]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/s390/kernel/crash_dump.c
Merge tag 'arc-4.5-fixes' of git://git.kernel.org/pub/scm/linux/kernel/git/vgupta/arc
[mirror_ubuntu-jammy-kernel.git] / arch / s390 / kernel / crash_dump.c
1 /*
2 * S390 kdump implementation
3 *
4 * Copyright IBM Corp. 2011
5 * Author(s): Michael Holzheu <holzheu@linux.vnet.ibm.com>
6 */
7
8 #include <linux/crash_dump.h>
9 #include <asm/lowcore.h>
10 #include <linux/kernel.h>
11 #include <linux/module.h>
12 #include <linux/gfp.h>
13 #include <linux/slab.h>
14 #include <linux/bootmem.h>
15 #include <linux/elf.h>
16 #include <asm/asm-offsets.h>
17 #include <linux/memblock.h>
18 #include <asm/os_info.h>
19 #include <asm/elf.h>
20 #include <asm/ipl.h>
21 #include <asm/sclp.h>
22
23 #define PTR_ADD(x, y) (((char *) (x)) + ((unsigned long) (y)))
24 #define PTR_SUB(x, y) (((char *) (x)) - ((unsigned long) (y)))
25 #define PTR_DIFF(x, y) ((unsigned long)(((char *) (x)) - ((unsigned long) (y))))
26
27 static struct memblock_region oldmem_region;
28
29 static struct memblock_type oldmem_type = {
30 .cnt = 1,
31 .max = 1,
32 .total_size = 0,
33 .regions = &oldmem_region,
34 };
35
36 struct save_area {
37 struct list_head list;
38 u64 psw[2];
39 u64 ctrs[16];
40 u64 gprs[16];
41 u32 acrs[16];
42 u64 fprs[16];
43 u32 fpc;
44 u32 prefix;
45 u64 todpreg;
46 u64 timer;
47 u64 todcmp;
48 u64 vxrs_low[16];
49 __vector128 vxrs_high[16];
50 };
51
52 static LIST_HEAD(dump_save_areas);
53
54 /*
55 * Allocate a save area
56 */
57 struct save_area * __init save_area_alloc(bool is_boot_cpu)
58 {
59 struct save_area *sa;
60
61 sa = (void *) memblock_alloc(sizeof(*sa), 8);
62 if (is_boot_cpu)
63 list_add(&sa->list, &dump_save_areas);
64 else
65 list_add_tail(&sa->list, &dump_save_areas);
66 return sa;
67 }
68
69 /*
70 * Return the address of the save area for the boot CPU
71 */
72 struct save_area * __init save_area_boot_cpu(void)
73 {
74 if (list_empty(&dump_save_areas))
75 return NULL;
76 return list_first_entry(&dump_save_areas, struct save_area, list);
77 }
78
79 /*
80 * Copy CPU registers into the save area
81 */
82 void __init save_area_add_regs(struct save_area *sa, void *regs)
83 {
84 struct lowcore *lc;
85
86 lc = (struct lowcore *)(regs - __LC_FPREGS_SAVE_AREA);
87 memcpy(&sa->psw, &lc->psw_save_area, sizeof(sa->psw));
88 memcpy(&sa->ctrs, &lc->cregs_save_area, sizeof(sa->ctrs));
89 memcpy(&sa->gprs, &lc->gpregs_save_area, sizeof(sa->gprs));
90 memcpy(&sa->acrs, &lc->access_regs_save_area, sizeof(sa->acrs));
91 memcpy(&sa->fprs, &lc->floating_pt_save_area, sizeof(sa->fprs));
92 memcpy(&sa->fpc, &lc->fpt_creg_save_area, sizeof(sa->fpc));
93 memcpy(&sa->prefix, &lc->prefixreg_save_area, sizeof(sa->prefix));
94 memcpy(&sa->todpreg, &lc->tod_progreg_save_area, sizeof(sa->todpreg));
95 memcpy(&sa->timer, &lc->cpu_timer_save_area, sizeof(sa->timer));
96 memcpy(&sa->todcmp, &lc->clock_comp_save_area, sizeof(sa->todcmp));
97 }
98
99 /*
100 * Copy vector registers into the save area
101 */
102 void __init save_area_add_vxrs(struct save_area *sa, __vector128 *vxrs)
103 {
104 int i;
105
106 /* Copy lower halves of vector registers 0-15 */
107 for (i = 0; i < 16; i++)
108 memcpy(&sa->vxrs_low[i], &vxrs[i].u[2], 8);
109 /* Copy vector registers 16-31 */
110 memcpy(sa->vxrs_high, vxrs + 16, 16 * sizeof(__vector128));
111 }
112
113 /*
114 * Return physical address for virtual address
115 */
116 static inline void *load_real_addr(void *addr)
117 {
118 unsigned long real_addr;
119
120 asm volatile(
121 " lra %0,0(%1)\n"
122 " jz 0f\n"
123 " la %0,0\n"
124 "0:"
125 : "=a" (real_addr) : "a" (addr) : "cc");
126 return (void *)real_addr;
127 }
128
129 /*
130 * Copy memory of the old, dumped system to a kernel space virtual address
131 */
132 int copy_oldmem_kernel(void *dst, void *src, size_t count)
133 {
134 unsigned long from, len;
135 void *ra;
136 int rc;
137
138 while (count) {
139 from = __pa(src);
140 if (!OLDMEM_BASE && from < sclp.hsa_size) {
141 /* Copy from zfcpdump HSA area */
142 len = min(count, sclp.hsa_size - from);
143 rc = memcpy_hsa_kernel(dst, from, len);
144 if (rc)
145 return rc;
146 } else {
147 /* Check for swapped kdump oldmem areas */
148 if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) {
149 from -= OLDMEM_BASE;
150 len = min(count, OLDMEM_SIZE - from);
151 } else if (OLDMEM_BASE && from < OLDMEM_SIZE) {
152 len = min(count, OLDMEM_SIZE - from);
153 from += OLDMEM_BASE;
154 } else {
155 len = count;
156 }
157 if (is_vmalloc_or_module_addr(dst)) {
158 ra = load_real_addr(dst);
159 len = min(PAGE_SIZE - offset_in_page(ra), len);
160 } else {
161 ra = dst;
162 }
163 if (memcpy_real(ra, (void *) from, len))
164 return -EFAULT;
165 }
166 dst += len;
167 src += len;
168 count -= len;
169 }
170 return 0;
171 }
172
173 /*
174 * Copy memory of the old, dumped system to a user space virtual address
175 */
176 int copy_oldmem_user(void __user *dst, void *src, size_t count)
177 {
178 unsigned long from, len;
179 int rc;
180
181 while (count) {
182 from = __pa(src);
183 if (!OLDMEM_BASE && from < sclp.hsa_size) {
184 /* Copy from zfcpdump HSA area */
185 len = min(count, sclp.hsa_size - from);
186 rc = memcpy_hsa_user(dst, from, len);
187 if (rc)
188 return rc;
189 } else {
190 /* Check for swapped kdump oldmem areas */
191 if (OLDMEM_BASE && from - OLDMEM_BASE < OLDMEM_SIZE) {
192 from -= OLDMEM_BASE;
193 len = min(count, OLDMEM_SIZE - from);
194 } else if (OLDMEM_BASE && from < OLDMEM_SIZE) {
195 len = min(count, OLDMEM_SIZE - from);
196 from += OLDMEM_BASE;
197 } else {
198 len = count;
199 }
200 rc = copy_to_user_real(dst, (void *) from, count);
201 if (rc)
202 return rc;
203 }
204 dst += len;
205 src += len;
206 count -= len;
207 }
208 return 0;
209 }
210
211 /*
212 * Copy one page from "oldmem"
213 */
214 ssize_t copy_oldmem_page(unsigned long pfn, char *buf, size_t csize,
215 unsigned long offset, int userbuf)
216 {
217 void *src;
218 int rc;
219
220 if (!csize)
221 return 0;
222 src = (void *) (pfn << PAGE_SHIFT) + offset;
223 if (userbuf)
224 rc = copy_oldmem_user((void __force __user *) buf, src, csize);
225 else
226 rc = copy_oldmem_kernel((void *) buf, src, csize);
227 return rc;
228 }
229
230 /*
231 * Remap "oldmem" for kdump
232 *
233 * For the kdump reserved memory this functions performs a swap operation:
234 * [0 - OLDMEM_SIZE] is mapped to [OLDMEM_BASE - OLDMEM_BASE + OLDMEM_SIZE]
235 */
236 static int remap_oldmem_pfn_range_kdump(struct vm_area_struct *vma,
237 unsigned long from, unsigned long pfn,
238 unsigned long size, pgprot_t prot)
239 {
240 unsigned long size_old;
241 int rc;
242
243 if (pfn < OLDMEM_SIZE >> PAGE_SHIFT) {
244 size_old = min(size, OLDMEM_SIZE - (pfn << PAGE_SHIFT));
245 rc = remap_pfn_range(vma, from,
246 pfn + (OLDMEM_BASE >> PAGE_SHIFT),
247 size_old, prot);
248 if (rc || size == size_old)
249 return rc;
250 size -= size_old;
251 from += size_old;
252 pfn += size_old >> PAGE_SHIFT;
253 }
254 return remap_pfn_range(vma, from, pfn, size, prot);
255 }
256
257 /*
258 * Remap "oldmem" for zfcpdump
259 *
260 * We only map available memory above HSA size. Memory below HSA size
261 * is read on demand using the copy_oldmem_page() function.
262 */
263 static int remap_oldmem_pfn_range_zfcpdump(struct vm_area_struct *vma,
264 unsigned long from,
265 unsigned long pfn,
266 unsigned long size, pgprot_t prot)
267 {
268 unsigned long hsa_end = sclp.hsa_size;
269 unsigned long size_hsa;
270
271 if (pfn < hsa_end >> PAGE_SHIFT) {
272 size_hsa = min(size, hsa_end - (pfn << PAGE_SHIFT));
273 if (size == size_hsa)
274 return 0;
275 size -= size_hsa;
276 from += size_hsa;
277 pfn += size_hsa >> PAGE_SHIFT;
278 }
279 return remap_pfn_range(vma, from, pfn, size, prot);
280 }
281
282 /*
283 * Remap "oldmem" for kdump or zfcpdump
284 */
285 int remap_oldmem_pfn_range(struct vm_area_struct *vma, unsigned long from,
286 unsigned long pfn, unsigned long size, pgprot_t prot)
287 {
288 if (OLDMEM_BASE)
289 return remap_oldmem_pfn_range_kdump(vma, from, pfn, size, prot);
290 else
291 return remap_oldmem_pfn_range_zfcpdump(vma, from, pfn, size,
292 prot);
293 }
294
295 /*
296 * Alloc memory and panic in case of ENOMEM
297 */
298 static void *kzalloc_panic(int len)
299 {
300 void *rc;
301
302 rc = kzalloc(len, GFP_KERNEL);
303 if (!rc)
304 panic("s390 kdump kzalloc (%d) failed", len);
305 return rc;
306 }
307
308 /*
309 * Initialize ELF note
310 */
311 static void *nt_init_name(void *buf, Elf64_Word type, void *desc, int d_len,
312 const char *name)
313 {
314 Elf64_Nhdr *note;
315 u64 len;
316
317 note = (Elf64_Nhdr *)buf;
318 note->n_namesz = strlen(name) + 1;
319 note->n_descsz = d_len;
320 note->n_type = type;
321 len = sizeof(Elf64_Nhdr);
322
323 memcpy(buf + len, name, note->n_namesz);
324 len = roundup(len + note->n_namesz, 4);
325
326 memcpy(buf + len, desc, note->n_descsz);
327 len = roundup(len + note->n_descsz, 4);
328
329 return PTR_ADD(buf, len);
330 }
331
332 static inline void *nt_init(void *buf, Elf64_Word type, void *desc, int d_len)
333 {
334 return nt_init_name(buf, type, desc, d_len, KEXEC_CORE_NOTE_NAME);
335 }
336
337 /*
338 * Fill ELF notes for one CPU with save area registers
339 */
340 static void *fill_cpu_elf_notes(void *ptr, int cpu, struct save_area *sa)
341 {
342 struct elf_prstatus nt_prstatus;
343 elf_fpregset_t nt_fpregset;
344
345 /* Prepare prstatus note */
346 memset(&nt_prstatus, 0, sizeof(nt_prstatus));
347 memcpy(&nt_prstatus.pr_reg.gprs, sa->gprs, sizeof(sa->gprs));
348 memcpy(&nt_prstatus.pr_reg.psw, sa->psw, sizeof(sa->psw));
349 memcpy(&nt_prstatus.pr_reg.acrs, sa->acrs, sizeof(sa->acrs));
350 nt_prstatus.pr_pid = cpu;
351 /* Prepare fpregset (floating point) note */
352 memset(&nt_fpregset, 0, sizeof(nt_fpregset));
353 memcpy(&nt_fpregset.fpc, &sa->fpc, sizeof(sa->fpc));
354 memcpy(&nt_fpregset.fprs, &sa->fprs, sizeof(sa->fprs));
355 /* Create ELF notes for the CPU */
356 ptr = nt_init(ptr, NT_PRSTATUS, &nt_prstatus, sizeof(nt_prstatus));
357 ptr = nt_init(ptr, NT_PRFPREG, &nt_fpregset, sizeof(nt_fpregset));
358 ptr = nt_init(ptr, NT_S390_TIMER, &sa->timer, sizeof(sa->timer));
359 ptr = nt_init(ptr, NT_S390_TODCMP, &sa->todcmp, sizeof(sa->todcmp));
360 ptr = nt_init(ptr, NT_S390_TODPREG, &sa->todpreg, sizeof(sa->todpreg));
361 ptr = nt_init(ptr, NT_S390_CTRS, &sa->ctrs, sizeof(sa->ctrs));
362 ptr = nt_init(ptr, NT_S390_PREFIX, &sa->prefix, sizeof(sa->prefix));
363 if (MACHINE_HAS_VX) {
364 ptr = nt_init(ptr, NT_S390_VXRS_HIGH,
365 &sa->vxrs_high, sizeof(sa->vxrs_high));
366 ptr = nt_init(ptr, NT_S390_VXRS_LOW,
367 &sa->vxrs_low, sizeof(sa->vxrs_low));
368 }
369 return ptr;
370 }
371
372 /*
373 * Initialize prpsinfo note (new kernel)
374 */
375 static void *nt_prpsinfo(void *ptr)
376 {
377 struct elf_prpsinfo prpsinfo;
378
379 memset(&prpsinfo, 0, sizeof(prpsinfo));
380 prpsinfo.pr_sname = 'R';
381 strcpy(prpsinfo.pr_fname, "vmlinux");
382 return nt_init(ptr, NT_PRPSINFO, &prpsinfo, sizeof(prpsinfo));
383 }
384
385 /*
386 * Get vmcoreinfo using lowcore->vmcore_info (new kernel)
387 */
388 static void *get_vmcoreinfo_old(unsigned long *size)
389 {
390 char nt_name[11], *vmcoreinfo;
391 Elf64_Nhdr note;
392 void *addr;
393
394 if (copy_oldmem_kernel(&addr, &S390_lowcore.vmcore_info, sizeof(addr)))
395 return NULL;
396 memset(nt_name, 0, sizeof(nt_name));
397 if (copy_oldmem_kernel(&note, addr, sizeof(note)))
398 return NULL;
399 if (copy_oldmem_kernel(nt_name, addr + sizeof(note),
400 sizeof(nt_name) - 1))
401 return NULL;
402 if (strcmp(nt_name, "VMCOREINFO") != 0)
403 return NULL;
404 vmcoreinfo = kzalloc_panic(note.n_descsz);
405 if (copy_oldmem_kernel(vmcoreinfo, addr + 24, note.n_descsz))
406 return NULL;
407 *size = note.n_descsz;
408 return vmcoreinfo;
409 }
410
411 /*
412 * Initialize vmcoreinfo note (new kernel)
413 */
414 static void *nt_vmcoreinfo(void *ptr)
415 {
416 unsigned long size;
417 void *vmcoreinfo;
418
419 vmcoreinfo = os_info_old_entry(OS_INFO_VMCOREINFO, &size);
420 if (!vmcoreinfo)
421 vmcoreinfo = get_vmcoreinfo_old(&size);
422 if (!vmcoreinfo)
423 return ptr;
424 return nt_init_name(ptr, 0, vmcoreinfo, size, "VMCOREINFO");
425 }
426
427 /*
428 * Initialize ELF header (new kernel)
429 */
430 static void *ehdr_init(Elf64_Ehdr *ehdr, int mem_chunk_cnt)
431 {
432 memset(ehdr, 0, sizeof(*ehdr));
433 memcpy(ehdr->e_ident, ELFMAG, SELFMAG);
434 ehdr->e_ident[EI_CLASS] = ELFCLASS64;
435 ehdr->e_ident[EI_DATA] = ELFDATA2MSB;
436 ehdr->e_ident[EI_VERSION] = EV_CURRENT;
437 memset(ehdr->e_ident + EI_PAD, 0, EI_NIDENT - EI_PAD);
438 ehdr->e_type = ET_CORE;
439 ehdr->e_machine = EM_S390;
440 ehdr->e_version = EV_CURRENT;
441 ehdr->e_phoff = sizeof(Elf64_Ehdr);
442 ehdr->e_ehsize = sizeof(Elf64_Ehdr);
443 ehdr->e_phentsize = sizeof(Elf64_Phdr);
444 ehdr->e_phnum = mem_chunk_cnt + 1;
445 return ehdr + 1;
446 }
447
448 /*
449 * Return CPU count for ELF header (new kernel)
450 */
451 static int get_cpu_cnt(void)
452 {
453 struct save_area *sa;
454 int cpus = 0;
455
456 list_for_each_entry(sa, &dump_save_areas, list)
457 if (sa->prefix != 0)
458 cpus++;
459 return cpus;
460 }
461
462 /*
463 * Return memory chunk count for ELF header (new kernel)
464 */
465 static int get_mem_chunk_cnt(void)
466 {
467 int cnt = 0;
468 u64 idx;
469
470 for_each_mem_range(idx, &memblock.physmem, &oldmem_type, NUMA_NO_NODE,
471 MEMBLOCK_NONE, NULL, NULL, NULL)
472 cnt++;
473 return cnt;
474 }
475
476 /*
477 * Initialize ELF loads (new kernel)
478 */
479 static void loads_init(Elf64_Phdr *phdr, u64 loads_offset)
480 {
481 phys_addr_t start, end;
482 u64 idx;
483
484 for_each_mem_range(idx, &memblock.physmem, &oldmem_type, NUMA_NO_NODE,
485 MEMBLOCK_NONE, &start, &end, NULL) {
486 phdr->p_filesz = end - start;
487 phdr->p_type = PT_LOAD;
488 phdr->p_offset = start;
489 phdr->p_vaddr = start;
490 phdr->p_paddr = start;
491 phdr->p_memsz = end - start;
492 phdr->p_flags = PF_R | PF_W | PF_X;
493 phdr->p_align = PAGE_SIZE;
494 phdr++;
495 }
496 }
497
498 /*
499 * Initialize notes (new kernel)
500 */
501 static void *notes_init(Elf64_Phdr *phdr, void *ptr, u64 notes_offset)
502 {
503 struct save_area *sa;
504 void *ptr_start = ptr;
505 int cpu;
506
507 ptr = nt_prpsinfo(ptr);
508
509 cpu = 1;
510 list_for_each_entry(sa, &dump_save_areas, list)
511 if (sa->prefix != 0)
512 ptr = fill_cpu_elf_notes(ptr, cpu++, sa);
513 ptr = nt_vmcoreinfo(ptr);
514 memset(phdr, 0, sizeof(*phdr));
515 phdr->p_type = PT_NOTE;
516 phdr->p_offset = notes_offset;
517 phdr->p_filesz = (unsigned long) PTR_SUB(ptr, ptr_start);
518 phdr->p_memsz = phdr->p_filesz;
519 return ptr;
520 }
521
522 /*
523 * Create ELF core header (new kernel)
524 */
525 int elfcorehdr_alloc(unsigned long long *addr, unsigned long long *size)
526 {
527 Elf64_Phdr *phdr_notes, *phdr_loads;
528 int mem_chunk_cnt;
529 void *ptr, *hdr;
530 u32 alloc_size;
531 u64 hdr_off;
532
533 /* If we are not in kdump or zfcpdump mode return */
534 if (!OLDMEM_BASE && ipl_info.type != IPL_TYPE_FCP_DUMP)
535 return 0;
536 /* If we cannot get HSA size for zfcpdump return error */
537 if (ipl_info.type == IPL_TYPE_FCP_DUMP && !sclp.hsa_size)
538 return -ENODEV;
539
540 /* For kdump, exclude previous crashkernel memory */
541 if (OLDMEM_BASE) {
542 oldmem_region.base = OLDMEM_BASE;
543 oldmem_region.size = OLDMEM_SIZE;
544 oldmem_type.total_size = OLDMEM_SIZE;
545 }
546
547 mem_chunk_cnt = get_mem_chunk_cnt();
548
549 alloc_size = 0x1000 + get_cpu_cnt() * 0x4a0 +
550 mem_chunk_cnt * sizeof(Elf64_Phdr);
551 hdr = kzalloc_panic(alloc_size);
552 /* Init elf header */
553 ptr = ehdr_init(hdr, mem_chunk_cnt);
554 /* Init program headers */
555 phdr_notes = ptr;
556 ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr));
557 phdr_loads = ptr;
558 ptr = PTR_ADD(ptr, sizeof(Elf64_Phdr) * mem_chunk_cnt);
559 /* Init notes */
560 hdr_off = PTR_DIFF(ptr, hdr);
561 ptr = notes_init(phdr_notes, ptr, ((unsigned long) hdr) + hdr_off);
562 /* Init loads */
563 hdr_off = PTR_DIFF(ptr, hdr);
564 loads_init(phdr_loads, hdr_off);
565 *addr = (unsigned long long) hdr;
566 *size = (unsigned long long) hdr_off;
567 BUG_ON(elfcorehdr_size > alloc_size);
568 return 0;
569 }
570
571 /*
572 * Free ELF core header (new kernel)
573 */
574 void elfcorehdr_free(unsigned long long addr)
575 {
576 kfree((void *)(unsigned long)addr);
577 }
578
579 /*
580 * Read from ELF header
581 */
582 ssize_t elfcorehdr_read(char *buf, size_t count, u64 *ppos)
583 {
584 void *src = (void *)(unsigned long)*ppos;
585
586 memcpy(buf, src, count);
587 *ppos += count;
588 return count;
589 }
590
591 /*
592 * Read from ELF notes data
593 */
594 ssize_t elfcorehdr_read_notes(char *buf, size_t count, u64 *ppos)
595 {
596 void *src = (void *)(unsigned long)*ppos;
597
598 memcpy(buf, src, count);
599 *ppos += count;
600 return count;
601 }