
1233 }
1234
1235 static inline pud_t pud_wrprotect(pud_t pud)
1236 {
1237 pud_val(pud) &= ~_REGION3_ENTRY_WRITE;
1238 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1239 return pud;
1240 }
1241
1242 static inline pud_t pud_mkwrite(pud_t pud)
1243 {
1244 pud_val(pud) |= _REGION3_ENTRY_WRITE;
1245 if (pud_large(pud) && !(pud_val(pud) & _REGION3_ENTRY_DIRTY))
1246 return pud;
1247 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1248 return pud;
1249 }
1250
1251 static inline pud_t pud_mkclean(pud_t pud)
1252 {
1253 if (pud_large(pud)) {
1254 pud_val(pud) &= ~_REGION3_ENTRY_DIRTY;
1255 pud_val(pud) |= _REGION_ENTRY_PROTECT;
1256 }
1257 return pud;
1258 }
1259
1260 static inline pud_t pud_mkdirty(pud_t pud)
1261 {
1262 if (pud_large(pud)) {
1263 pud_val(pud) |= _REGION3_ENTRY_DIRTY |
1264 _REGION3_ENTRY_SOFT_DIRTY;
1265 if (pud_val(pud) & _REGION3_ENTRY_WRITE)
1266 pud_val(pud) &= ~_REGION_ENTRY_PROTECT;
1267 }
1268 return pud;
1269 }
1270
1271 #if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLB_PAGE)
1272 static inline unsigned long massage_pgprot_pmd(pgprot_t pgprot)
1273 {
1274 /*
1275 * pgprot is PAGE_NONE, PAGE_RO, PAGE_RX, PAGE_RW or PAGE_RWX
1276 * (see __Pxxx / __Sxxx). Convert to segment table entry format.
1277 */
1278 if (pgprot_val(pgprot) == pgprot_val(PAGE_NONE))
1279 return pgprot_val(SEGMENT_NONE);
1280 if (pgprot_val(pgprot) == pgprot_val(PAGE_RO))
1281 return pgprot_val(SEGMENT_RO);
1282 if (pgprot_val(pgprot) == pgprot_val(PAGE_RX))
1283 return pgprot_val(SEGMENT_RX);
1284 if (pgprot_val(pgprot) == pgprot_val(PAGE_RW))
1285 return pgprot_val(SEGMENT_RW);
1286 return pgprot_val(SEGMENT_RWX);
1287 }
1288
1289 static inline pmd_t pmd_mkyoung(pmd_t pmd)
1290 {
1291 if (pmd_large(pmd)) {
1292 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1293 if (pmd_val(pmd) & _SEGMENT_ENTRY_READ)
1294 pmd_val(pmd) &= ~_SEGMENT_ENTRY_INVALID;
1295 }
1296 return pmd;
1297 }
1298
1299 static inline pmd_t pmd_mkold(pmd_t pmd)
1300 {
1301 if (pmd_large(pmd)) {
1302 pmd_val(pmd) &= ~_SEGMENT_ENTRY_YOUNG;
1303 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1304 }
1305 return pmd;
1306 }
1307
1308 static inline pmd_t pmd_modify(pmd_t pmd, pgprot_t newprot)
1309 {
1310 if (pmd_large(pmd)) {
1311 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN_LARGE |
1312 _SEGMENT_ENTRY_DIRTY | _SEGMENT_ENTRY_YOUNG |
1313 _SEGMENT_ENTRY_LARGE | _SEGMENT_ENTRY_SOFT_DIRTY;
1314 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1315 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_DIRTY))
1316 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1317 if (!(pmd_val(pmd) & _SEGMENT_ENTRY_YOUNG))
1318 pmd_val(pmd) |= _SEGMENT_ENTRY_INVALID;
1319 return pmd;
1320 }
1321 pmd_val(pmd) &= _SEGMENT_ENTRY_ORIGIN;
1322 pmd_val(pmd) |= massage_pgprot_pmd(newprot);
1323 return pmd;
1324 }
1325
1326 static inline pmd_t mk_pmd_phys(unsigned long physpage, pgprot_t pgprot)
1327 {
1328 pmd_t __pmd;
1329 pmd_val(__pmd) = physpage + massage_pgprot_pmd(pgprot);
1330 return __pmd;
1331 }
1332
1333 #endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLB_PAGE */
1334
1335 static inline void __pmdp_csp(pmd_t *pmdp)
1336 {
1337 csp((unsigned int *)pmdp + 1, pmd_val(*pmdp),
1338 pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1339 }
1340
1341 #define IDTE_GLOBAL 0
1342 #define IDTE_LOCAL 1
1343
1344 static inline void __pmdp_idte(unsigned long address, pmd_t *pmdp, int local)
1345 {
1346 unsigned long sto;
1347
1348 sto = (unsigned long) pmdp - pmd_index(address) * sizeof(pmd_t);
1349 asm volatile(
1350 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1351 : "+m" (*pmdp)
1352 : [r1] "a" (sto), [r2] "a" ((address & HPAGE_MASK)),
1353 [m4] "i" (local)
1354 : "cc" );
1355 }
1356
1357 static inline void __pudp_idte(unsigned long address, pud_t *pudp, int local)
1358 {
1359 unsigned long r3o;
1360
1361 r3o = (unsigned long) pudp - pud_index(address) * sizeof(pud_t);
1362 r3o |= _ASCE_TYPE_REGION3;
1363 asm volatile(
1364 " .insn rrf,0xb98e0000,%[r1],%[r2],0,%[m4]"
1365 : "+m" (*pudp)
1366 : [r1] "a" (r3o), [r2] "a" ((address & PUD_MASK)),
1367 [m4] "i" (local)
1368 : "cc");
1369 }
1370
1371 pmd_t pmdp_xchg_direct(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1372 pmd_t pmdp_xchg_lazy(struct mm_struct *, unsigned long, pmd_t *, pmd_t);
1373 pud_t pudp_xchg_direct(struct mm_struct *, unsigned long, pud_t *, pud_t);
1374
1375 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1376
1377 #define __HAVE_ARCH_PGTABLE_DEPOSIT
1378 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1379 pgtable_t pgtable);
1380
1381 #define __HAVE_ARCH_PGTABLE_WITHDRAW
1382 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp);
1383
1384 #define __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
1385 static inline int pmdp_set_access_flags(struct vm_area_struct *vma,
1386 unsigned long addr, pmd_t *pmdp,
1387 pmd_t entry, int dirty)
1388 {
1389 VM_BUG_ON(addr & ~HPAGE_MASK);
1390
1391 entry = pmd_mkyoung(entry);
1392 if (dirty)
1393 entry = pmd_mkdirty(entry);
1394 if (pmd_val(*pmdp) == pmd_val(entry))
1395 return 0;
1396 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, entry);
1397 return 1;
1398 }
1399
1400 #define __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
1401 static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
1402 unsigned long addr, pmd_t *pmdp)
1403 {
1404 pmd_t pmd = *pmdp;
1405
1406 pmd = pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd_mkold(pmd));
1407 return pmd_young(pmd);
1408 }
1409
1410 #define __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
1411 static inline int pmdp_clear_flush_young(struct vm_area_struct *vma,
1412 unsigned long addr, pmd_t *pmdp)
1413 {
1414 VM_BUG_ON(addr & ~HPAGE_MASK);
1415 return pmdp_test_and_clear_young(vma, addr, pmdp);
1416 }
1417
1418 static inline void set_pmd_at(struct mm_struct *mm, unsigned long addr,
1419 pmd_t *pmdp, pmd_t entry)
1420 {
1421 if (!MACHINE_HAS_NX)
1422 pmd_val(entry) &= ~_SEGMENT_ENTRY_NOEXEC;
1423 *pmdp = entry;
1424 }
1425
1426 static inline pmd_t pmd_mkhuge(pmd_t pmd)
1427 {
1428 pmd_val(pmd) |= _SEGMENT_ENTRY_LARGE;
1429 pmd_val(pmd) |= _SEGMENT_ENTRY_YOUNG;
1430 pmd_val(pmd) |= _SEGMENT_ENTRY_PROTECT;
1431 return pmd;
1432 }
1433
1434 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR
1435 static inline pmd_t pmdp_huge_get_and_clear(struct mm_struct *mm,
1436 unsigned long addr, pmd_t *pmdp)
1437 {
1438 return pmdp_xchg_direct(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1439 }
1440
1441 #define __HAVE_ARCH_PMDP_HUGE_GET_AND_CLEAR_FULL
1442 static inline pmd_t pmdp_huge_get_and_clear_full(struct mm_struct *mm,
1443 unsigned long addr,
1444 pmd_t *pmdp, int full)
1445 {
1446 if (full) {
1447 pmd_t pmd = *pmdp;
1448 *pmdp = __pmd(_SEGMENT_ENTRY_EMPTY);
1449 return pmd;
1450 }
1451 return pmdp_xchg_lazy(mm, addr, pmdp, __pmd(_SEGMENT_ENTRY_EMPTY));
1452 }
1453
1454 #define __HAVE_ARCH_PMDP_HUGE_CLEAR_FLUSH
1455 static inline pmd_t pmdp_huge_clear_flush(struct vm_area_struct *vma,
1456 unsigned long addr, pmd_t *pmdp)
1457 {
1458 return pmdp_huge_get_and_clear(vma->vm_mm, addr, pmdp);
1459 }
1460
1461 #define __HAVE_ARCH_PMDP_INVALIDATE
1462 static inline void pmdp_invalidate(struct vm_area_struct *vma,
1463 unsigned long addr, pmd_t *pmdp)
1464 {
1465 pmd_t pmd = __pmd(pmd_val(*pmdp) | _SEGMENT_ENTRY_INVALID);
1466
1467 pmdp_xchg_direct(vma->vm_mm, addr, pmdp, pmd);
1468 }
1469
1470 #define __HAVE_ARCH_PMDP_SET_WRPROTECT
1471 static inline void pmdp_set_wrprotect(struct mm_struct *mm,
1472 unsigned long addr, pmd_t *pmdp)
1473 {
1474 pmd_t pmd = *pmdp;
1475
1476 if (pmd_write(pmd))
1477 pmd = pmdp_xchg_lazy(mm, addr, pmdp, pmd_wrprotect(pmd));
1478 }
1479
1480 static inline pmd_t pmdp_collapse_flush(struct vm_area_struct *vma,
1481 unsigned long address,
1482 pmd_t *pmdp)
1483 {
1484 return pmdp_huge_get_and_clear(vma->vm_mm, address, pmdp);
1485 }
1486 #define pmdp_collapse_flush pmdp_collapse_flush
1487
1488 #define pfn_pmd(pfn, pgprot) mk_pmd_phys(__pa((pfn) << PAGE_SHIFT), (pgprot))
1489 #define mk_pmd(page, pgprot) pfn_pmd(page_to_pfn(page), (pgprot))
1490
1491 static inline int pmd_trans_huge(pmd_t pmd)
1492 {
1493 return pmd_val(pmd) & _SEGMENT_ENTRY_LARGE;
1494 }
1495
1496 #define has_transparent_hugepage has_transparent_hugepage
1497 static inline int has_transparent_hugepage(void)
1498 {
1499 return MACHINE_HAS_EDAT1 ? 1 : 0;
1500 }
1501 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1502
1503 /*
1504 * 64 bit swap entry format:
1505 * A page-table entry has some bits we have to treat in a special way.
1506 * Bits 52 and bit 55 have to be zero, otherwise a specification
1507 * exception will occur instead of a page translation exception. The
1508 * specification exception has the bad habit not to store necessary
1509 * information in the lowcore.
1510 * Bits 54 and 63 are used to indicate the page type.
1511 * A swap pte is indicated by bit pattern (pte & 0x201) == 0x200
1512 * This leaves the bits 0-51 and bits 56-62 to store type and offset.
1513 * We use the 5 bits from 57-61 for the type and the 52 bits from 0-51
1514 * for the offset.
1515 * | offset |01100|type |00|
1516 * |0000000000111111111122222222223333333333444444444455|55555|55566|66|
1517 * |0123456789012345678901234567890123456789012345678901|23456|78901|23|
1518 */
1519
1520 #define __SWP_OFFSET_MASK ((1UL << 52) - 1)
1521 #define __SWP_OFFSET_SHIFT 12
1522 #define __SWP_TYPE_MASK ((1UL << 5) - 1)
1523 #define __SWP_TYPE_SHIFT 2
1524
1525 static inline pte_t mk_swap_pte(unsigned long type, unsigned long offset)
1526 {
1527 pte_t pte;
1528
1529 pte_val(pte) = _PAGE_INVALID | _PAGE_PROTECT;
1530 pte_val(pte) |= (offset & __SWP_OFFSET_MASK) << __SWP_OFFSET_SHIFT;
1531 pte_val(pte) |= (type & __SWP_TYPE_MASK) << __SWP_TYPE_SHIFT;
1532 return pte;
1533 }
1534
1535 static inline unsigned long __swp_type(swp_entry_t entry)
1536 {
1537 return (entry.val >> __SWP_TYPE_SHIFT) & __SWP_TYPE_MASK;
1538 }
1539
1540 static inline unsigned long __swp_offset(swp_entry_t entry)
1541 {
1542 return (entry.val >> __SWP_OFFSET_SHIFT) & __SWP_OFFSET_MASK;
1543 }
1544
1545 static inline swp_entry_t __swp_entry(unsigned long type, unsigned long offset)
1546 {
1547 return (swp_entry_t) { pte_val(mk_swap_pte(type, offset)) };
1548 }
1549
1550 #define __pte_to_swp_entry(pte) ((swp_entry_t) { pte_val(pte) })
1551 #define __swp_entry_to_pte(x) ((pte_t) { (x).val })
1552
1553 #endif /* !__ASSEMBLY__ */
1554
1555 #define kern_addr_valid(addr) (1)
1556
1557 extern int vmem_add_mapping(unsigned long start, unsigned long size);
1558 extern int vmem_remove_mapping(unsigned long start, unsigned long size);
1559 extern int s390_enable_sie(void);
1560 extern int s390_enable_skey(void);
1561 extern void s390_reset_cmma(struct mm_struct *mm);
1562
1563 /* s390 has a private copy of get unmapped area to deal with cache synonyms */
1564 #define HAVE_ARCH_UNMAPPED_AREA
1565 #define HAVE_ARCH_UNMAPPED_AREA_TOPDOWN
1566
1567 /*
1568 * No page table caches to initialise
1569 */
1570 static inline void pgtable_cache_init(void) { }
1571 static inline void check_pgt_cache(void) { }
1572
1573 #include <asm-generic/pgtable.h>
1574
1575 #endif /* _S390_PAGE_H */