]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/s390/kernel/kprobes.c
alpha: osf_sys.c: use timespec64 where appropriate
[mirror_ubuntu-jammy-kernel.git] / arch / s390 / kernel / kprobes.c
1 /*
2 * Kernel Probes (KProbes)
3 *
4 * This program is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
17 *
18 * Copyright IBM Corp. 2002, 2006
19 *
20 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
21 */
22
23 #include <linux/kprobes.h>
24 #include <linux/ptrace.h>
25 #include <linux/preempt.h>
26 #include <linux/stop_machine.h>
27 #include <linux/kdebug.h>
28 #include <linux/uaccess.h>
29 #include <linux/extable.h>
30 #include <linux/module.h>
31 #include <linux/slab.h>
32 #include <linux/hardirq.h>
33 #include <linux/ftrace.h>
34 #include <asm/set_memory.h>
35 #include <asm/sections.h>
36 #include <linux/uaccess.h>
37 #include <asm/dis.h>
38
39 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
40 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
41
42 struct kretprobe_blackpoint kretprobe_blacklist[] = { };
43
44 DEFINE_INSN_CACHE_OPS(dmainsn);
45
46 static void *alloc_dmainsn_page(void)
47 {
48 void *page;
49
50 page = (void *) __get_free_page(GFP_KERNEL | GFP_DMA);
51 if (page)
52 set_memory_x((unsigned long) page, 1);
53 return page;
54 }
55
56 static void free_dmainsn_page(void *page)
57 {
58 set_memory_nx((unsigned long) page, 1);
59 free_page((unsigned long)page);
60 }
61
62 struct kprobe_insn_cache kprobe_dmainsn_slots = {
63 .mutex = __MUTEX_INITIALIZER(kprobe_dmainsn_slots.mutex),
64 .alloc = alloc_dmainsn_page,
65 .free = free_dmainsn_page,
66 .pages = LIST_HEAD_INIT(kprobe_dmainsn_slots.pages),
67 .insn_size = MAX_INSN_SIZE,
68 };
69
70 static void copy_instruction(struct kprobe *p)
71 {
72 unsigned long ip = (unsigned long) p->addr;
73 s64 disp, new_disp;
74 u64 addr, new_addr;
75
76 if (ftrace_location(ip) == ip) {
77 /*
78 * If kprobes patches the instruction that is morphed by
79 * ftrace make sure that kprobes always sees the branch
80 * "jg .+24" that skips the mcount block or the "brcl 0,0"
81 * in case of hotpatch.
82 */
83 ftrace_generate_nop_insn((struct ftrace_insn *)p->ainsn.insn);
84 p->ainsn.is_ftrace_insn = 1;
85 } else
86 memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
87 p->opcode = p->ainsn.insn[0];
88 if (!probe_is_insn_relative_long(p->ainsn.insn))
89 return;
90 /*
91 * For pc-relative instructions in RIL-b or RIL-c format patch the
92 * RI2 displacement field. We have already made sure that the insn
93 * slot for the patched instruction is within the same 2GB area
94 * as the original instruction (either kernel image or module area).
95 * Therefore the new displacement will always fit.
96 */
97 disp = *(s32 *)&p->ainsn.insn[1];
98 addr = (u64)(unsigned long)p->addr;
99 new_addr = (u64)(unsigned long)p->ainsn.insn;
100 new_disp = ((addr + (disp * 2)) - new_addr) / 2;
101 *(s32 *)&p->ainsn.insn[1] = new_disp;
102 }
103 NOKPROBE_SYMBOL(copy_instruction);
104
105 static inline int is_kernel_addr(void *addr)
106 {
107 return addr < (void *)_end;
108 }
109
110 static int s390_get_insn_slot(struct kprobe *p)
111 {
112 /*
113 * Get an insn slot that is within the same 2GB area like the original
114 * instruction. That way instructions with a 32bit signed displacement
115 * field can be patched and executed within the insn slot.
116 */
117 p->ainsn.insn = NULL;
118 if (is_kernel_addr(p->addr))
119 p->ainsn.insn = get_dmainsn_slot();
120 else if (is_module_addr(p->addr))
121 p->ainsn.insn = get_insn_slot();
122 return p->ainsn.insn ? 0 : -ENOMEM;
123 }
124 NOKPROBE_SYMBOL(s390_get_insn_slot);
125
126 static void s390_free_insn_slot(struct kprobe *p)
127 {
128 if (!p->ainsn.insn)
129 return;
130 if (is_kernel_addr(p->addr))
131 free_dmainsn_slot(p->ainsn.insn, 0);
132 else
133 free_insn_slot(p->ainsn.insn, 0);
134 p->ainsn.insn = NULL;
135 }
136 NOKPROBE_SYMBOL(s390_free_insn_slot);
137
138 int arch_prepare_kprobe(struct kprobe *p)
139 {
140 if ((unsigned long) p->addr & 0x01)
141 return -EINVAL;
142 /* Make sure the probe isn't going on a difficult instruction */
143 if (probe_is_prohibited_opcode(p->addr))
144 return -EINVAL;
145 if (s390_get_insn_slot(p))
146 return -ENOMEM;
147 copy_instruction(p);
148 return 0;
149 }
150 NOKPROBE_SYMBOL(arch_prepare_kprobe);
151
152 int arch_check_ftrace_location(struct kprobe *p)
153 {
154 return 0;
155 }
156
157 struct swap_insn_args {
158 struct kprobe *p;
159 unsigned int arm_kprobe : 1;
160 };
161
162 static int swap_instruction(void *data)
163 {
164 struct swap_insn_args *args = data;
165 struct ftrace_insn new_insn, *insn;
166 struct kprobe *p = args->p;
167 size_t len;
168
169 new_insn.opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
170 len = sizeof(new_insn.opc);
171 if (!p->ainsn.is_ftrace_insn)
172 goto skip_ftrace;
173 len = sizeof(new_insn);
174 insn = (struct ftrace_insn *) p->addr;
175 if (args->arm_kprobe) {
176 if (is_ftrace_nop(insn))
177 new_insn.disp = KPROBE_ON_FTRACE_NOP;
178 else
179 new_insn.disp = KPROBE_ON_FTRACE_CALL;
180 } else {
181 ftrace_generate_call_insn(&new_insn, (unsigned long)p->addr);
182 if (insn->disp == KPROBE_ON_FTRACE_NOP)
183 ftrace_generate_nop_insn(&new_insn);
184 }
185 skip_ftrace:
186 s390_kernel_write(p->addr, &new_insn, len);
187 return 0;
188 }
189 NOKPROBE_SYMBOL(swap_instruction);
190
191 void arch_arm_kprobe(struct kprobe *p)
192 {
193 struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
194
195 stop_machine_cpuslocked(swap_instruction, &args, NULL);
196 }
197 NOKPROBE_SYMBOL(arch_arm_kprobe);
198
199 void arch_disarm_kprobe(struct kprobe *p)
200 {
201 struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
202
203 stop_machine_cpuslocked(swap_instruction, &args, NULL);
204 }
205 NOKPROBE_SYMBOL(arch_disarm_kprobe);
206
207 void arch_remove_kprobe(struct kprobe *p)
208 {
209 s390_free_insn_slot(p);
210 }
211 NOKPROBE_SYMBOL(arch_remove_kprobe);
212
213 static void enable_singlestep(struct kprobe_ctlblk *kcb,
214 struct pt_regs *regs,
215 unsigned long ip)
216 {
217 struct per_regs per_kprobe;
218
219 /* Set up the PER control registers %cr9-%cr11 */
220 per_kprobe.control = PER_EVENT_IFETCH;
221 per_kprobe.start = ip;
222 per_kprobe.end = ip;
223
224 /* Save control regs and psw mask */
225 __ctl_store(kcb->kprobe_saved_ctl, 9, 11);
226 kcb->kprobe_saved_imask = regs->psw.mask &
227 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
228
229 /* Set PER control regs, turns on single step for the given address */
230 __ctl_load(per_kprobe, 9, 11);
231 regs->psw.mask |= PSW_MASK_PER;
232 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
233 regs->psw.addr = ip;
234 }
235 NOKPROBE_SYMBOL(enable_singlestep);
236
237 static void disable_singlestep(struct kprobe_ctlblk *kcb,
238 struct pt_regs *regs,
239 unsigned long ip)
240 {
241 /* Restore control regs and psw mask, set new psw address */
242 __ctl_load(kcb->kprobe_saved_ctl, 9, 11);
243 regs->psw.mask &= ~PSW_MASK_PER;
244 regs->psw.mask |= kcb->kprobe_saved_imask;
245 regs->psw.addr = ip;
246 }
247 NOKPROBE_SYMBOL(disable_singlestep);
248
249 /*
250 * Activate a kprobe by storing its pointer to current_kprobe. The
251 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
252 * two kprobes can be active, see KPROBE_REENTER.
253 */
254 static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
255 {
256 kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
257 kcb->prev_kprobe.status = kcb->kprobe_status;
258 __this_cpu_write(current_kprobe, p);
259 }
260 NOKPROBE_SYMBOL(push_kprobe);
261
262 /*
263 * Deactivate a kprobe by backing up to the previous state. If the
264 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
265 * for any other state prev_kprobe.kp will be NULL.
266 */
267 static void pop_kprobe(struct kprobe_ctlblk *kcb)
268 {
269 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
270 kcb->kprobe_status = kcb->prev_kprobe.status;
271 }
272 NOKPROBE_SYMBOL(pop_kprobe);
273
274 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
275 {
276 ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
277
278 /* Replace the return addr with trampoline addr */
279 regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
280 }
281 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
282
283 static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
284 {
285 switch (kcb->kprobe_status) {
286 case KPROBE_HIT_SSDONE:
287 case KPROBE_HIT_ACTIVE:
288 kprobes_inc_nmissed_count(p);
289 break;
290 case KPROBE_HIT_SS:
291 case KPROBE_REENTER:
292 default:
293 /*
294 * A kprobe on the code path to single step an instruction
295 * is a BUG. The code path resides in the .kprobes.text
296 * section and is executed with interrupts disabled.
297 */
298 printk(KERN_EMERG "Invalid kprobe detected at %p.\n", p->addr);
299 dump_kprobe(p);
300 BUG();
301 }
302 }
303 NOKPROBE_SYMBOL(kprobe_reenter_check);
304
305 static int kprobe_handler(struct pt_regs *regs)
306 {
307 struct kprobe_ctlblk *kcb;
308 struct kprobe *p;
309
310 /*
311 * We want to disable preemption for the entire duration of kprobe
312 * processing. That includes the calls to the pre/post handlers
313 * and single stepping the kprobe instruction.
314 */
315 preempt_disable();
316 kcb = get_kprobe_ctlblk();
317 p = get_kprobe((void *)(regs->psw.addr - 2));
318
319 if (p) {
320 if (kprobe_running()) {
321 /*
322 * We have hit a kprobe while another is still
323 * active. This can happen in the pre and post
324 * handler. Single step the instruction of the
325 * new probe but do not call any handler function
326 * of this secondary kprobe.
327 * push_kprobe and pop_kprobe saves and restores
328 * the currently active kprobe.
329 */
330 kprobe_reenter_check(kcb, p);
331 push_kprobe(kcb, p);
332 kcb->kprobe_status = KPROBE_REENTER;
333 } else {
334 /*
335 * If we have no pre-handler or it returned 0, we
336 * continue with single stepping. If we have a
337 * pre-handler and it returned non-zero, it prepped
338 * for calling the break_handler below on re-entry
339 * for jprobe processing, so get out doing nothing
340 * more here.
341 */
342 push_kprobe(kcb, p);
343 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
344 if (p->pre_handler && p->pre_handler(p, regs))
345 return 1;
346 kcb->kprobe_status = KPROBE_HIT_SS;
347 }
348 enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
349 return 1;
350 } else if (kprobe_running()) {
351 p = __this_cpu_read(current_kprobe);
352 if (p->break_handler && p->break_handler(p, regs)) {
353 /*
354 * Continuation after the jprobe completed and
355 * caused the jprobe_return trap. The jprobe
356 * break_handler "returns" to the original
357 * function that still has the kprobe breakpoint
358 * installed. We continue with single stepping.
359 */
360 kcb->kprobe_status = KPROBE_HIT_SS;
361 enable_singlestep(kcb, regs,
362 (unsigned long) p->ainsn.insn);
363 return 1;
364 } /* else:
365 * No kprobe at this address and the current kprobe
366 * has no break handler (no jprobe!). The kernel just
367 * exploded, let the standard trap handler pick up the
368 * pieces.
369 */
370 } /* else:
371 * No kprobe at this address and no active kprobe. The trap has
372 * not been caused by a kprobe breakpoint. The race of breakpoint
373 * vs. kprobe remove does not exist because on s390 as we use
374 * stop_machine to arm/disarm the breakpoints.
375 */
376 preempt_enable_no_resched();
377 return 0;
378 }
379 NOKPROBE_SYMBOL(kprobe_handler);
380
381 /*
382 * Function return probe trampoline:
383 * - init_kprobes() establishes a probepoint here
384 * - When the probed function returns, this probe
385 * causes the handlers to fire
386 */
387 static void __used kretprobe_trampoline_holder(void)
388 {
389 asm volatile(".global kretprobe_trampoline\n"
390 "kretprobe_trampoline: bcr 0,0\n");
391 }
392
393 /*
394 * Called when the probe at kretprobe trampoline is hit
395 */
396 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
397 {
398 struct kretprobe_instance *ri;
399 struct hlist_head *head, empty_rp;
400 struct hlist_node *tmp;
401 unsigned long flags, orig_ret_address;
402 unsigned long trampoline_address;
403 kprobe_opcode_t *correct_ret_addr;
404
405 INIT_HLIST_HEAD(&empty_rp);
406 kretprobe_hash_lock(current, &head, &flags);
407
408 /*
409 * It is possible to have multiple instances associated with a given
410 * task either because an multiple functions in the call path
411 * have a return probe installed on them, and/or more than one return
412 * return probe was registered for a target function.
413 *
414 * We can handle this because:
415 * - instances are always inserted at the head of the list
416 * - when multiple return probes are registered for the same
417 * function, the first instance's ret_addr will point to the
418 * real return address, and all the rest will point to
419 * kretprobe_trampoline
420 */
421 ri = NULL;
422 orig_ret_address = 0;
423 correct_ret_addr = NULL;
424 trampoline_address = (unsigned long) &kretprobe_trampoline;
425 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
426 if (ri->task != current)
427 /* another task is sharing our hash bucket */
428 continue;
429
430 orig_ret_address = (unsigned long) ri->ret_addr;
431
432 if (orig_ret_address != trampoline_address)
433 /*
434 * This is the real return address. Any other
435 * instances associated with this task are for
436 * other calls deeper on the call stack
437 */
438 break;
439 }
440
441 kretprobe_assert(ri, orig_ret_address, trampoline_address);
442
443 correct_ret_addr = ri->ret_addr;
444 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
445 if (ri->task != current)
446 /* another task is sharing our hash bucket */
447 continue;
448
449 orig_ret_address = (unsigned long) ri->ret_addr;
450
451 if (ri->rp && ri->rp->handler) {
452 ri->ret_addr = correct_ret_addr;
453 ri->rp->handler(ri, regs);
454 }
455
456 recycle_rp_inst(ri, &empty_rp);
457
458 if (orig_ret_address != trampoline_address)
459 /*
460 * This is the real return address. Any other
461 * instances associated with this task are for
462 * other calls deeper on the call stack
463 */
464 break;
465 }
466
467 regs->psw.addr = orig_ret_address;
468
469 pop_kprobe(get_kprobe_ctlblk());
470 kretprobe_hash_unlock(current, &flags);
471 preempt_enable_no_resched();
472
473 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
474 hlist_del(&ri->hlist);
475 kfree(ri);
476 }
477 /*
478 * By returning a non-zero value, we are telling
479 * kprobe_handler() that we don't want the post_handler
480 * to run (and have re-enabled preemption)
481 */
482 return 1;
483 }
484 NOKPROBE_SYMBOL(trampoline_probe_handler);
485
486 /*
487 * Called after single-stepping. p->addr is the address of the
488 * instruction whose first byte has been replaced by the "breakpoint"
489 * instruction. To avoid the SMP problems that can occur when we
490 * temporarily put back the original opcode to single-step, we
491 * single-stepped a copy of the instruction. The address of this
492 * copy is p->ainsn.insn.
493 */
494 static void resume_execution(struct kprobe *p, struct pt_regs *regs)
495 {
496 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
497 unsigned long ip = regs->psw.addr;
498 int fixup = probe_get_fixup_type(p->ainsn.insn);
499
500 /* Check if the kprobes location is an enabled ftrace caller */
501 if (p->ainsn.is_ftrace_insn) {
502 struct ftrace_insn *insn = (struct ftrace_insn *) p->addr;
503 struct ftrace_insn call_insn;
504
505 ftrace_generate_call_insn(&call_insn, (unsigned long) p->addr);
506 /*
507 * A kprobe on an enabled ftrace call site actually single
508 * stepped an unconditional branch (ftrace nop equivalent).
509 * Now we need to fixup things and pretend that a brasl r0,...
510 * was executed instead.
511 */
512 if (insn->disp == KPROBE_ON_FTRACE_CALL) {
513 ip += call_insn.disp * 2 - MCOUNT_INSN_SIZE;
514 regs->gprs[0] = (unsigned long)p->addr + sizeof(*insn);
515 }
516 }
517
518 if (fixup & FIXUP_PSW_NORMAL)
519 ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
520
521 if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
522 int ilen = insn_length(p->ainsn.insn[0] >> 8);
523 if (ip - (unsigned long) p->ainsn.insn == ilen)
524 ip = (unsigned long) p->addr + ilen;
525 }
526
527 if (fixup & FIXUP_RETURN_REGISTER) {
528 int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
529 regs->gprs[reg] += (unsigned long) p->addr -
530 (unsigned long) p->ainsn.insn;
531 }
532
533 disable_singlestep(kcb, regs, ip);
534 }
535 NOKPROBE_SYMBOL(resume_execution);
536
537 static int post_kprobe_handler(struct pt_regs *regs)
538 {
539 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
540 struct kprobe *p = kprobe_running();
541
542 if (!p)
543 return 0;
544
545 if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
546 kcb->kprobe_status = KPROBE_HIT_SSDONE;
547 p->post_handler(p, regs, 0);
548 }
549
550 resume_execution(p, regs);
551 pop_kprobe(kcb);
552 preempt_enable_no_resched();
553
554 /*
555 * if somebody else is singlestepping across a probe point, psw mask
556 * will have PER set, in which case, continue the remaining processing
557 * of do_single_step, as if this is not a probe hit.
558 */
559 if (regs->psw.mask & PSW_MASK_PER)
560 return 0;
561
562 return 1;
563 }
564 NOKPROBE_SYMBOL(post_kprobe_handler);
565
566 static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
567 {
568 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
569 struct kprobe *p = kprobe_running();
570 const struct exception_table_entry *entry;
571
572 switch(kcb->kprobe_status) {
573 case KPROBE_HIT_SS:
574 case KPROBE_REENTER:
575 /*
576 * We are here because the instruction being single
577 * stepped caused a page fault. We reset the current
578 * kprobe and the nip points back to the probe address
579 * and allow the page fault handler to continue as a
580 * normal page fault.
581 */
582 disable_singlestep(kcb, regs, (unsigned long) p->addr);
583 pop_kprobe(kcb);
584 preempt_enable_no_resched();
585 break;
586 case KPROBE_HIT_ACTIVE:
587 case KPROBE_HIT_SSDONE:
588 /*
589 * We increment the nmissed count for accounting,
590 * we can also use npre/npostfault count for accounting
591 * these specific fault cases.
592 */
593 kprobes_inc_nmissed_count(p);
594
595 /*
596 * We come here because instructions in the pre/post
597 * handler caused the page_fault, this could happen
598 * if handler tries to access user space by
599 * copy_from_user(), get_user() etc. Let the
600 * user-specified handler try to fix it first.
601 */
602 if (p->fault_handler && p->fault_handler(p, regs, trapnr))
603 return 1;
604
605 /*
606 * In case the user-specified fault handler returned
607 * zero, try to fix up.
608 */
609 entry = search_exception_tables(regs->psw.addr);
610 if (entry) {
611 regs->psw.addr = extable_fixup(entry);
612 return 1;
613 }
614
615 /*
616 * fixup_exception() could not handle it,
617 * Let do_page_fault() fix it.
618 */
619 break;
620 default:
621 break;
622 }
623 return 0;
624 }
625 NOKPROBE_SYMBOL(kprobe_trap_handler);
626
627 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
628 {
629 int ret;
630
631 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
632 local_irq_disable();
633 ret = kprobe_trap_handler(regs, trapnr);
634 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
635 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
636 return ret;
637 }
638 NOKPROBE_SYMBOL(kprobe_fault_handler);
639
640 /*
641 * Wrapper routine to for handling exceptions.
642 */
643 int kprobe_exceptions_notify(struct notifier_block *self,
644 unsigned long val, void *data)
645 {
646 struct die_args *args = (struct die_args *) data;
647 struct pt_regs *regs = args->regs;
648 int ret = NOTIFY_DONE;
649
650 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
651 local_irq_disable();
652
653 switch (val) {
654 case DIE_BPT:
655 if (kprobe_handler(regs))
656 ret = NOTIFY_STOP;
657 break;
658 case DIE_SSTEP:
659 if (post_kprobe_handler(regs))
660 ret = NOTIFY_STOP;
661 break;
662 case DIE_TRAP:
663 if (!preemptible() && kprobe_running() &&
664 kprobe_trap_handler(regs, args->trapnr))
665 ret = NOTIFY_STOP;
666 break;
667 default:
668 break;
669 }
670
671 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
672 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
673
674 return ret;
675 }
676 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
677
678 int setjmp_pre_handler(struct kprobe *p, struct pt_regs *regs)
679 {
680 struct jprobe *jp = container_of(p, struct jprobe, kp);
681 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
682 unsigned long stack;
683
684 memcpy(&kcb->jprobe_saved_regs, regs, sizeof(struct pt_regs));
685
686 /* setup return addr to the jprobe handler routine */
687 regs->psw.addr = (unsigned long) jp->entry;
688 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
689
690 /* r15 is the stack pointer */
691 stack = (unsigned long) regs->gprs[15];
692
693 memcpy(kcb->jprobes_stack, (void *) stack, MIN_STACK_SIZE(stack));
694
695 /*
696 * jprobes use jprobe_return() which skips the normal return
697 * path of the function, and this messes up the accounting of the
698 * function graph tracer to get messed up.
699 *
700 * Pause function graph tracing while performing the jprobe function.
701 */
702 pause_graph_tracing();
703 return 1;
704 }
705 NOKPROBE_SYMBOL(setjmp_pre_handler);
706
707 void jprobe_return(void)
708 {
709 asm volatile(".word 0x0002");
710 }
711 NOKPROBE_SYMBOL(jprobe_return);
712
713 int longjmp_break_handler(struct kprobe *p, struct pt_regs *regs)
714 {
715 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
716 unsigned long stack;
717
718 /* It's OK to start function graph tracing again */
719 unpause_graph_tracing();
720
721 stack = (unsigned long) kcb->jprobe_saved_regs.gprs[15];
722
723 /* Put the regs back */
724 memcpy(regs, &kcb->jprobe_saved_regs, sizeof(struct pt_regs));
725 /* put the stack back */
726 memcpy((void *) stack, kcb->jprobes_stack, MIN_STACK_SIZE(stack));
727 preempt_enable_no_resched();
728 return 1;
729 }
730 NOKPROBE_SYMBOL(longjmp_break_handler);
731
732 static struct kprobe trampoline = {
733 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
734 .pre_handler = trampoline_probe_handler
735 };
736
737 int __init arch_init_kprobes(void)
738 {
739 return register_kprobe(&trampoline);
740 }
741
742 int arch_trampoline_kprobe(struct kprobe *p)
743 {
744 return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
745 }
746 NOKPROBE_SYMBOL(arch_trampoline_kprobe);