]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/s390/kernel/kprobes.c
548d0ea9808d28a6f98a7541efcc8117c05a65b2
[mirror_ubuntu-focal-kernel.git] / arch / s390 / kernel / kprobes.c
1 // SPDX-License-Identifier: GPL-2.0+
2 /*
3 * Kernel Probes (KProbes)
4 *
5 * Copyright IBM Corp. 2002, 2006
6 *
7 * s390 port, used ppc64 as template. Mike Grundy <grundym@us.ibm.com>
8 */
9
10 #include <linux/kprobes.h>
11 #include <linux/ptrace.h>
12 #include <linux/preempt.h>
13 #include <linux/stop_machine.h>
14 #include <linux/kdebug.h>
15 #include <linux/uaccess.h>
16 #include <linux/extable.h>
17 #include <linux/module.h>
18 #include <linux/slab.h>
19 #include <linux/hardirq.h>
20 #include <linux/ftrace.h>
21 #include <asm/set_memory.h>
22 #include <asm/sections.h>
23 #include <asm/dis.h>
24
25 DEFINE_PER_CPU(struct kprobe *, current_kprobe);
26 DEFINE_PER_CPU(struct kprobe_ctlblk, kprobe_ctlblk);
27
28 struct kretprobe_blackpoint kretprobe_blacklist[] = { };
29
30 DEFINE_INSN_CACHE_OPS(s390_insn);
31
32 static int insn_page_in_use;
33 static char insn_page[PAGE_SIZE] __aligned(PAGE_SIZE);
34
35 static void *alloc_s390_insn_page(void)
36 {
37 if (xchg(&insn_page_in_use, 1) == 1)
38 return NULL;
39 set_memory_x((unsigned long) &insn_page, 1);
40 return &insn_page;
41 }
42
43 static void free_s390_insn_page(void *page)
44 {
45 set_memory_nx((unsigned long) page, 1);
46 xchg(&insn_page_in_use, 0);
47 }
48
49 struct kprobe_insn_cache kprobe_s390_insn_slots = {
50 .mutex = __MUTEX_INITIALIZER(kprobe_s390_insn_slots.mutex),
51 .alloc = alloc_s390_insn_page,
52 .free = free_s390_insn_page,
53 .pages = LIST_HEAD_INIT(kprobe_s390_insn_slots.pages),
54 .insn_size = MAX_INSN_SIZE,
55 };
56
57 static void copy_instruction(struct kprobe *p)
58 {
59 s64 disp, new_disp;
60 u64 addr, new_addr;
61
62 memcpy(p->ainsn.insn, p->addr, insn_length(*p->addr >> 8));
63 p->opcode = p->ainsn.insn[0];
64 if (!probe_is_insn_relative_long(p->ainsn.insn))
65 return;
66 /*
67 * For pc-relative instructions in RIL-b or RIL-c format patch the
68 * RI2 displacement field. We have already made sure that the insn
69 * slot for the patched instruction is within the same 2GB area
70 * as the original instruction (either kernel image or module area).
71 * Therefore the new displacement will always fit.
72 */
73 disp = *(s32 *)&p->ainsn.insn[1];
74 addr = (u64)(unsigned long)p->addr;
75 new_addr = (u64)(unsigned long)p->ainsn.insn;
76 new_disp = ((addr + (disp * 2)) - new_addr) / 2;
77 *(s32 *)&p->ainsn.insn[1] = new_disp;
78 }
79 NOKPROBE_SYMBOL(copy_instruction);
80
81 static inline int is_kernel_addr(void *addr)
82 {
83 return addr < (void *)_end;
84 }
85
86 static int s390_get_insn_slot(struct kprobe *p)
87 {
88 /*
89 * Get an insn slot that is within the same 2GB area like the original
90 * instruction. That way instructions with a 32bit signed displacement
91 * field can be patched and executed within the insn slot.
92 */
93 p->ainsn.insn = NULL;
94 if (is_kernel_addr(p->addr))
95 p->ainsn.insn = get_s390_insn_slot();
96 else if (is_module_addr(p->addr))
97 p->ainsn.insn = get_insn_slot();
98 return p->ainsn.insn ? 0 : -ENOMEM;
99 }
100 NOKPROBE_SYMBOL(s390_get_insn_slot);
101
102 static void s390_free_insn_slot(struct kprobe *p)
103 {
104 if (!p->ainsn.insn)
105 return;
106 if (is_kernel_addr(p->addr))
107 free_s390_insn_slot(p->ainsn.insn, 0);
108 else
109 free_insn_slot(p->ainsn.insn, 0);
110 p->ainsn.insn = NULL;
111 }
112 NOKPROBE_SYMBOL(s390_free_insn_slot);
113
114 int arch_prepare_kprobe(struct kprobe *p)
115 {
116 if ((unsigned long) p->addr & 0x01)
117 return -EINVAL;
118 /* Make sure the probe isn't going on a difficult instruction */
119 if (probe_is_prohibited_opcode(p->addr))
120 return -EINVAL;
121 if (s390_get_insn_slot(p))
122 return -ENOMEM;
123 copy_instruction(p);
124 return 0;
125 }
126 NOKPROBE_SYMBOL(arch_prepare_kprobe);
127
128 struct swap_insn_args {
129 struct kprobe *p;
130 unsigned int arm_kprobe : 1;
131 };
132
133 static int swap_instruction(void *data)
134 {
135 struct swap_insn_args *args = data;
136 struct kprobe *p = args->p;
137 u16 opc;
138
139 opc = args->arm_kprobe ? BREAKPOINT_INSTRUCTION : p->opcode;
140 s390_kernel_write(p->addr, &opc, sizeof(opc));
141 return 0;
142 }
143 NOKPROBE_SYMBOL(swap_instruction);
144
145 void arch_arm_kprobe(struct kprobe *p)
146 {
147 struct swap_insn_args args = {.p = p, .arm_kprobe = 1};
148
149 stop_machine_cpuslocked(swap_instruction, &args, NULL);
150 }
151 NOKPROBE_SYMBOL(arch_arm_kprobe);
152
153 void arch_disarm_kprobe(struct kprobe *p)
154 {
155 struct swap_insn_args args = {.p = p, .arm_kprobe = 0};
156
157 stop_machine_cpuslocked(swap_instruction, &args, NULL);
158 }
159 NOKPROBE_SYMBOL(arch_disarm_kprobe);
160
161 void arch_remove_kprobe(struct kprobe *p)
162 {
163 s390_free_insn_slot(p);
164 }
165 NOKPROBE_SYMBOL(arch_remove_kprobe);
166
167 static void enable_singlestep(struct kprobe_ctlblk *kcb,
168 struct pt_regs *regs,
169 unsigned long ip)
170 {
171 struct per_regs per_kprobe;
172
173 /* Set up the PER control registers %cr9-%cr11 */
174 per_kprobe.control = PER_EVENT_IFETCH;
175 per_kprobe.start = ip;
176 per_kprobe.end = ip;
177
178 /* Save control regs and psw mask */
179 __ctl_store(kcb->kprobe_saved_ctl, 9, 11);
180 kcb->kprobe_saved_imask = regs->psw.mask &
181 (PSW_MASK_PER | PSW_MASK_IO | PSW_MASK_EXT);
182
183 /* Set PER control regs, turns on single step for the given address */
184 __ctl_load(per_kprobe, 9, 11);
185 regs->psw.mask |= PSW_MASK_PER;
186 regs->psw.mask &= ~(PSW_MASK_IO | PSW_MASK_EXT);
187 regs->psw.addr = ip;
188 }
189 NOKPROBE_SYMBOL(enable_singlestep);
190
191 static void disable_singlestep(struct kprobe_ctlblk *kcb,
192 struct pt_regs *regs,
193 unsigned long ip)
194 {
195 /* Restore control regs and psw mask, set new psw address */
196 __ctl_load(kcb->kprobe_saved_ctl, 9, 11);
197 regs->psw.mask &= ~PSW_MASK_PER;
198 regs->psw.mask |= kcb->kprobe_saved_imask;
199 regs->psw.addr = ip;
200 }
201 NOKPROBE_SYMBOL(disable_singlestep);
202
203 /*
204 * Activate a kprobe by storing its pointer to current_kprobe. The
205 * previous kprobe is stored in kcb->prev_kprobe. A stack of up to
206 * two kprobes can be active, see KPROBE_REENTER.
207 */
208 static void push_kprobe(struct kprobe_ctlblk *kcb, struct kprobe *p)
209 {
210 kcb->prev_kprobe.kp = __this_cpu_read(current_kprobe);
211 kcb->prev_kprobe.status = kcb->kprobe_status;
212 __this_cpu_write(current_kprobe, p);
213 }
214 NOKPROBE_SYMBOL(push_kprobe);
215
216 /*
217 * Deactivate a kprobe by backing up to the previous state. If the
218 * current state is KPROBE_REENTER prev_kprobe.kp will be non-NULL,
219 * for any other state prev_kprobe.kp will be NULL.
220 */
221 static void pop_kprobe(struct kprobe_ctlblk *kcb)
222 {
223 __this_cpu_write(current_kprobe, kcb->prev_kprobe.kp);
224 kcb->kprobe_status = kcb->prev_kprobe.status;
225 }
226 NOKPROBE_SYMBOL(pop_kprobe);
227
228 void arch_prepare_kretprobe(struct kretprobe_instance *ri, struct pt_regs *regs)
229 {
230 ri->ret_addr = (kprobe_opcode_t *) regs->gprs[14];
231
232 /* Replace the return addr with trampoline addr */
233 regs->gprs[14] = (unsigned long) &kretprobe_trampoline;
234 }
235 NOKPROBE_SYMBOL(arch_prepare_kretprobe);
236
237 static void kprobe_reenter_check(struct kprobe_ctlblk *kcb, struct kprobe *p)
238 {
239 switch (kcb->kprobe_status) {
240 case KPROBE_HIT_SSDONE:
241 case KPROBE_HIT_ACTIVE:
242 kprobes_inc_nmissed_count(p);
243 break;
244 case KPROBE_HIT_SS:
245 case KPROBE_REENTER:
246 default:
247 /*
248 * A kprobe on the code path to single step an instruction
249 * is a BUG. The code path resides in the .kprobes.text
250 * section and is executed with interrupts disabled.
251 */
252 pr_err("Invalid kprobe detected.\n");
253 dump_kprobe(p);
254 BUG();
255 }
256 }
257 NOKPROBE_SYMBOL(kprobe_reenter_check);
258
259 static int kprobe_handler(struct pt_regs *regs)
260 {
261 struct kprobe_ctlblk *kcb;
262 struct kprobe *p;
263
264 /*
265 * We want to disable preemption for the entire duration of kprobe
266 * processing. That includes the calls to the pre/post handlers
267 * and single stepping the kprobe instruction.
268 */
269 preempt_disable();
270 kcb = get_kprobe_ctlblk();
271 p = get_kprobe((void *)(regs->psw.addr - 2));
272
273 if (p) {
274 if (kprobe_running()) {
275 /*
276 * We have hit a kprobe while another is still
277 * active. This can happen in the pre and post
278 * handler. Single step the instruction of the
279 * new probe but do not call any handler function
280 * of this secondary kprobe.
281 * push_kprobe and pop_kprobe saves and restores
282 * the currently active kprobe.
283 */
284 kprobe_reenter_check(kcb, p);
285 push_kprobe(kcb, p);
286 kcb->kprobe_status = KPROBE_REENTER;
287 } else {
288 /*
289 * If we have no pre-handler or it returned 0, we
290 * continue with single stepping. If we have a
291 * pre-handler and it returned non-zero, it prepped
292 * for changing execution path, so get out doing
293 * nothing more here.
294 */
295 push_kprobe(kcb, p);
296 kcb->kprobe_status = KPROBE_HIT_ACTIVE;
297 if (p->pre_handler && p->pre_handler(p, regs)) {
298 pop_kprobe(kcb);
299 preempt_enable_no_resched();
300 return 1;
301 }
302 kcb->kprobe_status = KPROBE_HIT_SS;
303 }
304 enable_singlestep(kcb, regs, (unsigned long) p->ainsn.insn);
305 return 1;
306 } /* else:
307 * No kprobe at this address and no active kprobe. The trap has
308 * not been caused by a kprobe breakpoint. The race of breakpoint
309 * vs. kprobe remove does not exist because on s390 as we use
310 * stop_machine to arm/disarm the breakpoints.
311 */
312 preempt_enable_no_resched();
313 return 0;
314 }
315 NOKPROBE_SYMBOL(kprobe_handler);
316
317 /*
318 * Function return probe trampoline:
319 * - init_kprobes() establishes a probepoint here
320 * - When the probed function returns, this probe
321 * causes the handlers to fire
322 */
323 static void __used kretprobe_trampoline_holder(void)
324 {
325 asm volatile(".global kretprobe_trampoline\n"
326 "kretprobe_trampoline: bcr 0,0\n");
327 }
328
329 /*
330 * Called when the probe at kretprobe trampoline is hit
331 */
332 static int trampoline_probe_handler(struct kprobe *p, struct pt_regs *regs)
333 {
334 struct kretprobe_instance *ri;
335 struct hlist_head *head, empty_rp;
336 struct hlist_node *tmp;
337 unsigned long flags, orig_ret_address;
338 unsigned long trampoline_address;
339 kprobe_opcode_t *correct_ret_addr;
340
341 INIT_HLIST_HEAD(&empty_rp);
342 kretprobe_hash_lock(current, &head, &flags);
343
344 /*
345 * It is possible to have multiple instances associated with a given
346 * task either because an multiple functions in the call path
347 * have a return probe installed on them, and/or more than one return
348 * return probe was registered for a target function.
349 *
350 * We can handle this because:
351 * - instances are always inserted at the head of the list
352 * - when multiple return probes are registered for the same
353 * function, the first instance's ret_addr will point to the
354 * real return address, and all the rest will point to
355 * kretprobe_trampoline
356 */
357 ri = NULL;
358 orig_ret_address = 0;
359 correct_ret_addr = NULL;
360 trampoline_address = (unsigned long) &kretprobe_trampoline;
361 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
362 if (ri->task != current)
363 /* another task is sharing our hash bucket */
364 continue;
365
366 orig_ret_address = (unsigned long) ri->ret_addr;
367
368 if (orig_ret_address != trampoline_address)
369 /*
370 * This is the real return address. Any other
371 * instances associated with this task are for
372 * other calls deeper on the call stack
373 */
374 break;
375 }
376
377 kretprobe_assert(ri, orig_ret_address, trampoline_address);
378
379 correct_ret_addr = ri->ret_addr;
380 hlist_for_each_entry_safe(ri, tmp, head, hlist) {
381 if (ri->task != current)
382 /* another task is sharing our hash bucket */
383 continue;
384
385 orig_ret_address = (unsigned long) ri->ret_addr;
386
387 if (ri->rp && ri->rp->handler) {
388 ri->ret_addr = correct_ret_addr;
389 ri->rp->handler(ri, regs);
390 }
391
392 recycle_rp_inst(ri, &empty_rp);
393
394 if (orig_ret_address != trampoline_address)
395 /*
396 * This is the real return address. Any other
397 * instances associated with this task are for
398 * other calls deeper on the call stack
399 */
400 break;
401 }
402
403 regs->psw.addr = orig_ret_address;
404
405 kretprobe_hash_unlock(current, &flags);
406
407 hlist_for_each_entry_safe(ri, tmp, &empty_rp, hlist) {
408 hlist_del(&ri->hlist);
409 kfree(ri);
410 }
411 /*
412 * By returning a non-zero value, we are telling
413 * kprobe_handler() that we don't want the post_handler
414 * to run (and have re-enabled preemption)
415 */
416 return 1;
417 }
418 NOKPROBE_SYMBOL(trampoline_probe_handler);
419
420 /*
421 * Called after single-stepping. p->addr is the address of the
422 * instruction whose first byte has been replaced by the "breakpoint"
423 * instruction. To avoid the SMP problems that can occur when we
424 * temporarily put back the original opcode to single-step, we
425 * single-stepped a copy of the instruction. The address of this
426 * copy is p->ainsn.insn.
427 */
428 static void resume_execution(struct kprobe *p, struct pt_regs *regs)
429 {
430 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
431 unsigned long ip = regs->psw.addr;
432 int fixup = probe_get_fixup_type(p->ainsn.insn);
433
434 if (fixup & FIXUP_PSW_NORMAL)
435 ip += (unsigned long) p->addr - (unsigned long) p->ainsn.insn;
436
437 if (fixup & FIXUP_BRANCH_NOT_TAKEN) {
438 int ilen = insn_length(p->ainsn.insn[0] >> 8);
439 if (ip - (unsigned long) p->ainsn.insn == ilen)
440 ip = (unsigned long) p->addr + ilen;
441 }
442
443 if (fixup & FIXUP_RETURN_REGISTER) {
444 int reg = (p->ainsn.insn[0] & 0xf0) >> 4;
445 regs->gprs[reg] += (unsigned long) p->addr -
446 (unsigned long) p->ainsn.insn;
447 }
448
449 disable_singlestep(kcb, regs, ip);
450 }
451 NOKPROBE_SYMBOL(resume_execution);
452
453 static int post_kprobe_handler(struct pt_regs *regs)
454 {
455 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
456 struct kprobe *p = kprobe_running();
457
458 if (!p)
459 return 0;
460
461 if (kcb->kprobe_status != KPROBE_REENTER && p->post_handler) {
462 kcb->kprobe_status = KPROBE_HIT_SSDONE;
463 p->post_handler(p, regs, 0);
464 }
465
466 resume_execution(p, regs);
467 pop_kprobe(kcb);
468 preempt_enable_no_resched();
469
470 /*
471 * if somebody else is singlestepping across a probe point, psw mask
472 * will have PER set, in which case, continue the remaining processing
473 * of do_single_step, as if this is not a probe hit.
474 */
475 if (regs->psw.mask & PSW_MASK_PER)
476 return 0;
477
478 return 1;
479 }
480 NOKPROBE_SYMBOL(post_kprobe_handler);
481
482 static int kprobe_trap_handler(struct pt_regs *regs, int trapnr)
483 {
484 struct kprobe_ctlblk *kcb = get_kprobe_ctlblk();
485 struct kprobe *p = kprobe_running();
486 const struct exception_table_entry *entry;
487
488 switch(kcb->kprobe_status) {
489 case KPROBE_HIT_SS:
490 case KPROBE_REENTER:
491 /*
492 * We are here because the instruction being single
493 * stepped caused a page fault. We reset the current
494 * kprobe and the nip points back to the probe address
495 * and allow the page fault handler to continue as a
496 * normal page fault.
497 */
498 disable_singlestep(kcb, regs, (unsigned long) p->addr);
499 pop_kprobe(kcb);
500 preempt_enable_no_resched();
501 break;
502 case KPROBE_HIT_ACTIVE:
503 case KPROBE_HIT_SSDONE:
504 /*
505 * We increment the nmissed count for accounting,
506 * we can also use npre/npostfault count for accounting
507 * these specific fault cases.
508 */
509 kprobes_inc_nmissed_count(p);
510
511 /*
512 * We come here because instructions in the pre/post
513 * handler caused the page_fault, this could happen
514 * if handler tries to access user space by
515 * copy_from_user(), get_user() etc. Let the
516 * user-specified handler try to fix it first.
517 */
518 if (p->fault_handler && p->fault_handler(p, regs, trapnr))
519 return 1;
520
521 /*
522 * In case the user-specified fault handler returned
523 * zero, try to fix up.
524 */
525 entry = s390_search_extables(regs->psw.addr);
526 if (entry) {
527 regs->psw.addr = extable_fixup(entry);
528 return 1;
529 }
530
531 /*
532 * fixup_exception() could not handle it,
533 * Let do_page_fault() fix it.
534 */
535 break;
536 default:
537 break;
538 }
539 return 0;
540 }
541 NOKPROBE_SYMBOL(kprobe_trap_handler);
542
543 int kprobe_fault_handler(struct pt_regs *regs, int trapnr)
544 {
545 int ret;
546
547 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
548 local_irq_disable();
549 ret = kprobe_trap_handler(regs, trapnr);
550 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
551 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
552 return ret;
553 }
554 NOKPROBE_SYMBOL(kprobe_fault_handler);
555
556 /*
557 * Wrapper routine to for handling exceptions.
558 */
559 int kprobe_exceptions_notify(struct notifier_block *self,
560 unsigned long val, void *data)
561 {
562 struct die_args *args = (struct die_args *) data;
563 struct pt_regs *regs = args->regs;
564 int ret = NOTIFY_DONE;
565
566 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
567 local_irq_disable();
568
569 switch (val) {
570 case DIE_BPT:
571 if (kprobe_handler(regs))
572 ret = NOTIFY_STOP;
573 break;
574 case DIE_SSTEP:
575 if (post_kprobe_handler(regs))
576 ret = NOTIFY_STOP;
577 break;
578 case DIE_TRAP:
579 if (!preemptible() && kprobe_running() &&
580 kprobe_trap_handler(regs, args->trapnr))
581 ret = NOTIFY_STOP;
582 break;
583 default:
584 break;
585 }
586
587 if (regs->psw.mask & (PSW_MASK_IO | PSW_MASK_EXT))
588 local_irq_restore(regs->psw.mask & ~PSW_MASK_PER);
589
590 return ret;
591 }
592 NOKPROBE_SYMBOL(kprobe_exceptions_notify);
593
594 static struct kprobe trampoline = {
595 .addr = (kprobe_opcode_t *) &kretprobe_trampoline,
596 .pre_handler = trampoline_probe_handler
597 };
598
599 int __init arch_init_kprobes(void)
600 {
601 return register_kprobe(&trampoline);
602 }
603
604 int arch_trampoline_kprobe(struct kprobe *p)
605 {
606 return p->addr == (kprobe_opcode_t *) &kretprobe_trampoline;
607 }
608 NOKPROBE_SYMBOL(arch_trampoline_kprobe);