]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/s390/kernel/crash_dump.c
ASoC: cs42xx8: fix the noise in the right dac channel with mono playback
[mirror_ubuntu-zesty-kernel.git] / arch / s390 / kernel / crash_dump.c
1 /*
2 * S390 kdump implementation
3 *
4 * Copyright IBM Corp. 2011
5 * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
6 */
7
8 #include <linux/crash_dump.h>
9 #include <asm/lowcore.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/gfp.h>
13 #include <linux/slab.h>
14 #include <linux/bootmem.h>
15 #include <linux/elf.h>
16 #include <asm/asm-offsets.h>
17 #include <linux/memblock.h>
18 #include <asm/os_info.h>
19 #include <asm/elf.h>
20 #include <asm/ipl.h>
21 #include <asm/sclp.h>
22
23 #define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
24 #define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
25 #define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
26
27 static struct memblock_region oldmem_region;
28
29 static struct memblock_type oldmem_type = {
30 .cnt = 1,
31 .max = 1,
32 .total_size = 0,
33 .regions = &oldmem_region,
34 };
35
36 struct save_area {
37 struct list_head list;
38 u64 psw[2];
39 u64 ctrs[16];
40 u64 gprs[16];
41 u32 acrs[16];
42 u64 fprs[16];
43 u32 fpc;
44 u32 prefix;
45 u64 todpreg;
46 u64 timer;
47 u64 todcmp;
48 u64 vxrs_low[16];
49 __vector128 vxrs_high[16];
50 };
51
52 static LIST_HEAD(dump_save_areas);
53
54 /*
55 * Allocate a save area
56 */
57 struct save_area * __init save_area_alloc(bool is_boot_cpu)
58 {
59 struct save_area *sa;
60
61 sa = (void *) memblock_alloc(sizeof(*sa), 8);
62 if (!sa)
63 return NULL;
64 if (is_boot_cpu)
65 list_add(&sa->list, &dump_save_areas);
66 else
67 list_add_tail(&sa->list, &dump_save_areas);
68 return sa;
69 }
70
71 /*
72 * Return the address of the save area for the boot CPU
73 */
74 struct save_area * __init save_area_boot_cpu(void)
75 {
76 if (list_empty(&dump_save_areas))
77 return NULL;
78 return list_first_entry(&dump_save_areas, struct save_area, list);
79 }
80
81 /*
82 * Copy CPU registers into the save area
83 */
84 void __init save_area_add_regs(struct save_area *sa, void *regs)
85 {
86 struct lowcore *lc;
87
88 lc = (struct lowcore *)(regs - __LC_FPREGS_SAVE_AREA);
89 memcpy(&sa->psw, &lc->psw_save_area, sizeof(sa->psw));
90 memcpy(&sa->ctrs, &lc->cregs_save_area, sizeof(sa->ctrs));
91 memcpy(&sa->gprs, &lc->gpregs_save_area, sizeof(sa->gprs));
92 memcpy(&sa->acrs, &lc->access_regs_save_area, sizeof(sa->acrs));
93 memcpy(&sa->fprs, &lc->floating_pt_save_area, sizeof(sa->fprs));
94 memcpy(&sa->fpc, &lc->fpt_creg_save_area, sizeof(sa->fpc));
95 memcpy(&sa->prefix, &lc->prefixreg_save_area, sizeof(sa->prefix));
96 memcpy(&sa->todpreg, &lc->tod_progreg_save_area, sizeof(sa->todpreg));
97 memcpy(&sa->timer, &lc->cpu_timer_save_area, sizeof(sa->timer));
98 memcpy(&sa->todcmp, &lc->clock_comp_save_area, sizeof(sa->todcmp));
99 }
100
101 /*
102 * Copy vector registers into the save area
103 */
104 void __init save_area_add_vxrs(struct save_area *sa, __vector128 *vxrs)
105 {
106 int i;
107
108 /* Copy lower halves of vector registers 0-15 */
109 for (i = 0; i < 16; i++)
110 memcpy(&sa->vxrs_low[i], &vxrs[i].u[2], 8);
111 /* Copy vector registers 16-31 */
112 memcpy(sa->vxrs_high, vxrs + 16, 16 * sizeof(__vector128));
113 }
114
115 /*
116 * Return physical address for virtual address
117 */
118 static inline void *load_real_addr(void *addr)
119 {
120 unsigned long real_addr;
121
122 asm volatile(
123 " lra %0,0(%1)\n"
124 " jz 0f\n"
125 " la %0,0\n"
126 "0:"
127 : "=a" (real_addr) : "a" (addr) : "cc");
128 return (void *)real_addr;
129 }
130
131 /*
132 * Copy memory of the old, dumped system to a kernel space virtual address
133 */
134 int copy_oldmem_kernel(void *dst, void *src, size_t count)
135 {
136 unsigned long from, len;
137 void *ra;
138 int rc;
139
140 while (count) {
141 from = __pa(src);
142 if (!OLDMEM_BASE && from < sclp.hsa_size) {
143 /* Copy from zfcpdump HSA area */
144 len = min(count, sclp.hsa_size - from);
145 rc = memcpy_hsa_kernel(dst, from, len);
146 if (rc)
147 return rc;
148 } else {
149 /* Check for swapped kdump oldmem areas */
150 if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) {
151 from -= OLDMEM_BASE;
152 len = min(count, OLDMEM_SIZE - from);
153 } else if (OLDMEM_BASE && from < OLDMEM_SIZE) {
154 len = min(count, OLDMEM_SIZE - from);
155 from += OLDMEM_BASE;
156 } else {
157 len = count;
158 }
159 if (is_vmalloc_or_module_addr(dst)) {
160 ra = load_real_addr(dst);
161 len = min(PAGE_SIZE - offset_in_page(ra), len);
162 } else {
163 ra = dst;
164 }
165 if (memcpy_real(ra, (void *) from, len))
166 return -EFAULT;
167 }
168 dst += len;
169 src += len;
170 count -= len;
171 }
172 return 0;
173 }
174
175 /*
176 * Copy memory of the old, dumped system to a user space virtual address
177 */
178 int copy_oldmem_user(void __user *dst, void *src, size_t count)
179 {
180 unsigned long from, len;
181 int rc;
182
183 while (count) {
184 from = __pa(src);
185 if (!OLDMEM_BASE && from < sclp.hsa_size) {
186 /* Copy from zfcpdump HSA area */
187 len = min(count, sclp.hsa_size - from);
188 rc = memcpy_hsa_user(dst, from, len);
189 if (rc)
190 return rc;
191 } else {
192 /* Check for swapped kdump oldmem areas */
193 if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) {
194 from -= OLDMEM_BASE;
195 len = min(count, OLDMEM_SIZE - from);
196 } else if (OLDMEM_BASE && from < OLDMEM_SIZE) {
197 len = min(count, OLDMEM_SIZE - from);
198 from += OLDMEM_BASE;
199 } else {
200 len = count;
201 }
202 rc = copy_to_user_real(dst, (void *) from, count);
203 if (rc)
204 return rc;
205 }
206 dst += len;
207 src += len;
208 count -= len;
209 }
210 return 0;
211 }
212
213 /*
214 * Copy one page from "oldmem"
215 */
216 ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize,
217 unsigned long offset, int userbuf)
218 {
219 void *src;
220 int rc;
221
222 if (!csize)
223 return 0;
224 src = (void *) (pfn << PAGE_SHIFT) + offset;
225 if (userbuf)
226 rc = copy_oldmem_user((void __force __user *) buf, src, csize);
227 else
228 rc = copy_oldmem_kernel((void *) buf, src, csize);
229 return rc;
230 }
231
232 /*
233 * Remap "oldmem" for kdump
234 *
235 * For the kdump reserved memory this functions performs a swap operation:
236 * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
237 */
238 static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
239 unsigned long from, unsigned long pfn,
240 unsigned long size, pgprot_t prot)
241 {
242 unsigned long size_old;
243 int rc;
244
245 if (pfn < OLDMEM_SIZE >> PAGE_SHIFT) {
246 size_old = min(size, OLDMEM_SIZE - (pfn << PAGE_SHIFT));
247 rc = remap_pfn_range(vma, from,
248 pfn + (OLDMEM_BASE >> PAGE_SHIFT),
249 size_old, prot);
250 if (rc || size == size_old)
251 return rc;
252 size -= size_old;
253 from += size_old;
254 pfn += size_old >> PAGE_SHIFT;
255 }
256 return remap_pfn_range(vma, from, pfn, size, prot);
257 }
258
259 /*
260 * Remap "oldmem" for zfcpdump
261 *
262 * We only map available memory above HSA size. Memory below HSA size
263 * is read on demand using the copy_oldmem_page() function.
264 */
265 static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
266 unsigned long from,
267 unsigned long pfn,
268 unsigned long size, pgprot_t prot)
269 {
270 unsigned long hsa_end = sclp.hsa_size;
271 unsigned long size_hsa;
272
273 if (pfn < hsa_end >> PAGE_SHIFT) {
274 size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
275 if (size == size_hsa)
276 return 0;
277 size -= size_hsa;
278 from += size_hsa;
279 pfn += size_hsa >> PAGE_SHIFT;
280 }
281 return remap_pfn_range(vma, from, pfn, size, prot);
282 }
283
284 /*
285 * Remap "oldmem" for kdump or zfcpdump
286 */
287 int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
288 unsigned long pfn, unsigned long size, pgprot_t prot)
289 {
290 if (OLDMEM_BASE)
291 return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
292 else
293 return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
294 prot);
295 }
296
297 /*
298 * Alloc memory and panic in case of ENOMEM
299 */
300 static void *kzalloc_panic(int len)
301 {
302 void *rc;
303
304 rc = kzalloc(len, GFP_KERNEL);
305 if (!rc)
306 panic("s390 kdump kzalloc (%d) failed", len);
307 return rc;
308 }
309
310 /*
311 * Initialize ELF note
312 */
313 static void *nt_init_name(void *buf, Elf64_Word type, void *desc, int d_len,
314 const char *name)
315 {
316 Elf64_Nhdr *note;
317 u64 len;
318
319 note = (Elf64_Nhdr *)buf;
320 note->n_namesz = strlen(name) + 1;
321 note->n_descsz = d_len;
322 note->n_type = type;
323 len = sizeof(Elf64_Nhdr);
324
325 memcpy(buf + len, name, note->n_namesz);
326 len = roundup(len + note->n_namesz, 4);
327
328 memcpy(buf + len, desc, note->n_descsz);
329 len = roundup(len + note->n_descsz, 4);
330
331 return PTR_ADD(buf, len);
332 }
333
334 static inline void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len)
335 {
336 return nt_init_name(buf, type, desc, d_len, KEXEC_CORE_NOTE_NAME);
337 }
338
339 /*
340 * Fill ELF notes for one CPU with save area registers
341 */
342 static void *fill_cpu_elf_notes(void *ptr, int cpu, struct save_area *sa)
343 {
344 struct elf_prstatus nt_prstatus;
345 elf_fpregset_t nt_fpregset;
346
347 /* Prepare prstatus note */
348 memset(&nt_prstatus, 0, sizeof(nt_prstatus));
349 memcpy(&nt_prstatus.pr_reg.gprs, sa->gprs, sizeof(sa->gprs));
350 memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
351 memcpy(&nt_prstatus.pr_reg.acrs, sa->acrs, sizeof(sa->acrs));
352 nt_prstatus.pr_pid = cpu;
353 /* Prepare fpregset (floating point) note */
354 memset(&nt_fpregset, 0, sizeof(nt_fpregset));
355 memcpy(&nt_fpregset.fpc, &sa->fpc, sizeof(sa->fpc));
356 memcpy(&nt_fpregset.fprs, &sa->fprs, sizeof(sa->fprs));
357 /* Create ELF notes for the CPU */
358 ptr = nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus));
359 ptr = nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset));
360 ptr = nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer));
361 ptr = nt_init(ptr, NT_S390_TODCMP, &sa->todcmp, sizeof(sa->todcmp));
362 ptr = nt_init(ptr, NT_S390_TODPREG, &sa->todpreg, sizeof(sa->todpreg));
363 ptr = nt_init(ptr, NT_S390_CTRS, &sa->ctrs, sizeof(sa->ctrs));
364 ptr = nt_init(ptr, NT_S390_PREFIX, &sa->prefix, sizeof(sa->prefix));
365 if (MACHINE_HAS_VX) {
366 ptr = nt_init(ptr, NT_S390_VXRS_HIGH,
367 &sa->vxrs_high, sizeof(sa->vxrs_high));
368 ptr = nt_init(ptr, NT_S390_VXRS_LOW,
369 &sa->vxrs_low, sizeof(sa->vxrs_low));
370 }
371 return ptr;
372 }
373
374 /*
375 * Initialize prpsinfo note (new kernel)
376 */
377 static void *nt_prpsinfo(void *ptr)
378 {
379 struct elf_prpsinfo prpsinfo;
380
381 memset(&prpsinfo, 0, sizeof(prpsinfo));
382 prpsinfo.pr_sname = 'R';
383 strcpy(prpsinfo.pr_fname, "vmlinux");
384 return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo));
385 }
386
387 /*
388 * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
389 */
390 static void *get_vmcoreinfo_old(unsigned long *size)
391 {
392 char nt_name[11], *vmcoreinfo;
393 Elf64_Nhdr note;
394 void *addr;
395
396 if (copy_oldmem_kernel(&addr, &S390_lowcore.vmcore_info, sizeof(addr)))
397 return NULL;
398 memset(nt_name, 0, sizeof(nt_name));
399 if (copy_oldmem_kernel(&note, addr, sizeof(note)))
400 return NULL;
401 if (copy_oldmem_kernel(nt_name, addr + sizeof(note),
402 sizeof(nt_name) - 1))
403 return NULL;
404 if (strcmp(nt_name, "VMCOREINFO") != 0)
405 return NULL;
406 vmcoreinfo = kzalloc_panic(note.n_descsz);
407 if (copy_oldmem_kernel(vmcoreinfo, addr + 24, note.n_descsz))
408 return NULL;
409 *size = note.n_descsz;
410 return vmcoreinfo;
411 }
412
413 /*
414 * Initialize vmcoreinfo note (new kernel)
415 */
416 static void *nt_vmcoreinfo(void *ptr)
417 {
418 unsigned long size;
419 void *vmcoreinfo;
420
421 vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
422 if (!vmcoreinfo)
423 vmcoreinfo = get_vmcoreinfo_old(&size);
424 if (!vmcoreinfo)
425 return ptr;
426 return nt_init_name(ptr, 0, vmcoreinfo, size, "VMCOREINFO");
427 }
428
429 /*
430 * Initialize ELF header (new kernel)
431 */
432 static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
433 {
434 memset(ehdr, 0, sizeof(*ehdr));
435 memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
436 ehdr->e_ident[EI_CLASS] = ELFCLASS64;
437 ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
438 ehdr->e_ident[EI_VERSION] = EV_CURRENT;
439 memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
440 ehdr->e_type = ET_CORE;
441 ehdr->e_machine = EM_S390;
442 ehdr->e_version = EV_CURRENT;
443 ehdr->e_phoff = sizeof(Elf64_Ehdr);
444 ehdr->e_ehsize = sizeof(Elf64_Ehdr);
445 ehdr->e_phentsize = sizeof(Elf64_Phdr);
446 ehdr->e_phnum = mem_chunk_cnt + 1;
447 return ehdr + 1;
448 }
449
450 /*
451 * Return CPU count for ELF header (new kernel)
452 */
453 static int get_cpu_cnt(void)
454 {
455 struct save_area *sa;
456 int cpus = 0;
457
458 list_for_each_entry(sa, &dump_save_areas, list)
459 if (sa->prefix != 0)
460 cpus++;
461 return cpus;
462 }
463
464 /*
465 * Return memory chunk count for ELF header (new kernel)
466 */
467 static int get_mem_chunk_cnt(void)
468 {
469 int cnt = 0;
470 u64 idx;
471
472 for_each_mem_range(idx, &memblock.physmem, &oldmem_type, NUMA_NO_NODE,
473 MEMBLOCK_NONE, NULL, NULL, NULL)
474 cnt++;
475 return cnt;
476 }
477
478 /*
479 * Initialize ELF loads (new kernel)
480 */
481 static void loads_init(Elf64_Phdr *phdr, u64 loads_offset)
482 {
483 phys_addr_t start, end;
484 u64 idx;
485
486 for_each_mem_range(idx, &memblock.physmem, &oldmem_type, NUMA_NO_NODE,
487 MEMBLOCK_NONE, &start, &end, NULL) {
488 phdr->p_filesz = end - start;
489 phdr->p_type = PT_LOAD;
490 phdr->p_offset = start;
491 phdr->p_vaddr = start;
492 phdr->p_paddr = start;
493 phdr->p_memsz = end - start;
494 phdr->p_flags = PF_R | PF_W | PF_X;
495 phdr->p_align = PAGE_SIZE;
496 phdr++;
497 }
498 }
499
500 /*
501 * Initialize notes (new kernel)
502 */
503 static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
504 {
505 struct save_area *sa;
506 void *ptr_start = ptr;
507 int cpu;
508
509 ptr = nt_prpsinfo(ptr);
510
511 cpu = 1;
512 list_for_each_entry(sa, &dump_save_areas, list)
513 if (sa->prefix != 0)
514 ptr = fill_cpu_elf_notes(ptr, cpu++, sa);
515 ptr = nt_vmcoreinfo(ptr);
516 memset(phdr, 0, sizeof(*phdr));
517 phdr->p_type = PT_NOTE;
518 phdr->p_offset = notes_offset;
519 phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
520 phdr->p_memsz = phdr->p_filesz;
521 return ptr;
522 }
523
524 /*
525 * Create ELF core header (new kernel)
526 */
527 int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
528 {
529 Elf64_Phdr *phdr_notes, *phdr_loads;
530 int mem_chunk_cnt;
531 void *ptr, *hdr;
532 u32 alloc_size;
533 u64 hdr_off;
534
535 /* If we are not in kdump or zfcpdump mode return */
536 if (!OLDMEM_BASE && ipl_info.type != IPL_TYPE_FCP_DUMP)
537 return 0;
538 /* If we cannot get HSA size for zfcpdump return error */
539 if (ipl_info.type == IPL_TYPE_FCP_DUMP && !sclp.hsa_size)
540 return -ENODEV;
541
542 /* For kdump, exclude previous crashkernel memory */
543 if (OLDMEM_BASE) {
544 oldmem_region.base = OLDMEM_BASE;
545 oldmem_region.size = OLDMEM_SIZE;
546 oldmem_type.total_size = OLDMEM_SIZE;
547 }
548
549 mem_chunk_cnt = get_mem_chunk_cnt();
550
551 alloc_size = 0x1000 + get_cpu_cnt() * 0x4a0 +
552 mem_chunk_cnt * sizeof(Elf64_Phdr);
553 hdr = kzalloc_panic(alloc_size);
554 /* Init elf header */
555 ptr = ehdr_init(hdr, mem_chunk_cnt);
556 /* Init program headers */
557 phdr_notes = ptr;
558 ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
559 phdr_loads = ptr;
560 ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
561 /* Init notes */
562 hdr_off = PTR_DIFF(ptr, hdr);
563 ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
564 /* Init loads */
565 hdr_off = PTR_DIFF(ptr, hdr);
566 loads_init(phdr_loads, hdr_off);
567 *addr = (unsigned long long) hdr;
568 *size = (unsigned long long) hdr_off;
569 BUG_ON(elfcorehdr_size > alloc_size);
570 return 0;
571 }
572
573 /*
574 * Free ELF core header (new kernel)
575 */
576 void elfcorehdr_free(unsigned long long addr)
577 {
578 kfree((void *)(unsigned long)addr);
579 }
580
581 /*
582 * Read from ELF header
583 */
584 ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
585 {
586 void *src = (void *)(unsigned long)*ppos;
587
588 memcpy(buf, src, count);
589 *ppos += count;
590 return count;
591 }
592
593 /*
594 * Read from ELF notes data
595 */
596 ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
597 {
598 void *src = (void *)(unsigned long)*ppos;
599
600 memcpy(buf, src, count);
601 *ppos += count;
602 return count;
603 }