]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/s390/kernel/perf_cpum_sf.c
mtd: nand: atmel: Relax tADL_min constraint
[mirror_ubuntu-artful-kernel.git] / arch / s390 / kernel / perf_cpum_sf.c
1 /*
2 * Performance event support for the System z CPU-measurement Sampling Facility
3 *
4 * Copyright IBM Corp. 2013
5 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
6 *
7 * This program is free software; you can redistribute it and/or modify
8 * it under the terms of the GNU General Public License (version 2 only)
9 * as published by the Free Software Foundation.
10 */
11 #define KMSG_COMPONENT "cpum_sf"
12 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
13
14 #include <linux/kernel.h>
15 #include <linux/kernel_stat.h>
16 #include <linux/perf_event.h>
17 #include <linux/percpu.h>
18 #include <linux/notifier.h>
19 #include <linux/export.h>
20 #include <linux/slab.h>
21 #include <linux/mm.h>
22 #include <linux/moduleparam.h>
23 #include <asm/cpu_mf.h>
24 #include <asm/irq.h>
25 #include <asm/debug.h>
26 #include <asm/timex.h>
27
28 /* Minimum number of sample-data-block-tables:
29 * At least one table is required for the sampling buffer structure.
30 * A single table contains up to 511 pointers to sample-data-blocks.
31 */
32 #define CPUM_SF_MIN_SDBT 1
33
34 /* Number of sample-data-blocks per sample-data-block-table (SDBT):
35 * A table contains SDB pointers (8 bytes) and one table-link entry
36 * that points to the origin of the next SDBT.
37 */
38 #define CPUM_SF_SDB_PER_TABLE ((PAGE_SIZE - 8) / 8)
39
40 /* Maximum page offset for an SDBT table-link entry:
41 * If this page offset is reached, a table-link entry to the next SDBT
42 * must be added.
43 */
44 #define CPUM_SF_SDBT_TL_OFFSET (CPUM_SF_SDB_PER_TABLE * 8)
45 static inline int require_table_link(const void *sdbt)
46 {
47 return ((unsigned long) sdbt & ~PAGE_MASK) == CPUM_SF_SDBT_TL_OFFSET;
48 }
49
50 /* Minimum and maximum sampling buffer sizes:
51 *
52 * This number represents the maximum size of the sampling buffer taking
53 * the number of sample-data-block-tables into account. Note that these
54 * numbers apply to the basic-sampling function only.
55 * The maximum number of SDBs is increased by CPUM_SF_SDB_DIAG_FACTOR if
56 * the diagnostic-sampling function is active.
57 *
58 * Sampling buffer size Buffer characteristics
59 * ---------------------------------------------------
60 * 64KB == 16 pages (4KB per page)
61 * 1 page for SDB-tables
62 * 15 pages for SDBs
63 *
64 * 32MB == 8192 pages (4KB per page)
65 * 16 pages for SDB-tables
66 * 8176 pages for SDBs
67 */
68 static unsigned long __read_mostly CPUM_SF_MIN_SDB = 15;
69 static unsigned long __read_mostly CPUM_SF_MAX_SDB = 8176;
70 static unsigned long __read_mostly CPUM_SF_SDB_DIAG_FACTOR = 1;
71
72 struct sf_buffer {
73 unsigned long *sdbt; /* Sample-data-block-table origin */
74 /* buffer characteristics (required for buffer increments) */
75 unsigned long num_sdb; /* Number of sample-data-blocks */
76 unsigned long num_sdbt; /* Number of sample-data-block-tables */
77 unsigned long *tail; /* last sample-data-block-table */
78 };
79
80 struct cpu_hw_sf {
81 /* CPU-measurement sampling information block */
82 struct hws_qsi_info_block qsi;
83 /* CPU-measurement sampling control block */
84 struct hws_lsctl_request_block lsctl;
85 struct sf_buffer sfb; /* Sampling buffer */
86 unsigned int flags; /* Status flags */
87 struct perf_event *event; /* Scheduled perf event */
88 };
89 static DEFINE_PER_CPU(struct cpu_hw_sf, cpu_hw_sf);
90
91 /* Debug feature */
92 static debug_info_t *sfdbg;
93
94 /*
95 * sf_disable() - Switch off sampling facility
96 */
97 static int sf_disable(void)
98 {
99 struct hws_lsctl_request_block sreq;
100
101 memset(&sreq, 0, sizeof(sreq));
102 return lsctl(&sreq);
103 }
104
105 /*
106 * sf_buffer_available() - Check for an allocated sampling buffer
107 */
108 static int sf_buffer_available(struct cpu_hw_sf *cpuhw)
109 {
110 return !!cpuhw->sfb.sdbt;
111 }
112
113 /*
114 * deallocate sampling facility buffer
115 */
116 static void free_sampling_buffer(struct sf_buffer *sfb)
117 {
118 unsigned long *sdbt, *curr;
119
120 if (!sfb->sdbt)
121 return;
122
123 sdbt = sfb->sdbt;
124 curr = sdbt;
125
126 /* Free the SDBT after all SDBs are processed... */
127 while (1) {
128 if (!*curr || !sdbt)
129 break;
130
131 /* Process table-link entries */
132 if (is_link_entry(curr)) {
133 curr = get_next_sdbt(curr);
134 if (sdbt)
135 free_page((unsigned long) sdbt);
136
137 /* If the origin is reached, sampling buffer is freed */
138 if (curr == sfb->sdbt)
139 break;
140 else
141 sdbt = curr;
142 } else {
143 /* Process SDB pointer */
144 if (*curr) {
145 free_page(*curr);
146 curr++;
147 }
148 }
149 }
150
151 debug_sprintf_event(sfdbg, 5,
152 "free_sampling_buffer: freed sdbt=%p\n", sfb->sdbt);
153 memset(sfb, 0, sizeof(*sfb));
154 }
155
156 static int alloc_sample_data_block(unsigned long *sdbt, gfp_t gfp_flags)
157 {
158 unsigned long sdb, *trailer;
159
160 /* Allocate and initialize sample-data-block */
161 sdb = get_zeroed_page(gfp_flags);
162 if (!sdb)
163 return -ENOMEM;
164 trailer = trailer_entry_ptr(sdb);
165 *trailer = SDB_TE_ALERT_REQ_MASK;
166
167 /* Link SDB into the sample-data-block-table */
168 *sdbt = sdb;
169
170 return 0;
171 }
172
173 /*
174 * realloc_sampling_buffer() - extend sampler memory
175 *
176 * Allocates new sample-data-blocks and adds them to the specified sampling
177 * buffer memory.
178 *
179 * Important: This modifies the sampling buffer and must be called when the
180 * sampling facility is disabled.
181 *
182 * Returns zero on success, non-zero otherwise.
183 */
184 static int realloc_sampling_buffer(struct sf_buffer *sfb,
185 unsigned long num_sdb, gfp_t gfp_flags)
186 {
187 int i, rc;
188 unsigned long *new, *tail;
189
190 if (!sfb->sdbt || !sfb->tail)
191 return -EINVAL;
192
193 if (!is_link_entry(sfb->tail))
194 return -EINVAL;
195
196 /* Append to the existing sampling buffer, overwriting the table-link
197 * register.
198 * The tail variables always points to the "tail" (last and table-link)
199 * entry in an SDB-table.
200 */
201 tail = sfb->tail;
202
203 /* Do a sanity check whether the table-link entry points to
204 * the sampling buffer origin.
205 */
206 if (sfb->sdbt != get_next_sdbt(tail)) {
207 debug_sprintf_event(sfdbg, 3, "realloc_sampling_buffer: "
208 "sampling buffer is not linked: origin=%p"
209 "tail=%p\n",
210 (void *) sfb->sdbt, (void *) tail);
211 return -EINVAL;
212 }
213
214 /* Allocate remaining SDBs */
215 rc = 0;
216 for (i = 0; i < num_sdb; i++) {
217 /* Allocate a new SDB-table if it is full. */
218 if (require_table_link(tail)) {
219 new = (unsigned long *) get_zeroed_page(gfp_flags);
220 if (!new) {
221 rc = -ENOMEM;
222 break;
223 }
224 sfb->num_sdbt++;
225 /* Link current page to tail of chain */
226 *tail = (unsigned long)(void *) new + 1;
227 tail = new;
228 }
229
230 /* Allocate a new sample-data-block.
231 * If there is not enough memory, stop the realloc process
232 * and simply use what was allocated. If this is a temporary
233 * issue, a new realloc call (if required) might succeed.
234 */
235 rc = alloc_sample_data_block(tail, gfp_flags);
236 if (rc)
237 break;
238 sfb->num_sdb++;
239 tail++;
240 }
241
242 /* Link sampling buffer to its origin */
243 *tail = (unsigned long) sfb->sdbt + 1;
244 sfb->tail = tail;
245
246 debug_sprintf_event(sfdbg, 4, "realloc_sampling_buffer: new buffer"
247 " settings: sdbt=%lu sdb=%lu\n",
248 sfb->num_sdbt, sfb->num_sdb);
249 return rc;
250 }
251
252 /*
253 * allocate_sampling_buffer() - allocate sampler memory
254 *
255 * Allocates and initializes a sampling buffer structure using the
256 * specified number of sample-data-blocks (SDB). For each allocation,
257 * a 4K page is used. The number of sample-data-block-tables (SDBT)
258 * are calculated from SDBs.
259 * Also set the ALERT_REQ mask in each SDBs trailer.
260 *
261 * Returns zero on success, non-zero otherwise.
262 */
263 static int alloc_sampling_buffer(struct sf_buffer *sfb, unsigned long num_sdb)
264 {
265 int rc;
266
267 if (sfb->sdbt)
268 return -EINVAL;
269
270 /* Allocate the sample-data-block-table origin */
271 sfb->sdbt = (unsigned long *) get_zeroed_page(GFP_KERNEL);
272 if (!sfb->sdbt)
273 return -ENOMEM;
274 sfb->num_sdb = 0;
275 sfb->num_sdbt = 1;
276
277 /* Link the table origin to point to itself to prepare for
278 * realloc_sampling_buffer() invocation.
279 */
280 sfb->tail = sfb->sdbt;
281 *sfb->tail = (unsigned long)(void *) sfb->sdbt + 1;
282
283 /* Allocate requested number of sample-data-blocks */
284 rc = realloc_sampling_buffer(sfb, num_sdb, GFP_KERNEL);
285 if (rc) {
286 free_sampling_buffer(sfb);
287 debug_sprintf_event(sfdbg, 4, "alloc_sampling_buffer: "
288 "realloc_sampling_buffer failed with rc=%i\n", rc);
289 } else
290 debug_sprintf_event(sfdbg, 4,
291 "alloc_sampling_buffer: tear=%p dear=%p\n",
292 sfb->sdbt, (void *) *sfb->sdbt);
293 return rc;
294 }
295
296 static void sfb_set_limits(unsigned long min, unsigned long max)
297 {
298 struct hws_qsi_info_block si;
299
300 CPUM_SF_MIN_SDB = min;
301 CPUM_SF_MAX_SDB = max;
302
303 memset(&si, 0, sizeof(si));
304 if (!qsi(&si))
305 CPUM_SF_SDB_DIAG_FACTOR = DIV_ROUND_UP(si.dsdes, si.bsdes);
306 }
307
308 static unsigned long sfb_max_limit(struct hw_perf_event *hwc)
309 {
310 return SAMPL_DIAG_MODE(hwc) ? CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR
311 : CPUM_SF_MAX_SDB;
312 }
313
314 static unsigned long sfb_pending_allocs(struct sf_buffer *sfb,
315 struct hw_perf_event *hwc)
316 {
317 if (!sfb->sdbt)
318 return SFB_ALLOC_REG(hwc);
319 if (SFB_ALLOC_REG(hwc) > sfb->num_sdb)
320 return SFB_ALLOC_REG(hwc) - sfb->num_sdb;
321 return 0;
322 }
323
324 static int sfb_has_pending_allocs(struct sf_buffer *sfb,
325 struct hw_perf_event *hwc)
326 {
327 return sfb_pending_allocs(sfb, hwc) > 0;
328 }
329
330 static void sfb_account_allocs(unsigned long num, struct hw_perf_event *hwc)
331 {
332 /* Limit the number of SDBs to not exceed the maximum */
333 num = min_t(unsigned long, num, sfb_max_limit(hwc) - SFB_ALLOC_REG(hwc));
334 if (num)
335 SFB_ALLOC_REG(hwc) += num;
336 }
337
338 static void sfb_init_allocs(unsigned long num, struct hw_perf_event *hwc)
339 {
340 SFB_ALLOC_REG(hwc) = 0;
341 sfb_account_allocs(num, hwc);
342 }
343
344 static size_t event_sample_size(struct hw_perf_event *hwc)
345 {
346 struct sf_raw_sample *sfr = (struct sf_raw_sample *) RAWSAMPLE_REG(hwc);
347 size_t sample_size;
348
349 /* The sample size depends on the sampling function: The basic-sampling
350 * function must be always enabled, diagnostic-sampling function is
351 * optional.
352 */
353 sample_size = sfr->bsdes;
354 if (SAMPL_DIAG_MODE(hwc))
355 sample_size += sfr->dsdes;
356
357 return sample_size;
358 }
359
360 static void deallocate_buffers(struct cpu_hw_sf *cpuhw)
361 {
362 if (cpuhw->sfb.sdbt)
363 free_sampling_buffer(&cpuhw->sfb);
364 }
365
366 static int allocate_buffers(struct cpu_hw_sf *cpuhw, struct hw_perf_event *hwc)
367 {
368 unsigned long n_sdb, freq, factor;
369 size_t sfr_size, sample_size;
370 struct sf_raw_sample *sfr;
371
372 /* Allocate raw sample buffer
373 *
374 * The raw sample buffer is used to temporarily store sampling data
375 * entries for perf raw sample processing. The buffer size mainly
376 * depends on the size of diagnostic-sampling data entries which is
377 * machine-specific. The exact size calculation includes:
378 * 1. The first 4 bytes of diagnostic-sampling data entries are
379 * already reflected in the sf_raw_sample structure. Subtract
380 * these bytes.
381 * 2. The perf raw sample data must be 8-byte aligned (u64) and
382 * perf's internal data size must be considered too. So add
383 * an additional u32 for correct alignment and subtract before
384 * allocating the buffer.
385 * 3. Store the raw sample buffer pointer in the perf event
386 * hardware structure.
387 */
388 sfr_size = ALIGN((sizeof(*sfr) - sizeof(sfr->diag) + cpuhw->qsi.dsdes) +
389 sizeof(u32), sizeof(u64));
390 sfr_size -= sizeof(u32);
391 sfr = kzalloc(sfr_size, GFP_KERNEL);
392 if (!sfr)
393 return -ENOMEM;
394 sfr->size = sfr_size;
395 sfr->bsdes = cpuhw->qsi.bsdes;
396 sfr->dsdes = cpuhw->qsi.dsdes;
397 RAWSAMPLE_REG(hwc) = (unsigned long) sfr;
398
399 /* Calculate sampling buffers using 4K pages
400 *
401 * 1. Determine the sample data size which depends on the used
402 * sampling functions, for example, basic-sampling or
403 * basic-sampling with diagnostic-sampling.
404 *
405 * 2. Use the sampling frequency as input. The sampling buffer is
406 * designed for almost one second. This can be adjusted through
407 * the "factor" variable.
408 * In any case, alloc_sampling_buffer() sets the Alert Request
409 * Control indicator to trigger a measurement-alert to harvest
410 * sample-data-blocks (sdb).
411 *
412 * 3. Compute the number of sample-data-blocks and ensure a minimum
413 * of CPUM_SF_MIN_SDB. Also ensure the upper limit does not
414 * exceed a "calculated" maximum. The symbolic maximum is
415 * designed for basic-sampling only and needs to be increased if
416 * diagnostic-sampling is active.
417 * See also the remarks for these symbolic constants.
418 *
419 * 4. Compute the number of sample-data-block-tables (SDBT) and
420 * ensure a minimum of CPUM_SF_MIN_SDBT (one table can manage up
421 * to 511 SDBs).
422 */
423 sample_size = event_sample_size(hwc);
424 freq = sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc));
425 factor = 1;
426 n_sdb = DIV_ROUND_UP(freq, factor * ((PAGE_SIZE-64) / sample_size));
427 if (n_sdb < CPUM_SF_MIN_SDB)
428 n_sdb = CPUM_SF_MIN_SDB;
429
430 /* If there is already a sampling buffer allocated, it is very likely
431 * that the sampling facility is enabled too. If the event to be
432 * initialized requires a greater sampling buffer, the allocation must
433 * be postponed. Changing the sampling buffer requires the sampling
434 * facility to be in the disabled state. So, account the number of
435 * required SDBs and let cpumsf_pmu_enable() resize the buffer just
436 * before the event is started.
437 */
438 sfb_init_allocs(n_sdb, hwc);
439 if (sf_buffer_available(cpuhw))
440 return 0;
441
442 debug_sprintf_event(sfdbg, 3,
443 "allocate_buffers: rate=%lu f=%lu sdb=%lu/%lu"
444 " sample_size=%lu cpuhw=%p\n",
445 SAMPL_RATE(hwc), freq, n_sdb, sfb_max_limit(hwc),
446 sample_size, cpuhw);
447
448 return alloc_sampling_buffer(&cpuhw->sfb,
449 sfb_pending_allocs(&cpuhw->sfb, hwc));
450 }
451
452 static unsigned long min_percent(unsigned int percent, unsigned long base,
453 unsigned long min)
454 {
455 return min_t(unsigned long, min, DIV_ROUND_UP(percent * base, 100));
456 }
457
458 static unsigned long compute_sfb_extent(unsigned long ratio, unsigned long base)
459 {
460 /* Use a percentage-based approach to extend the sampling facility
461 * buffer. Accept up to 5% sample data loss.
462 * Vary the extents between 1% to 5% of the current number of
463 * sample-data-blocks.
464 */
465 if (ratio <= 5)
466 return 0;
467 if (ratio <= 25)
468 return min_percent(1, base, 1);
469 if (ratio <= 50)
470 return min_percent(1, base, 1);
471 if (ratio <= 75)
472 return min_percent(2, base, 2);
473 if (ratio <= 100)
474 return min_percent(3, base, 3);
475 if (ratio <= 250)
476 return min_percent(4, base, 4);
477
478 return min_percent(5, base, 8);
479 }
480
481 static void sfb_account_overflows(struct cpu_hw_sf *cpuhw,
482 struct hw_perf_event *hwc)
483 {
484 unsigned long ratio, num;
485
486 if (!OVERFLOW_REG(hwc))
487 return;
488
489 /* The sample_overflow contains the average number of sample data
490 * that has been lost because sample-data-blocks were full.
491 *
492 * Calculate the total number of sample data entries that has been
493 * discarded. Then calculate the ratio of lost samples to total samples
494 * per second in percent.
495 */
496 ratio = DIV_ROUND_UP(100 * OVERFLOW_REG(hwc) * cpuhw->sfb.num_sdb,
497 sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc)));
498
499 /* Compute number of sample-data-blocks */
500 num = compute_sfb_extent(ratio, cpuhw->sfb.num_sdb);
501 if (num)
502 sfb_account_allocs(num, hwc);
503
504 debug_sprintf_event(sfdbg, 5, "sfb: overflow: overflow=%llu ratio=%lu"
505 " num=%lu\n", OVERFLOW_REG(hwc), ratio, num);
506 OVERFLOW_REG(hwc) = 0;
507 }
508
509 /* extend_sampling_buffer() - Extend sampling buffer
510 * @sfb: Sampling buffer structure (for local CPU)
511 * @hwc: Perf event hardware structure
512 *
513 * Use this function to extend the sampling buffer based on the overflow counter
514 * and postponed allocation extents stored in the specified Perf event hardware.
515 *
516 * Important: This function disables the sampling facility in order to safely
517 * change the sampling buffer structure. Do not call this function
518 * when the PMU is active.
519 */
520 static void extend_sampling_buffer(struct sf_buffer *sfb,
521 struct hw_perf_event *hwc)
522 {
523 unsigned long num, num_old;
524 int rc;
525
526 num = sfb_pending_allocs(sfb, hwc);
527 if (!num)
528 return;
529 num_old = sfb->num_sdb;
530
531 /* Disable the sampling facility to reset any states and also
532 * clear pending measurement alerts.
533 */
534 sf_disable();
535
536 /* Extend the sampling buffer.
537 * This memory allocation typically happens in an atomic context when
538 * called by perf. Because this is a reallocation, it is fine if the
539 * new SDB-request cannot be satisfied immediately.
540 */
541 rc = realloc_sampling_buffer(sfb, num, GFP_ATOMIC);
542 if (rc)
543 debug_sprintf_event(sfdbg, 5, "sfb: extend: realloc "
544 "failed with rc=%i\n", rc);
545
546 if (sfb_has_pending_allocs(sfb, hwc))
547 debug_sprintf_event(sfdbg, 5, "sfb: extend: "
548 "req=%lu alloc=%lu remaining=%lu\n",
549 num, sfb->num_sdb - num_old,
550 sfb_pending_allocs(sfb, hwc));
551 }
552
553
554 /* Number of perf events counting hardware events */
555 static atomic_t num_events;
556 /* Used to avoid races in calling reserve/release_cpumf_hardware */
557 static DEFINE_MUTEX(pmc_reserve_mutex);
558
559 #define PMC_INIT 0
560 #define PMC_RELEASE 1
561 #define PMC_FAILURE 2
562 static void setup_pmc_cpu(void *flags)
563 {
564 int err;
565 struct cpu_hw_sf *cpusf = this_cpu_ptr(&cpu_hw_sf);
566
567 err = 0;
568 switch (*((int *) flags)) {
569 case PMC_INIT:
570 memset(cpusf, 0, sizeof(*cpusf));
571 err = qsi(&cpusf->qsi);
572 if (err)
573 break;
574 cpusf->flags |= PMU_F_RESERVED;
575 err = sf_disable();
576 if (err)
577 pr_err("Switching off the sampling facility failed "
578 "with rc=%i\n", err);
579 debug_sprintf_event(sfdbg, 5,
580 "setup_pmc_cpu: initialized: cpuhw=%p\n", cpusf);
581 break;
582 case PMC_RELEASE:
583 cpusf->flags &= ~PMU_F_RESERVED;
584 err = sf_disable();
585 if (err) {
586 pr_err("Switching off the sampling facility failed "
587 "with rc=%i\n", err);
588 } else
589 deallocate_buffers(cpusf);
590 debug_sprintf_event(sfdbg, 5,
591 "setup_pmc_cpu: released: cpuhw=%p\n", cpusf);
592 break;
593 }
594 if (err)
595 *((int *) flags) |= PMC_FAILURE;
596 }
597
598 static void release_pmc_hardware(void)
599 {
600 int flags = PMC_RELEASE;
601
602 irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT);
603 on_each_cpu(setup_pmc_cpu, &flags, 1);
604 }
605
606 static int reserve_pmc_hardware(void)
607 {
608 int flags = PMC_INIT;
609
610 on_each_cpu(setup_pmc_cpu, &flags, 1);
611 if (flags & PMC_FAILURE) {
612 release_pmc_hardware();
613 return -ENODEV;
614 }
615 irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT);
616
617 return 0;
618 }
619
620 static void hw_perf_event_destroy(struct perf_event *event)
621 {
622 /* Free raw sample buffer */
623 if (RAWSAMPLE_REG(&event->hw))
624 kfree((void *) RAWSAMPLE_REG(&event->hw));
625
626 /* Release PMC if this is the last perf event */
627 if (!atomic_add_unless(&num_events, -1, 1)) {
628 mutex_lock(&pmc_reserve_mutex);
629 if (atomic_dec_return(&num_events) == 0)
630 release_pmc_hardware();
631 mutex_unlock(&pmc_reserve_mutex);
632 }
633 }
634
635 static void hw_init_period(struct hw_perf_event *hwc, u64 period)
636 {
637 hwc->sample_period = period;
638 hwc->last_period = hwc->sample_period;
639 local64_set(&hwc->period_left, hwc->sample_period);
640 }
641
642 static void hw_reset_registers(struct hw_perf_event *hwc,
643 unsigned long *sdbt_origin)
644 {
645 struct sf_raw_sample *sfr;
646
647 /* (Re)set to first sample-data-block-table */
648 TEAR_REG(hwc) = (unsigned long) sdbt_origin;
649
650 /* (Re)set raw sampling buffer register */
651 sfr = (struct sf_raw_sample *) RAWSAMPLE_REG(hwc);
652 memset(&sfr->basic, 0, sizeof(sfr->basic));
653 memset(&sfr->diag, 0, sfr->dsdes);
654 }
655
656 static unsigned long hw_limit_rate(const struct hws_qsi_info_block *si,
657 unsigned long rate)
658 {
659 return clamp_t(unsigned long, rate,
660 si->min_sampl_rate, si->max_sampl_rate);
661 }
662
663 static int __hw_perf_event_init(struct perf_event *event)
664 {
665 struct cpu_hw_sf *cpuhw;
666 struct hws_qsi_info_block si;
667 struct perf_event_attr *attr = &event->attr;
668 struct hw_perf_event *hwc = &event->hw;
669 unsigned long rate;
670 int cpu, err;
671
672 /* Reserve CPU-measurement sampling facility */
673 err = 0;
674 if (!atomic_inc_not_zero(&num_events)) {
675 mutex_lock(&pmc_reserve_mutex);
676 if (atomic_read(&num_events) == 0 && reserve_pmc_hardware())
677 err = -EBUSY;
678 else
679 atomic_inc(&num_events);
680 mutex_unlock(&pmc_reserve_mutex);
681 }
682 event->destroy = hw_perf_event_destroy;
683
684 if (err)
685 goto out;
686
687 /* Access per-CPU sampling information (query sampling info) */
688 /*
689 * The event->cpu value can be -1 to count on every CPU, for example,
690 * when attaching to a task. If this is specified, use the query
691 * sampling info from the current CPU, otherwise use event->cpu to
692 * retrieve the per-CPU information.
693 * Later, cpuhw indicates whether to allocate sampling buffers for a
694 * particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL).
695 */
696 memset(&si, 0, sizeof(si));
697 cpuhw = NULL;
698 if (event->cpu == -1)
699 qsi(&si);
700 else {
701 /* Event is pinned to a particular CPU, retrieve the per-CPU
702 * sampling structure for accessing the CPU-specific QSI.
703 */
704 cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
705 si = cpuhw->qsi;
706 }
707
708 /* Check sampling facility authorization and, if not authorized,
709 * fall back to other PMUs. It is safe to check any CPU because
710 * the authorization is identical for all configured CPUs.
711 */
712 if (!si.as) {
713 err = -ENOENT;
714 goto out;
715 }
716
717 /* Always enable basic sampling */
718 SAMPL_FLAGS(hwc) = PERF_CPUM_SF_BASIC_MODE;
719
720 /* Check if diagnostic sampling is requested. Deny if the required
721 * sampling authorization is missing.
722 */
723 if (attr->config == PERF_EVENT_CPUM_SF_DIAG) {
724 if (!si.ad) {
725 err = -EPERM;
726 goto out;
727 }
728 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_DIAG_MODE;
729 }
730
731 /* Check and set other sampling flags */
732 if (attr->config1 & PERF_CPUM_SF_FULL_BLOCKS)
733 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FULL_BLOCKS;
734
735 /* The sampling information (si) contains information about the
736 * min/max sampling intervals and the CPU speed. So calculate the
737 * correct sampling interval and avoid the whole period adjust
738 * feedback loop.
739 */
740 rate = 0;
741 if (attr->freq) {
742 rate = freq_to_sample_rate(&si, attr->sample_freq);
743 rate = hw_limit_rate(&si, rate);
744 attr->freq = 0;
745 attr->sample_period = rate;
746 } else {
747 /* The min/max sampling rates specifies the valid range
748 * of sample periods. If the specified sample period is
749 * out of range, limit the period to the range boundary.
750 */
751 rate = hw_limit_rate(&si, hwc->sample_period);
752
753 /* The perf core maintains a maximum sample rate that is
754 * configurable through the sysctl interface. Ensure the
755 * sampling rate does not exceed this value. This also helps
756 * to avoid throttling when pushing samples with
757 * perf_event_overflow().
758 */
759 if (sample_rate_to_freq(&si, rate) >
760 sysctl_perf_event_sample_rate) {
761 err = -EINVAL;
762 debug_sprintf_event(sfdbg, 1, "Sampling rate exceeds maximum perf sample rate\n");
763 goto out;
764 }
765 }
766 SAMPL_RATE(hwc) = rate;
767 hw_init_period(hwc, SAMPL_RATE(hwc));
768
769 /* Initialize sample data overflow accounting */
770 hwc->extra_reg.reg = REG_OVERFLOW;
771 OVERFLOW_REG(hwc) = 0;
772
773 /* Allocate the per-CPU sampling buffer using the CPU information
774 * from the event. If the event is not pinned to a particular
775 * CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling
776 * buffers for each online CPU.
777 */
778 if (cpuhw)
779 /* Event is pinned to a particular CPU */
780 err = allocate_buffers(cpuhw, hwc);
781 else {
782 /* Event is not pinned, allocate sampling buffer on
783 * each online CPU
784 */
785 for_each_online_cpu(cpu) {
786 cpuhw = &per_cpu(cpu_hw_sf, cpu);
787 err = allocate_buffers(cpuhw, hwc);
788 if (err)
789 break;
790 }
791 }
792 out:
793 return err;
794 }
795
796 static int cpumsf_pmu_event_init(struct perf_event *event)
797 {
798 int err;
799
800 /* No support for taken branch sampling */
801 if (has_branch_stack(event))
802 return -EOPNOTSUPP;
803
804 switch (event->attr.type) {
805 case PERF_TYPE_RAW:
806 if ((event->attr.config != PERF_EVENT_CPUM_SF) &&
807 (event->attr.config != PERF_EVENT_CPUM_SF_DIAG))
808 return -ENOENT;
809 break;
810 case PERF_TYPE_HARDWARE:
811 /* Support sampling of CPU cycles in addition to the
812 * counter facility. However, the counter facility
813 * is more precise and, hence, restrict this PMU to
814 * sampling events only.
815 */
816 if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES)
817 return -ENOENT;
818 if (!is_sampling_event(event))
819 return -ENOENT;
820 break;
821 default:
822 return -ENOENT;
823 }
824
825 /* Check online status of the CPU to which the event is pinned */
826 if ((unsigned int)event->cpu >= nr_cpumask_bits ||
827 (event->cpu >= 0 && !cpu_online(event->cpu)))
828 return -ENODEV;
829
830 /* Force reset of idle/hv excludes regardless of what the
831 * user requested.
832 */
833 if (event->attr.exclude_hv)
834 event->attr.exclude_hv = 0;
835 if (event->attr.exclude_idle)
836 event->attr.exclude_idle = 0;
837
838 err = __hw_perf_event_init(event);
839 if (unlikely(err))
840 if (event->destroy)
841 event->destroy(event);
842 return err;
843 }
844
845 static void cpumsf_pmu_enable(struct pmu *pmu)
846 {
847 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
848 struct hw_perf_event *hwc;
849 int err;
850
851 if (cpuhw->flags & PMU_F_ENABLED)
852 return;
853
854 if (cpuhw->flags & PMU_F_ERR_MASK)
855 return;
856
857 /* Check whether to extent the sampling buffer.
858 *
859 * Two conditions trigger an increase of the sampling buffer for a
860 * perf event:
861 * 1. Postponed buffer allocations from the event initialization.
862 * 2. Sampling overflows that contribute to pending allocations.
863 *
864 * Note that the extend_sampling_buffer() function disables the sampling
865 * facility, but it can be fully re-enabled using sampling controls that
866 * have been saved in cpumsf_pmu_disable().
867 */
868 if (cpuhw->event) {
869 hwc = &cpuhw->event->hw;
870 /* Account number of overflow-designated buffer extents */
871 sfb_account_overflows(cpuhw, hwc);
872 if (sfb_has_pending_allocs(&cpuhw->sfb, hwc))
873 extend_sampling_buffer(&cpuhw->sfb, hwc);
874 }
875
876 /* (Re)enable the PMU and sampling facility */
877 cpuhw->flags |= PMU_F_ENABLED;
878 barrier();
879
880 err = lsctl(&cpuhw->lsctl);
881 if (err) {
882 cpuhw->flags &= ~PMU_F_ENABLED;
883 pr_err("Loading sampling controls failed: op=%i err=%i\n",
884 1, err);
885 return;
886 }
887
888 debug_sprintf_event(sfdbg, 6, "pmu_enable: es=%i cs=%i ed=%i cd=%i "
889 "tear=%p dear=%p\n", cpuhw->lsctl.es, cpuhw->lsctl.cs,
890 cpuhw->lsctl.ed, cpuhw->lsctl.cd,
891 (void *) cpuhw->lsctl.tear, (void *) cpuhw->lsctl.dear);
892 }
893
894 static void cpumsf_pmu_disable(struct pmu *pmu)
895 {
896 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
897 struct hws_lsctl_request_block inactive;
898 struct hws_qsi_info_block si;
899 int err;
900
901 if (!(cpuhw->flags & PMU_F_ENABLED))
902 return;
903
904 if (cpuhw->flags & PMU_F_ERR_MASK)
905 return;
906
907 /* Switch off sampling activation control */
908 inactive = cpuhw->lsctl;
909 inactive.cs = 0;
910 inactive.cd = 0;
911
912 err = lsctl(&inactive);
913 if (err) {
914 pr_err("Loading sampling controls failed: op=%i err=%i\n",
915 2, err);
916 return;
917 }
918
919 /* Save state of TEAR and DEAR register contents */
920 if (!qsi(&si)) {
921 /* TEAR/DEAR values are valid only if the sampling facility is
922 * enabled. Note that cpumsf_pmu_disable() might be called even
923 * for a disabled sampling facility because cpumsf_pmu_enable()
924 * controls the enable/disable state.
925 */
926 if (si.es) {
927 cpuhw->lsctl.tear = si.tear;
928 cpuhw->lsctl.dear = si.dear;
929 }
930 } else
931 debug_sprintf_event(sfdbg, 3, "cpumsf_pmu_disable: "
932 "qsi() failed with err=%i\n", err);
933
934 cpuhw->flags &= ~PMU_F_ENABLED;
935 }
936
937 /* perf_exclude_event() - Filter event
938 * @event: The perf event
939 * @regs: pt_regs structure
940 * @sde_regs: Sample-data-entry (sde) regs structure
941 *
942 * Filter perf events according to their exclude specification.
943 *
944 * Return non-zero if the event shall be excluded.
945 */
946 static int perf_exclude_event(struct perf_event *event, struct pt_regs *regs,
947 struct perf_sf_sde_regs *sde_regs)
948 {
949 if (event->attr.exclude_user && user_mode(regs))
950 return 1;
951 if (event->attr.exclude_kernel && !user_mode(regs))
952 return 1;
953 if (event->attr.exclude_guest && sde_regs->in_guest)
954 return 1;
955 if (event->attr.exclude_host && !sde_regs->in_guest)
956 return 1;
957 return 0;
958 }
959
960 /* perf_push_sample() - Push samples to perf
961 * @event: The perf event
962 * @sample: Hardware sample data
963 *
964 * Use the hardware sample data to create perf event sample. The sample
965 * is the pushed to the event subsystem and the function checks for
966 * possible event overflows. If an event overflow occurs, the PMU is
967 * stopped.
968 *
969 * Return non-zero if an event overflow occurred.
970 */
971 static int perf_push_sample(struct perf_event *event, struct sf_raw_sample *sfr)
972 {
973 int overflow;
974 struct pt_regs regs;
975 struct perf_sf_sde_regs *sde_regs;
976 struct perf_sample_data data;
977 struct perf_raw_record raw = {
978 .frag = {
979 .size = sfr->size,
980 .data = sfr,
981 },
982 };
983
984 /* Setup perf sample */
985 perf_sample_data_init(&data, 0, event->hw.last_period);
986 data.raw = &raw;
987
988 /* Setup pt_regs to look like an CPU-measurement external interrupt
989 * using the Program Request Alert code. The regs.int_parm_long
990 * field which is unused contains additional sample-data-entry related
991 * indicators.
992 */
993 memset(&regs, 0, sizeof(regs));
994 regs.int_code = 0x1407;
995 regs.int_parm = CPU_MF_INT_SF_PRA;
996 sde_regs = (struct perf_sf_sde_regs *) &regs.int_parm_long;
997
998 psw_bits(regs.psw).ia = sfr->basic.ia;
999 psw_bits(regs.psw).dat = sfr->basic.T;
1000 psw_bits(regs.psw).wait = sfr->basic.W;
1001 psw_bits(regs.psw).per = sfr->basic.P;
1002 psw_bits(regs.psw).as = sfr->basic.AS;
1003
1004 /*
1005 * Use the hardware provided configuration level to decide if the
1006 * sample belongs to a guest or host. If that is not available,
1007 * fall back to the following heuristics:
1008 * A non-zero guest program parameter always indicates a guest
1009 * sample. Some early samples or samples from guests without
1010 * lpp usage would be misaccounted to the host. We use the asn
1011 * value as an addon heuristic to detect most of these guest samples.
1012 * If the value differs from 0xffff (the host value), we assume to
1013 * be a KVM guest.
1014 */
1015 switch (sfr->basic.CL) {
1016 case 1: /* logical partition */
1017 sde_regs->in_guest = 0;
1018 break;
1019 case 2: /* virtual machine */
1020 sde_regs->in_guest = 1;
1021 break;
1022 default: /* old machine, use heuristics */
1023 if (sfr->basic.gpp || sfr->basic.prim_asn != 0xffff)
1024 sde_regs->in_guest = 1;
1025 break;
1026 }
1027
1028 overflow = 0;
1029 if (perf_exclude_event(event, &regs, sde_regs))
1030 goto out;
1031 if (perf_event_overflow(event, &data, &regs)) {
1032 overflow = 1;
1033 event->pmu->stop(event, 0);
1034 }
1035 perf_event_update_userpage(event);
1036 out:
1037 return overflow;
1038 }
1039
1040 static void perf_event_count_update(struct perf_event *event, u64 count)
1041 {
1042 local64_add(count, &event->count);
1043 }
1044
1045 static int sample_format_is_valid(struct hws_combined_entry *sample,
1046 unsigned int flags)
1047 {
1048 if (likely(flags & PERF_CPUM_SF_BASIC_MODE))
1049 /* Only basic-sampling data entries with data-entry-format
1050 * version of 0x0001 can be processed.
1051 */
1052 if (sample->basic.def != 0x0001)
1053 return 0;
1054 if (flags & PERF_CPUM_SF_DIAG_MODE)
1055 /* The data-entry-format number of diagnostic-sampling data
1056 * entries can vary. Because diagnostic data is just passed
1057 * through, do only a sanity check on the DEF.
1058 */
1059 if (sample->diag.def < 0x8001)
1060 return 0;
1061 return 1;
1062 }
1063
1064 static int sample_is_consistent(struct hws_combined_entry *sample,
1065 unsigned long flags)
1066 {
1067 /* This check applies only to basic-sampling data entries of potentially
1068 * combined-sampling data entries. Invalid entries cannot be processed
1069 * by the PMU and, thus, do not deliver an associated
1070 * diagnostic-sampling data entry.
1071 */
1072 if (unlikely(!(flags & PERF_CPUM_SF_BASIC_MODE)))
1073 return 0;
1074 /*
1075 * Samples are skipped, if they are invalid or for which the
1076 * instruction address is not predictable, i.e., the wait-state bit is
1077 * set.
1078 */
1079 if (sample->basic.I || sample->basic.W)
1080 return 0;
1081 return 1;
1082 }
1083
1084 static void reset_sample_slot(struct hws_combined_entry *sample,
1085 unsigned long flags)
1086 {
1087 if (likely(flags & PERF_CPUM_SF_BASIC_MODE))
1088 sample->basic.def = 0;
1089 if (flags & PERF_CPUM_SF_DIAG_MODE)
1090 sample->diag.def = 0;
1091 }
1092
1093 static void sfr_store_sample(struct sf_raw_sample *sfr,
1094 struct hws_combined_entry *sample)
1095 {
1096 if (likely(sfr->format & PERF_CPUM_SF_BASIC_MODE))
1097 sfr->basic = sample->basic;
1098 if (sfr->format & PERF_CPUM_SF_DIAG_MODE)
1099 memcpy(&sfr->diag, &sample->diag, sfr->dsdes);
1100 }
1101
1102 static void debug_sample_entry(struct hws_combined_entry *sample,
1103 struct hws_trailer_entry *te,
1104 unsigned long flags)
1105 {
1106 debug_sprintf_event(sfdbg, 4, "hw_collect_samples: Found unknown "
1107 "sampling data entry: te->f=%i basic.def=%04x (%p)"
1108 " diag.def=%04x (%p)\n", te->f,
1109 sample->basic.def, &sample->basic,
1110 (flags & PERF_CPUM_SF_DIAG_MODE)
1111 ? sample->diag.def : 0xFFFF,
1112 (flags & PERF_CPUM_SF_DIAG_MODE)
1113 ? &sample->diag : NULL);
1114 }
1115
1116 /* hw_collect_samples() - Walk through a sample-data-block and collect samples
1117 * @event: The perf event
1118 * @sdbt: Sample-data-block table
1119 * @overflow: Event overflow counter
1120 *
1121 * Walks through a sample-data-block and collects sampling data entries that are
1122 * then pushed to the perf event subsystem. Depending on the sampling function,
1123 * there can be either basic-sampling or combined-sampling data entries. A
1124 * combined-sampling data entry consists of a basic- and a diagnostic-sampling
1125 * data entry. The sampling function is determined by the flags in the perf
1126 * event hardware structure. The function always works with a combined-sampling
1127 * data entry but ignores the the diagnostic portion if it is not available.
1128 *
1129 * Note that the implementation focuses on basic-sampling data entries and, if
1130 * such an entry is not valid, the entire combined-sampling data entry is
1131 * ignored.
1132 *
1133 * The overflow variables counts the number of samples that has been discarded
1134 * due to a perf event overflow.
1135 */
1136 static void hw_collect_samples(struct perf_event *event, unsigned long *sdbt,
1137 unsigned long long *overflow)
1138 {
1139 unsigned long flags = SAMPL_FLAGS(&event->hw);
1140 struct hws_combined_entry *sample;
1141 struct hws_trailer_entry *te;
1142 struct sf_raw_sample *sfr;
1143 size_t sample_size;
1144
1145 /* Prepare and initialize raw sample data */
1146 sfr = (struct sf_raw_sample *) RAWSAMPLE_REG(&event->hw);
1147 sfr->format = flags & PERF_CPUM_SF_MODE_MASK;
1148
1149 sample_size = event_sample_size(&event->hw);
1150 te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt);
1151 sample = (struct hws_combined_entry *) *sdbt;
1152 while ((unsigned long *) sample < (unsigned long *) te) {
1153 /* Check for an empty sample */
1154 if (!sample->basic.def)
1155 break;
1156
1157 /* Update perf event period */
1158 perf_event_count_update(event, SAMPL_RATE(&event->hw));
1159
1160 /* Check sampling data entry */
1161 if (sample_format_is_valid(sample, flags)) {
1162 /* If an event overflow occurred, the PMU is stopped to
1163 * throttle event delivery. Remaining sample data is
1164 * discarded.
1165 */
1166 if (!*overflow) {
1167 if (sample_is_consistent(sample, flags)) {
1168 /* Deliver sample data to perf */
1169 sfr_store_sample(sfr, sample);
1170 *overflow = perf_push_sample(event, sfr);
1171 }
1172 } else
1173 /* Count discarded samples */
1174 *overflow += 1;
1175 } else {
1176 debug_sample_entry(sample, te, flags);
1177 /* Sample slot is not yet written or other record.
1178 *
1179 * This condition can occur if the buffer was reused
1180 * from a combined basic- and diagnostic-sampling.
1181 * If only basic-sampling is then active, entries are
1182 * written into the larger diagnostic entries.
1183 * This is typically the case for sample-data-blocks
1184 * that are not full. Stop processing if the first
1185 * invalid format was detected.
1186 */
1187 if (!te->f)
1188 break;
1189 }
1190
1191 /* Reset sample slot and advance to next sample */
1192 reset_sample_slot(sample, flags);
1193 sample += sample_size;
1194 }
1195 }
1196
1197 /* hw_perf_event_update() - Process sampling buffer
1198 * @event: The perf event
1199 * @flush_all: Flag to also flush partially filled sample-data-blocks
1200 *
1201 * Processes the sampling buffer and create perf event samples.
1202 * The sampling buffer position are retrieved and saved in the TEAR_REG
1203 * register of the specified perf event.
1204 *
1205 * Only full sample-data-blocks are processed. Specify the flash_all flag
1206 * to also walk through partially filled sample-data-blocks. It is ignored
1207 * if PERF_CPUM_SF_FULL_BLOCKS is set. The PERF_CPUM_SF_FULL_BLOCKS flag
1208 * enforces the processing of full sample-data-blocks only (trailer entries
1209 * with the block-full-indicator bit set).
1210 */
1211 static void hw_perf_event_update(struct perf_event *event, int flush_all)
1212 {
1213 struct hw_perf_event *hwc = &event->hw;
1214 struct hws_trailer_entry *te;
1215 unsigned long *sdbt;
1216 unsigned long long event_overflow, sampl_overflow, num_sdb, te_flags;
1217 int done;
1218
1219 if (flush_all && SDB_FULL_BLOCKS(hwc))
1220 flush_all = 0;
1221
1222 sdbt = (unsigned long *) TEAR_REG(hwc);
1223 done = event_overflow = sampl_overflow = num_sdb = 0;
1224 while (!done) {
1225 /* Get the trailer entry of the sample-data-block */
1226 te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt);
1227
1228 /* Leave loop if no more work to do (block full indicator) */
1229 if (!te->f) {
1230 done = 1;
1231 if (!flush_all)
1232 break;
1233 }
1234
1235 /* Check the sample overflow count */
1236 if (te->overflow)
1237 /* Account sample overflows and, if a particular limit
1238 * is reached, extend the sampling buffer.
1239 * For details, see sfb_account_overflows().
1240 */
1241 sampl_overflow += te->overflow;
1242
1243 /* Timestamps are valid for full sample-data-blocks only */
1244 debug_sprintf_event(sfdbg, 6, "hw_perf_event_update: sdbt=%p "
1245 "overflow=%llu timestamp=0x%llx\n",
1246 sdbt, te->overflow,
1247 (te->f) ? trailer_timestamp(te) : 0ULL);
1248
1249 /* Collect all samples from a single sample-data-block and
1250 * flag if an (perf) event overflow happened. If so, the PMU
1251 * is stopped and remaining samples will be discarded.
1252 */
1253 hw_collect_samples(event, sdbt, &event_overflow);
1254 num_sdb++;
1255
1256 /* Reset trailer (using compare-double-and-swap) */
1257 do {
1258 te_flags = te->flags & ~SDB_TE_BUFFER_FULL_MASK;
1259 te_flags |= SDB_TE_ALERT_REQ_MASK;
1260 } while (!cmpxchg_double(&te->flags, &te->overflow,
1261 te->flags, te->overflow,
1262 te_flags, 0ULL));
1263
1264 /* Advance to next sample-data-block */
1265 sdbt++;
1266 if (is_link_entry(sdbt))
1267 sdbt = get_next_sdbt(sdbt);
1268
1269 /* Update event hardware registers */
1270 TEAR_REG(hwc) = (unsigned long) sdbt;
1271
1272 /* Stop processing sample-data if all samples of the current
1273 * sample-data-block were flushed even if it was not full.
1274 */
1275 if (flush_all && done)
1276 break;
1277
1278 /* If an event overflow happened, discard samples by
1279 * processing any remaining sample-data-blocks.
1280 */
1281 if (event_overflow)
1282 flush_all = 1;
1283 }
1284
1285 /* Account sample overflows in the event hardware structure */
1286 if (sampl_overflow)
1287 OVERFLOW_REG(hwc) = DIV_ROUND_UP(OVERFLOW_REG(hwc) +
1288 sampl_overflow, 1 + num_sdb);
1289 if (sampl_overflow || event_overflow)
1290 debug_sprintf_event(sfdbg, 4, "hw_perf_event_update: "
1291 "overflow stats: sample=%llu event=%llu\n",
1292 sampl_overflow, event_overflow);
1293 }
1294
1295 static void cpumsf_pmu_read(struct perf_event *event)
1296 {
1297 /* Nothing to do ... updates are interrupt-driven */
1298 }
1299
1300 /* Activate sampling control.
1301 * Next call of pmu_enable() starts sampling.
1302 */
1303 static void cpumsf_pmu_start(struct perf_event *event, int flags)
1304 {
1305 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1306
1307 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1308 return;
1309
1310 if (flags & PERF_EF_RELOAD)
1311 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1312
1313 perf_pmu_disable(event->pmu);
1314 event->hw.state = 0;
1315 cpuhw->lsctl.cs = 1;
1316 if (SAMPL_DIAG_MODE(&event->hw))
1317 cpuhw->lsctl.cd = 1;
1318 perf_pmu_enable(event->pmu);
1319 }
1320
1321 /* Deactivate sampling control.
1322 * Next call of pmu_enable() stops sampling.
1323 */
1324 static void cpumsf_pmu_stop(struct perf_event *event, int flags)
1325 {
1326 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1327
1328 if (event->hw.state & PERF_HES_STOPPED)
1329 return;
1330
1331 perf_pmu_disable(event->pmu);
1332 cpuhw->lsctl.cs = 0;
1333 cpuhw->lsctl.cd = 0;
1334 event->hw.state |= PERF_HES_STOPPED;
1335
1336 if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
1337 hw_perf_event_update(event, 1);
1338 event->hw.state |= PERF_HES_UPTODATE;
1339 }
1340 perf_pmu_enable(event->pmu);
1341 }
1342
1343 static int cpumsf_pmu_add(struct perf_event *event, int flags)
1344 {
1345 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1346 int err;
1347
1348 if (cpuhw->flags & PMU_F_IN_USE)
1349 return -EAGAIN;
1350
1351 if (!cpuhw->sfb.sdbt)
1352 return -EINVAL;
1353
1354 err = 0;
1355 perf_pmu_disable(event->pmu);
1356
1357 event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1358
1359 /* Set up sampling controls. Always program the sampling register
1360 * using the SDB-table start. Reset TEAR_REG event hardware register
1361 * that is used by hw_perf_event_update() to store the sampling buffer
1362 * position after samples have been flushed.
1363 */
1364 cpuhw->lsctl.s = 0;
1365 cpuhw->lsctl.h = 1;
1366 cpuhw->lsctl.tear = (unsigned long) cpuhw->sfb.sdbt;
1367 cpuhw->lsctl.dear = *(unsigned long *) cpuhw->sfb.sdbt;
1368 cpuhw->lsctl.interval = SAMPL_RATE(&event->hw);
1369 hw_reset_registers(&event->hw, cpuhw->sfb.sdbt);
1370
1371 /* Ensure sampling functions are in the disabled state. If disabled,
1372 * switch on sampling enable control. */
1373 if (WARN_ON_ONCE(cpuhw->lsctl.es == 1 || cpuhw->lsctl.ed == 1)) {
1374 err = -EAGAIN;
1375 goto out;
1376 }
1377 cpuhw->lsctl.es = 1;
1378 if (SAMPL_DIAG_MODE(&event->hw))
1379 cpuhw->lsctl.ed = 1;
1380
1381 /* Set in_use flag and store event */
1382 cpuhw->event = event;
1383 cpuhw->flags |= PMU_F_IN_USE;
1384
1385 if (flags & PERF_EF_START)
1386 cpumsf_pmu_start(event, PERF_EF_RELOAD);
1387 out:
1388 perf_event_update_userpage(event);
1389 perf_pmu_enable(event->pmu);
1390 return err;
1391 }
1392
1393 static void cpumsf_pmu_del(struct perf_event *event, int flags)
1394 {
1395 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1396
1397 perf_pmu_disable(event->pmu);
1398 cpumsf_pmu_stop(event, PERF_EF_UPDATE);
1399
1400 cpuhw->lsctl.es = 0;
1401 cpuhw->lsctl.ed = 0;
1402 cpuhw->flags &= ~PMU_F_IN_USE;
1403 cpuhw->event = NULL;
1404
1405 perf_event_update_userpage(event);
1406 perf_pmu_enable(event->pmu);
1407 }
1408
1409 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC, PERF_EVENT_CPUM_SF);
1410 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC_DIAG, PERF_EVENT_CPUM_SF_DIAG);
1411
1412 static struct attribute *cpumsf_pmu_events_attr[] = {
1413 CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC),
1414 NULL,
1415 NULL,
1416 };
1417
1418 PMU_FORMAT_ATTR(event, "config:0-63");
1419
1420 static struct attribute *cpumsf_pmu_format_attr[] = {
1421 &format_attr_event.attr,
1422 NULL,
1423 };
1424
1425 static struct attribute_group cpumsf_pmu_events_group = {
1426 .name = "events",
1427 .attrs = cpumsf_pmu_events_attr,
1428 };
1429 static struct attribute_group cpumsf_pmu_format_group = {
1430 .name = "format",
1431 .attrs = cpumsf_pmu_format_attr,
1432 };
1433 static const struct attribute_group *cpumsf_pmu_attr_groups[] = {
1434 &cpumsf_pmu_events_group,
1435 &cpumsf_pmu_format_group,
1436 NULL,
1437 };
1438
1439 static struct pmu cpumf_sampling = {
1440 .pmu_enable = cpumsf_pmu_enable,
1441 .pmu_disable = cpumsf_pmu_disable,
1442
1443 .event_init = cpumsf_pmu_event_init,
1444 .add = cpumsf_pmu_add,
1445 .del = cpumsf_pmu_del,
1446
1447 .start = cpumsf_pmu_start,
1448 .stop = cpumsf_pmu_stop,
1449 .read = cpumsf_pmu_read,
1450
1451 .attr_groups = cpumsf_pmu_attr_groups,
1452 };
1453
1454 static void cpumf_measurement_alert(struct ext_code ext_code,
1455 unsigned int alert, unsigned long unused)
1456 {
1457 struct cpu_hw_sf *cpuhw;
1458
1459 if (!(alert & CPU_MF_INT_SF_MASK))
1460 return;
1461 inc_irq_stat(IRQEXT_CMS);
1462 cpuhw = this_cpu_ptr(&cpu_hw_sf);
1463
1464 /* Measurement alerts are shared and might happen when the PMU
1465 * is not reserved. Ignore these alerts in this case. */
1466 if (!(cpuhw->flags & PMU_F_RESERVED))
1467 return;
1468
1469 /* The processing below must take care of multiple alert events that
1470 * might be indicated concurrently. */
1471
1472 /* Program alert request */
1473 if (alert & CPU_MF_INT_SF_PRA) {
1474 if (cpuhw->flags & PMU_F_IN_USE)
1475 hw_perf_event_update(cpuhw->event, 0);
1476 else
1477 WARN_ON_ONCE(!(cpuhw->flags & PMU_F_IN_USE));
1478 }
1479
1480 /* Report measurement alerts only for non-PRA codes */
1481 if (alert != CPU_MF_INT_SF_PRA)
1482 debug_sprintf_event(sfdbg, 6, "measurement alert: 0x%x\n", alert);
1483
1484 /* Sampling authorization change request */
1485 if (alert & CPU_MF_INT_SF_SACA)
1486 qsi(&cpuhw->qsi);
1487
1488 /* Loss of sample data due to high-priority machine activities */
1489 if (alert & CPU_MF_INT_SF_LSDA) {
1490 pr_err("Sample data was lost\n");
1491 cpuhw->flags |= PMU_F_ERR_LSDA;
1492 sf_disable();
1493 }
1494
1495 /* Invalid sampling buffer entry */
1496 if (alert & (CPU_MF_INT_SF_IAE|CPU_MF_INT_SF_ISE)) {
1497 pr_err("A sampling buffer entry is incorrect (alert=0x%x)\n",
1498 alert);
1499 cpuhw->flags |= PMU_F_ERR_IBE;
1500 sf_disable();
1501 }
1502 }
1503 static int cpusf_pmu_setup(unsigned int cpu, int flags)
1504 {
1505 /* Ignore the notification if no events are scheduled on the PMU.
1506 * This might be racy...
1507 */
1508 if (!atomic_read(&num_events))
1509 return 0;
1510
1511 local_irq_disable();
1512 setup_pmc_cpu(&flags);
1513 local_irq_enable();
1514 return 0;
1515 }
1516
1517 static int s390_pmu_sf_online_cpu(unsigned int cpu)
1518 {
1519 return cpusf_pmu_setup(cpu, PMC_INIT);
1520 }
1521
1522 static int s390_pmu_sf_offline_cpu(unsigned int cpu)
1523 {
1524 return cpusf_pmu_setup(cpu, PMC_RELEASE);
1525 }
1526
1527 static int param_get_sfb_size(char *buffer, const struct kernel_param *kp)
1528 {
1529 if (!cpum_sf_avail())
1530 return -ENODEV;
1531 return sprintf(buffer, "%lu,%lu", CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
1532 }
1533
1534 static int param_set_sfb_size(const char *val, const struct kernel_param *kp)
1535 {
1536 int rc;
1537 unsigned long min, max;
1538
1539 if (!cpum_sf_avail())
1540 return -ENODEV;
1541 if (!val || !strlen(val))
1542 return -EINVAL;
1543
1544 /* Valid parameter values: "min,max" or "max" */
1545 min = CPUM_SF_MIN_SDB;
1546 max = CPUM_SF_MAX_SDB;
1547 if (strchr(val, ','))
1548 rc = (sscanf(val, "%lu,%lu", &min, &max) == 2) ? 0 : -EINVAL;
1549 else
1550 rc = kstrtoul(val, 10, &max);
1551
1552 if (min < 2 || min >= max || max > get_num_physpages())
1553 rc = -EINVAL;
1554 if (rc)
1555 return rc;
1556
1557 sfb_set_limits(min, max);
1558 pr_info("The sampling buffer limits have changed to: "
1559 "min=%lu max=%lu (diag=x%lu)\n",
1560 CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB, CPUM_SF_SDB_DIAG_FACTOR);
1561 return 0;
1562 }
1563
1564 #define param_check_sfb_size(name, p) __param_check(name, p, void)
1565 static const struct kernel_param_ops param_ops_sfb_size = {
1566 .set = param_set_sfb_size,
1567 .get = param_get_sfb_size,
1568 };
1569
1570 #define RS_INIT_FAILURE_QSI 0x0001
1571 #define RS_INIT_FAILURE_BSDES 0x0002
1572 #define RS_INIT_FAILURE_ALRT 0x0003
1573 #define RS_INIT_FAILURE_PERF 0x0004
1574 static void __init pr_cpumsf_err(unsigned int reason)
1575 {
1576 pr_err("Sampling facility support for perf is not available: "
1577 "reason=%04x\n", reason);
1578 }
1579
1580 static int __init init_cpum_sampling_pmu(void)
1581 {
1582 struct hws_qsi_info_block si;
1583 int err;
1584
1585 if (!cpum_sf_avail())
1586 return -ENODEV;
1587
1588 memset(&si, 0, sizeof(si));
1589 if (qsi(&si)) {
1590 pr_cpumsf_err(RS_INIT_FAILURE_QSI);
1591 return -ENODEV;
1592 }
1593
1594 if (si.bsdes != sizeof(struct hws_basic_entry)) {
1595 pr_cpumsf_err(RS_INIT_FAILURE_BSDES);
1596 return -EINVAL;
1597 }
1598
1599 if (si.ad) {
1600 sfb_set_limits(CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
1601 cpumsf_pmu_events_attr[1] =
1602 CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC_DIAG);
1603 }
1604
1605 sfdbg = debug_register(KMSG_COMPONENT, 2, 1, 80);
1606 if (!sfdbg)
1607 pr_err("Registering for s390dbf failed\n");
1608 debug_register_view(sfdbg, &debug_sprintf_view);
1609
1610 err = register_external_irq(EXT_IRQ_MEASURE_ALERT,
1611 cpumf_measurement_alert);
1612 if (err) {
1613 pr_cpumsf_err(RS_INIT_FAILURE_ALRT);
1614 goto out;
1615 }
1616
1617 err = perf_pmu_register(&cpumf_sampling, "cpum_sf", PERF_TYPE_RAW);
1618 if (err) {
1619 pr_cpumsf_err(RS_INIT_FAILURE_PERF);
1620 unregister_external_irq(EXT_IRQ_MEASURE_ALERT,
1621 cpumf_measurement_alert);
1622 goto out;
1623 }
1624
1625 cpuhp_setup_state(CPUHP_AP_PERF_S390_SF_ONLINE, "perf/s390/sf:online",
1626 s390_pmu_sf_online_cpu, s390_pmu_sf_offline_cpu);
1627 out:
1628 return err;
1629 }
1630 arch_initcall(init_cpum_sampling_pmu);
1631 core_param(cpum_sfb_size, CPUM_SF_MAX_SDB, sfb_size, 0640);