]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - arch/s390/kernel/perf_cpum_sf.c
Merge tag 'for-linus' of git://git.armlinux.org.uk/~rmk/linux-arm
[mirror_ubuntu-eoan-kernel.git] / arch / s390 / kernel / perf_cpum_sf.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Performance event support for the System z CPU-measurement Sampling Facility
4 *
5 * Copyright IBM Corp. 2013, 2018
6 * Author(s): Hendrik Brueckner <brueckner@linux.vnet.ibm.com>
7 */
8 #define KMSG_COMPONENT "cpum_sf"
9 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/kernel_stat.h>
13 #include <linux/perf_event.h>
14 #include <linux/percpu.h>
15 #include <linux/pid.h>
16 #include <linux/notifier.h>
17 #include <linux/export.h>
18 #include <linux/slab.h>
19 #include <linux/mm.h>
20 #include <linux/moduleparam.h>
21 #include <asm/cpu_mf.h>
22 #include <asm/irq.h>
23 #include <asm/debug.h>
24 #include <asm/timex.h>
25
26 /* Minimum number of sample-data-block-tables:
27 * At least one table is required for the sampling buffer structure.
28 * A single table contains up to 511 pointers to sample-data-blocks.
29 */
30 #define CPUM_SF_MIN_SDBT 1
31
32 /* Number of sample-data-blocks per sample-data-block-table (SDBT):
33 * A table contains SDB pointers (8 bytes) and one table-link entry
34 * that points to the origin of the next SDBT.
35 */
36 #define CPUM_SF_SDB_PER_TABLE ((PAGE_SIZE - 8) / 8)
37
38 /* Maximum page offset for an SDBT table-link entry:
39 * If this page offset is reached, a table-link entry to the next SDBT
40 * must be added.
41 */
42 #define CPUM_SF_SDBT_TL_OFFSET (CPUM_SF_SDB_PER_TABLE * 8)
43 static inline int require_table_link(const void *sdbt)
44 {
45 return ((unsigned long) sdbt & ~PAGE_MASK) == CPUM_SF_SDBT_TL_OFFSET;
46 }
47
48 /* Minimum and maximum sampling buffer sizes:
49 *
50 * This number represents the maximum size of the sampling buffer taking
51 * the number of sample-data-block-tables into account. Note that these
52 * numbers apply to the basic-sampling function only.
53 * The maximum number of SDBs is increased by CPUM_SF_SDB_DIAG_FACTOR if
54 * the diagnostic-sampling function is active.
55 *
56 * Sampling buffer size Buffer characteristics
57 * ---------------------------------------------------
58 * 64KB == 16 pages (4KB per page)
59 * 1 page for SDB-tables
60 * 15 pages for SDBs
61 *
62 * 32MB == 8192 pages (4KB per page)
63 * 16 pages for SDB-tables
64 * 8176 pages for SDBs
65 */
66 static unsigned long __read_mostly CPUM_SF_MIN_SDB = 15;
67 static unsigned long __read_mostly CPUM_SF_MAX_SDB = 8176;
68 static unsigned long __read_mostly CPUM_SF_SDB_DIAG_FACTOR = 1;
69
70 struct sf_buffer {
71 unsigned long *sdbt; /* Sample-data-block-table origin */
72 /* buffer characteristics (required for buffer increments) */
73 unsigned long num_sdb; /* Number of sample-data-blocks */
74 unsigned long num_sdbt; /* Number of sample-data-block-tables */
75 unsigned long *tail; /* last sample-data-block-table */
76 };
77
78 struct aux_buffer {
79 struct sf_buffer sfb;
80 unsigned long head; /* index of SDB of buffer head */
81 unsigned long alert_mark; /* index of SDB of alert request position */
82 unsigned long empty_mark; /* mark of SDB not marked full */
83 unsigned long *sdb_index; /* SDB address for fast lookup */
84 unsigned long *sdbt_index; /* SDBT address for fast lookup */
85 };
86
87 struct cpu_hw_sf {
88 /* CPU-measurement sampling information block */
89 struct hws_qsi_info_block qsi;
90 /* CPU-measurement sampling control block */
91 struct hws_lsctl_request_block lsctl;
92 struct sf_buffer sfb; /* Sampling buffer */
93 unsigned int flags; /* Status flags */
94 struct perf_event *event; /* Scheduled perf event */
95 struct perf_output_handle handle; /* AUX buffer output handle */
96 };
97 static DEFINE_PER_CPU(struct cpu_hw_sf, cpu_hw_sf);
98
99 /* Debug feature */
100 static debug_info_t *sfdbg;
101
102 /*
103 * sf_disable() - Switch off sampling facility
104 */
105 static int sf_disable(void)
106 {
107 struct hws_lsctl_request_block sreq;
108
109 memset(&sreq, 0, sizeof(sreq));
110 return lsctl(&sreq);
111 }
112
113 /*
114 * sf_buffer_available() - Check for an allocated sampling buffer
115 */
116 static int sf_buffer_available(struct cpu_hw_sf *cpuhw)
117 {
118 return !!cpuhw->sfb.sdbt;
119 }
120
121 /*
122 * deallocate sampling facility buffer
123 */
124 static void free_sampling_buffer(struct sf_buffer *sfb)
125 {
126 unsigned long *sdbt, *curr;
127
128 if (!sfb->sdbt)
129 return;
130
131 sdbt = sfb->sdbt;
132 curr = sdbt;
133
134 /* Free the SDBT after all SDBs are processed... */
135 while (1) {
136 if (!*curr || !sdbt)
137 break;
138
139 /* Process table-link entries */
140 if (is_link_entry(curr)) {
141 curr = get_next_sdbt(curr);
142 if (sdbt)
143 free_page((unsigned long) sdbt);
144
145 /* If the origin is reached, sampling buffer is freed */
146 if (curr == sfb->sdbt)
147 break;
148 else
149 sdbt = curr;
150 } else {
151 /* Process SDB pointer */
152 if (*curr) {
153 free_page(*curr);
154 curr++;
155 }
156 }
157 }
158
159 debug_sprintf_event(sfdbg, 5,
160 "free_sampling_buffer: freed sdbt=%p\n", sfb->sdbt);
161 memset(sfb, 0, sizeof(*sfb));
162 }
163
164 static int alloc_sample_data_block(unsigned long *sdbt, gfp_t gfp_flags)
165 {
166 unsigned long sdb, *trailer;
167
168 /* Allocate and initialize sample-data-block */
169 sdb = get_zeroed_page(gfp_flags);
170 if (!sdb)
171 return -ENOMEM;
172 trailer = trailer_entry_ptr(sdb);
173 *trailer = SDB_TE_ALERT_REQ_MASK;
174
175 /* Link SDB into the sample-data-block-table */
176 *sdbt = sdb;
177
178 return 0;
179 }
180
181 /*
182 * realloc_sampling_buffer() - extend sampler memory
183 *
184 * Allocates new sample-data-blocks and adds them to the specified sampling
185 * buffer memory.
186 *
187 * Important: This modifies the sampling buffer and must be called when the
188 * sampling facility is disabled.
189 *
190 * Returns zero on success, non-zero otherwise.
191 */
192 static int realloc_sampling_buffer(struct sf_buffer *sfb,
193 unsigned long num_sdb, gfp_t gfp_flags)
194 {
195 int i, rc;
196 unsigned long *new, *tail;
197
198 if (!sfb->sdbt || !sfb->tail)
199 return -EINVAL;
200
201 if (!is_link_entry(sfb->tail))
202 return -EINVAL;
203
204 /* Append to the existing sampling buffer, overwriting the table-link
205 * register.
206 * The tail variables always points to the "tail" (last and table-link)
207 * entry in an SDB-table.
208 */
209 tail = sfb->tail;
210
211 /* Do a sanity check whether the table-link entry points to
212 * the sampling buffer origin.
213 */
214 if (sfb->sdbt != get_next_sdbt(tail)) {
215 debug_sprintf_event(sfdbg, 3, "realloc_sampling_buffer: "
216 "sampling buffer is not linked: origin=%p"
217 "tail=%p\n",
218 (void *) sfb->sdbt, (void *) tail);
219 return -EINVAL;
220 }
221
222 /* Allocate remaining SDBs */
223 rc = 0;
224 for (i = 0; i < num_sdb; i++) {
225 /* Allocate a new SDB-table if it is full. */
226 if (require_table_link(tail)) {
227 new = (unsigned long *) get_zeroed_page(gfp_flags);
228 if (!new) {
229 rc = -ENOMEM;
230 break;
231 }
232 sfb->num_sdbt++;
233 /* Link current page to tail of chain */
234 *tail = (unsigned long)(void *) new + 1;
235 tail = new;
236 }
237
238 /* Allocate a new sample-data-block.
239 * If there is not enough memory, stop the realloc process
240 * and simply use what was allocated. If this is a temporary
241 * issue, a new realloc call (if required) might succeed.
242 */
243 rc = alloc_sample_data_block(tail, gfp_flags);
244 if (rc)
245 break;
246 sfb->num_sdb++;
247 tail++;
248 }
249
250 /* Link sampling buffer to its origin */
251 *tail = (unsigned long) sfb->sdbt + 1;
252 sfb->tail = tail;
253
254 debug_sprintf_event(sfdbg, 4, "realloc_sampling_buffer: new buffer"
255 " settings: sdbt=%lu sdb=%lu\n",
256 sfb->num_sdbt, sfb->num_sdb);
257 return rc;
258 }
259
260 /*
261 * allocate_sampling_buffer() - allocate sampler memory
262 *
263 * Allocates and initializes a sampling buffer structure using the
264 * specified number of sample-data-blocks (SDB). For each allocation,
265 * a 4K page is used. The number of sample-data-block-tables (SDBT)
266 * are calculated from SDBs.
267 * Also set the ALERT_REQ mask in each SDBs trailer.
268 *
269 * Returns zero on success, non-zero otherwise.
270 */
271 static int alloc_sampling_buffer(struct sf_buffer *sfb, unsigned long num_sdb)
272 {
273 int rc;
274
275 if (sfb->sdbt)
276 return -EINVAL;
277
278 /* Allocate the sample-data-block-table origin */
279 sfb->sdbt = (unsigned long *) get_zeroed_page(GFP_KERNEL);
280 if (!sfb->sdbt)
281 return -ENOMEM;
282 sfb->num_sdb = 0;
283 sfb->num_sdbt = 1;
284
285 /* Link the table origin to point to itself to prepare for
286 * realloc_sampling_buffer() invocation.
287 */
288 sfb->tail = sfb->sdbt;
289 *sfb->tail = (unsigned long)(void *) sfb->sdbt + 1;
290
291 /* Allocate requested number of sample-data-blocks */
292 rc = realloc_sampling_buffer(sfb, num_sdb, GFP_KERNEL);
293 if (rc) {
294 free_sampling_buffer(sfb);
295 debug_sprintf_event(sfdbg, 4, "alloc_sampling_buffer: "
296 "realloc_sampling_buffer failed with rc=%i\n", rc);
297 } else
298 debug_sprintf_event(sfdbg, 4,
299 "alloc_sampling_buffer: tear=%p dear=%p\n",
300 sfb->sdbt, (void *) *sfb->sdbt);
301 return rc;
302 }
303
304 static void sfb_set_limits(unsigned long min, unsigned long max)
305 {
306 struct hws_qsi_info_block si;
307
308 CPUM_SF_MIN_SDB = min;
309 CPUM_SF_MAX_SDB = max;
310
311 memset(&si, 0, sizeof(si));
312 if (!qsi(&si))
313 CPUM_SF_SDB_DIAG_FACTOR = DIV_ROUND_UP(si.dsdes, si.bsdes);
314 }
315
316 static unsigned long sfb_max_limit(struct hw_perf_event *hwc)
317 {
318 return SAMPL_DIAG_MODE(hwc) ? CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR
319 : CPUM_SF_MAX_SDB;
320 }
321
322 static unsigned long sfb_pending_allocs(struct sf_buffer *sfb,
323 struct hw_perf_event *hwc)
324 {
325 if (!sfb->sdbt)
326 return SFB_ALLOC_REG(hwc);
327 if (SFB_ALLOC_REG(hwc) > sfb->num_sdb)
328 return SFB_ALLOC_REG(hwc) - sfb->num_sdb;
329 return 0;
330 }
331
332 static int sfb_has_pending_allocs(struct sf_buffer *sfb,
333 struct hw_perf_event *hwc)
334 {
335 return sfb_pending_allocs(sfb, hwc) > 0;
336 }
337
338 static void sfb_account_allocs(unsigned long num, struct hw_perf_event *hwc)
339 {
340 /* Limit the number of SDBs to not exceed the maximum */
341 num = min_t(unsigned long, num, sfb_max_limit(hwc) - SFB_ALLOC_REG(hwc));
342 if (num)
343 SFB_ALLOC_REG(hwc) += num;
344 }
345
346 static void sfb_init_allocs(unsigned long num, struct hw_perf_event *hwc)
347 {
348 SFB_ALLOC_REG(hwc) = 0;
349 sfb_account_allocs(num, hwc);
350 }
351
352 static void deallocate_buffers(struct cpu_hw_sf *cpuhw)
353 {
354 if (cpuhw->sfb.sdbt)
355 free_sampling_buffer(&cpuhw->sfb);
356 }
357
358 static int allocate_buffers(struct cpu_hw_sf *cpuhw, struct hw_perf_event *hwc)
359 {
360 unsigned long n_sdb, freq, factor;
361 size_t sample_size;
362
363 /* Calculate sampling buffers using 4K pages
364 *
365 * 1. Determine the sample data size which depends on the used
366 * sampling functions, for example, basic-sampling or
367 * basic-sampling with diagnostic-sampling.
368 *
369 * 2. Use the sampling frequency as input. The sampling buffer is
370 * designed for almost one second. This can be adjusted through
371 * the "factor" variable.
372 * In any case, alloc_sampling_buffer() sets the Alert Request
373 * Control indicator to trigger a measurement-alert to harvest
374 * sample-data-blocks (sdb).
375 *
376 * 3. Compute the number of sample-data-blocks and ensure a minimum
377 * of CPUM_SF_MIN_SDB. Also ensure the upper limit does not
378 * exceed a "calculated" maximum. The symbolic maximum is
379 * designed for basic-sampling only and needs to be increased if
380 * diagnostic-sampling is active.
381 * See also the remarks for these symbolic constants.
382 *
383 * 4. Compute the number of sample-data-block-tables (SDBT) and
384 * ensure a minimum of CPUM_SF_MIN_SDBT (one table can manage up
385 * to 511 SDBs).
386 */
387 sample_size = sizeof(struct hws_basic_entry);
388 freq = sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc));
389 factor = 1;
390 n_sdb = DIV_ROUND_UP(freq, factor * ((PAGE_SIZE-64) / sample_size));
391 if (n_sdb < CPUM_SF_MIN_SDB)
392 n_sdb = CPUM_SF_MIN_SDB;
393
394 /* If there is already a sampling buffer allocated, it is very likely
395 * that the sampling facility is enabled too. If the event to be
396 * initialized requires a greater sampling buffer, the allocation must
397 * be postponed. Changing the sampling buffer requires the sampling
398 * facility to be in the disabled state. So, account the number of
399 * required SDBs and let cpumsf_pmu_enable() resize the buffer just
400 * before the event is started.
401 */
402 sfb_init_allocs(n_sdb, hwc);
403 if (sf_buffer_available(cpuhw))
404 return 0;
405
406 debug_sprintf_event(sfdbg, 3,
407 "allocate_buffers: rate=%lu f=%lu sdb=%lu/%lu"
408 " sample_size=%lu cpuhw=%p\n",
409 SAMPL_RATE(hwc), freq, n_sdb, sfb_max_limit(hwc),
410 sample_size, cpuhw);
411
412 return alloc_sampling_buffer(&cpuhw->sfb,
413 sfb_pending_allocs(&cpuhw->sfb, hwc));
414 }
415
416 static unsigned long min_percent(unsigned int percent, unsigned long base,
417 unsigned long min)
418 {
419 return min_t(unsigned long, min, DIV_ROUND_UP(percent * base, 100));
420 }
421
422 static unsigned long compute_sfb_extent(unsigned long ratio, unsigned long base)
423 {
424 /* Use a percentage-based approach to extend the sampling facility
425 * buffer. Accept up to 5% sample data loss.
426 * Vary the extents between 1% to 5% of the current number of
427 * sample-data-blocks.
428 */
429 if (ratio <= 5)
430 return 0;
431 if (ratio <= 25)
432 return min_percent(1, base, 1);
433 if (ratio <= 50)
434 return min_percent(1, base, 1);
435 if (ratio <= 75)
436 return min_percent(2, base, 2);
437 if (ratio <= 100)
438 return min_percent(3, base, 3);
439 if (ratio <= 250)
440 return min_percent(4, base, 4);
441
442 return min_percent(5, base, 8);
443 }
444
445 static void sfb_account_overflows(struct cpu_hw_sf *cpuhw,
446 struct hw_perf_event *hwc)
447 {
448 unsigned long ratio, num;
449
450 if (!OVERFLOW_REG(hwc))
451 return;
452
453 /* The sample_overflow contains the average number of sample data
454 * that has been lost because sample-data-blocks were full.
455 *
456 * Calculate the total number of sample data entries that has been
457 * discarded. Then calculate the ratio of lost samples to total samples
458 * per second in percent.
459 */
460 ratio = DIV_ROUND_UP(100 * OVERFLOW_REG(hwc) * cpuhw->sfb.num_sdb,
461 sample_rate_to_freq(&cpuhw->qsi, SAMPL_RATE(hwc)));
462
463 /* Compute number of sample-data-blocks */
464 num = compute_sfb_extent(ratio, cpuhw->sfb.num_sdb);
465 if (num)
466 sfb_account_allocs(num, hwc);
467
468 debug_sprintf_event(sfdbg, 5, "sfb: overflow: overflow=%llu ratio=%lu"
469 " num=%lu\n", OVERFLOW_REG(hwc), ratio, num);
470 OVERFLOW_REG(hwc) = 0;
471 }
472
473 /* extend_sampling_buffer() - Extend sampling buffer
474 * @sfb: Sampling buffer structure (for local CPU)
475 * @hwc: Perf event hardware structure
476 *
477 * Use this function to extend the sampling buffer based on the overflow counter
478 * and postponed allocation extents stored in the specified Perf event hardware.
479 *
480 * Important: This function disables the sampling facility in order to safely
481 * change the sampling buffer structure. Do not call this function
482 * when the PMU is active.
483 */
484 static void extend_sampling_buffer(struct sf_buffer *sfb,
485 struct hw_perf_event *hwc)
486 {
487 unsigned long num, num_old;
488 int rc;
489
490 num = sfb_pending_allocs(sfb, hwc);
491 if (!num)
492 return;
493 num_old = sfb->num_sdb;
494
495 /* Disable the sampling facility to reset any states and also
496 * clear pending measurement alerts.
497 */
498 sf_disable();
499
500 /* Extend the sampling buffer.
501 * This memory allocation typically happens in an atomic context when
502 * called by perf. Because this is a reallocation, it is fine if the
503 * new SDB-request cannot be satisfied immediately.
504 */
505 rc = realloc_sampling_buffer(sfb, num, GFP_ATOMIC);
506 if (rc)
507 debug_sprintf_event(sfdbg, 5, "sfb: extend: realloc "
508 "failed with rc=%i\n", rc);
509
510 if (sfb_has_pending_allocs(sfb, hwc))
511 debug_sprintf_event(sfdbg, 5, "sfb: extend: "
512 "req=%lu alloc=%lu remaining=%lu\n",
513 num, sfb->num_sdb - num_old,
514 sfb_pending_allocs(sfb, hwc));
515 }
516
517
518 /* Number of perf events counting hardware events */
519 static atomic_t num_events;
520 /* Used to avoid races in calling reserve/release_cpumf_hardware */
521 static DEFINE_MUTEX(pmc_reserve_mutex);
522
523 #define PMC_INIT 0
524 #define PMC_RELEASE 1
525 #define PMC_FAILURE 2
526 static void setup_pmc_cpu(void *flags)
527 {
528 int err;
529 struct cpu_hw_sf *cpusf = this_cpu_ptr(&cpu_hw_sf);
530
531 err = 0;
532 switch (*((int *) flags)) {
533 case PMC_INIT:
534 memset(cpusf, 0, sizeof(*cpusf));
535 err = qsi(&cpusf->qsi);
536 if (err)
537 break;
538 cpusf->flags |= PMU_F_RESERVED;
539 err = sf_disable();
540 if (err)
541 pr_err("Switching off the sampling facility failed "
542 "with rc=%i\n", err);
543 debug_sprintf_event(sfdbg, 5,
544 "setup_pmc_cpu: initialized: cpuhw=%p\n", cpusf);
545 break;
546 case PMC_RELEASE:
547 cpusf->flags &= ~PMU_F_RESERVED;
548 err = sf_disable();
549 if (err) {
550 pr_err("Switching off the sampling facility failed "
551 "with rc=%i\n", err);
552 } else
553 deallocate_buffers(cpusf);
554 debug_sprintf_event(sfdbg, 5,
555 "setup_pmc_cpu: released: cpuhw=%p\n", cpusf);
556 break;
557 }
558 if (err)
559 *((int *) flags) |= PMC_FAILURE;
560 }
561
562 static void release_pmc_hardware(void)
563 {
564 int flags = PMC_RELEASE;
565
566 irq_subclass_unregister(IRQ_SUBCLASS_MEASUREMENT_ALERT);
567 on_each_cpu(setup_pmc_cpu, &flags, 1);
568 }
569
570 static int reserve_pmc_hardware(void)
571 {
572 int flags = PMC_INIT;
573
574 on_each_cpu(setup_pmc_cpu, &flags, 1);
575 if (flags & PMC_FAILURE) {
576 release_pmc_hardware();
577 return -ENODEV;
578 }
579 irq_subclass_register(IRQ_SUBCLASS_MEASUREMENT_ALERT);
580
581 return 0;
582 }
583
584 static void hw_perf_event_destroy(struct perf_event *event)
585 {
586 /* Release PMC if this is the last perf event */
587 if (!atomic_add_unless(&num_events, -1, 1)) {
588 mutex_lock(&pmc_reserve_mutex);
589 if (atomic_dec_return(&num_events) == 0)
590 release_pmc_hardware();
591 mutex_unlock(&pmc_reserve_mutex);
592 }
593 }
594
595 static void hw_init_period(struct hw_perf_event *hwc, u64 period)
596 {
597 hwc->sample_period = period;
598 hwc->last_period = hwc->sample_period;
599 local64_set(&hwc->period_left, hwc->sample_period);
600 }
601
602 static void hw_reset_registers(struct hw_perf_event *hwc,
603 unsigned long *sdbt_origin)
604 {
605 /* (Re)set to first sample-data-block-table */
606 TEAR_REG(hwc) = (unsigned long) sdbt_origin;
607 }
608
609 static unsigned long hw_limit_rate(const struct hws_qsi_info_block *si,
610 unsigned long rate)
611 {
612 return clamp_t(unsigned long, rate,
613 si->min_sampl_rate, si->max_sampl_rate);
614 }
615
616 static u32 cpumsf_pid_type(struct perf_event *event,
617 u32 pid, enum pid_type type)
618 {
619 struct task_struct *tsk;
620
621 /* Idle process */
622 if (!pid)
623 goto out;
624
625 tsk = find_task_by_pid_ns(pid, &init_pid_ns);
626 pid = -1;
627 if (tsk) {
628 /*
629 * Only top level events contain the pid namespace in which
630 * they are created.
631 */
632 if (event->parent)
633 event = event->parent;
634 pid = __task_pid_nr_ns(tsk, type, event->ns);
635 /*
636 * See also 1d953111b648
637 * "perf/core: Don't report zero PIDs for exiting tasks".
638 */
639 if (!pid && !pid_alive(tsk))
640 pid = -1;
641 }
642 out:
643 return pid;
644 }
645
646 static void cpumsf_output_event_pid(struct perf_event *event,
647 struct perf_sample_data *data,
648 struct pt_regs *regs)
649 {
650 u32 pid;
651 struct perf_event_header header;
652 struct perf_output_handle handle;
653
654 /*
655 * Obtain the PID from the basic-sampling data entry and
656 * correct the data->tid_entry.pid value.
657 */
658 pid = data->tid_entry.pid;
659
660 /* Protect callchain buffers, tasks */
661 rcu_read_lock();
662
663 perf_prepare_sample(&header, data, event, regs);
664 if (perf_output_begin(&handle, event, header.size))
665 goto out;
666
667 /* Update the process ID (see also kernel/events/core.c) */
668 data->tid_entry.pid = cpumsf_pid_type(event, pid, PIDTYPE_TGID);
669 data->tid_entry.tid = cpumsf_pid_type(event, pid, PIDTYPE_PID);
670
671 perf_output_sample(&handle, &header, data, event);
672 perf_output_end(&handle);
673 out:
674 rcu_read_unlock();
675 }
676
677 static int __hw_perf_event_init(struct perf_event *event)
678 {
679 struct cpu_hw_sf *cpuhw;
680 struct hws_qsi_info_block si;
681 struct perf_event_attr *attr = &event->attr;
682 struct hw_perf_event *hwc = &event->hw;
683 unsigned long rate;
684 int cpu, err;
685
686 /* Reserve CPU-measurement sampling facility */
687 err = 0;
688 if (!atomic_inc_not_zero(&num_events)) {
689 mutex_lock(&pmc_reserve_mutex);
690 if (atomic_read(&num_events) == 0 && reserve_pmc_hardware())
691 err = -EBUSY;
692 else
693 atomic_inc(&num_events);
694 mutex_unlock(&pmc_reserve_mutex);
695 }
696 event->destroy = hw_perf_event_destroy;
697
698 if (err)
699 goto out;
700
701 /* Access per-CPU sampling information (query sampling info) */
702 /*
703 * The event->cpu value can be -1 to count on every CPU, for example,
704 * when attaching to a task. If this is specified, use the query
705 * sampling info from the current CPU, otherwise use event->cpu to
706 * retrieve the per-CPU information.
707 * Later, cpuhw indicates whether to allocate sampling buffers for a
708 * particular CPU (cpuhw!=NULL) or each online CPU (cpuw==NULL).
709 */
710 memset(&si, 0, sizeof(si));
711 cpuhw = NULL;
712 if (event->cpu == -1)
713 qsi(&si);
714 else {
715 /* Event is pinned to a particular CPU, retrieve the per-CPU
716 * sampling structure for accessing the CPU-specific QSI.
717 */
718 cpuhw = &per_cpu(cpu_hw_sf, event->cpu);
719 si = cpuhw->qsi;
720 }
721
722 /* Check sampling facility authorization and, if not authorized,
723 * fall back to other PMUs. It is safe to check any CPU because
724 * the authorization is identical for all configured CPUs.
725 */
726 if (!si.as) {
727 err = -ENOENT;
728 goto out;
729 }
730
731 /* Always enable basic sampling */
732 SAMPL_FLAGS(hwc) = PERF_CPUM_SF_BASIC_MODE;
733
734 /* Check if diagnostic sampling is requested. Deny if the required
735 * sampling authorization is missing.
736 */
737 if (attr->config == PERF_EVENT_CPUM_SF_DIAG) {
738 if (!si.ad) {
739 err = -EPERM;
740 goto out;
741 }
742 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_DIAG_MODE;
743 }
744
745 /* Check and set other sampling flags */
746 if (attr->config1 & PERF_CPUM_SF_FULL_BLOCKS)
747 SAMPL_FLAGS(hwc) |= PERF_CPUM_SF_FULL_BLOCKS;
748
749 /* The sampling information (si) contains information about the
750 * min/max sampling intervals and the CPU speed. So calculate the
751 * correct sampling interval and avoid the whole period adjust
752 * feedback loop.
753 */
754 rate = 0;
755 if (attr->freq) {
756 if (!attr->sample_freq) {
757 err = -EINVAL;
758 goto out;
759 }
760 rate = freq_to_sample_rate(&si, attr->sample_freq);
761 rate = hw_limit_rate(&si, rate);
762 attr->freq = 0;
763 attr->sample_period = rate;
764 } else {
765 /* The min/max sampling rates specifies the valid range
766 * of sample periods. If the specified sample period is
767 * out of range, limit the period to the range boundary.
768 */
769 rate = hw_limit_rate(&si, hwc->sample_period);
770
771 /* The perf core maintains a maximum sample rate that is
772 * configurable through the sysctl interface. Ensure the
773 * sampling rate does not exceed this value. This also helps
774 * to avoid throttling when pushing samples with
775 * perf_event_overflow().
776 */
777 if (sample_rate_to_freq(&si, rate) >
778 sysctl_perf_event_sample_rate) {
779 err = -EINVAL;
780 debug_sprintf_event(sfdbg, 1, "Sampling rate exceeds maximum perf sample rate\n");
781 goto out;
782 }
783 }
784 SAMPL_RATE(hwc) = rate;
785 hw_init_period(hwc, SAMPL_RATE(hwc));
786
787 /* Initialize sample data overflow accounting */
788 hwc->extra_reg.reg = REG_OVERFLOW;
789 OVERFLOW_REG(hwc) = 0;
790
791 /* Use AUX buffer. No need to allocate it by ourself */
792 if (attr->config == PERF_EVENT_CPUM_SF_DIAG)
793 return 0;
794
795 /* Allocate the per-CPU sampling buffer using the CPU information
796 * from the event. If the event is not pinned to a particular
797 * CPU (event->cpu == -1; or cpuhw == NULL), allocate sampling
798 * buffers for each online CPU.
799 */
800 if (cpuhw)
801 /* Event is pinned to a particular CPU */
802 err = allocate_buffers(cpuhw, hwc);
803 else {
804 /* Event is not pinned, allocate sampling buffer on
805 * each online CPU
806 */
807 for_each_online_cpu(cpu) {
808 cpuhw = &per_cpu(cpu_hw_sf, cpu);
809 err = allocate_buffers(cpuhw, hwc);
810 if (err)
811 break;
812 }
813 }
814
815 /* If PID/TID sampling is active, replace the default overflow
816 * handler to extract and resolve the PIDs from the basic-sampling
817 * data entries.
818 */
819 if (event->attr.sample_type & PERF_SAMPLE_TID)
820 if (is_default_overflow_handler(event))
821 event->overflow_handler = cpumsf_output_event_pid;
822 out:
823 return err;
824 }
825
826 static int cpumsf_pmu_event_init(struct perf_event *event)
827 {
828 int err;
829
830 /* No support for taken branch sampling */
831 if (has_branch_stack(event))
832 return -EOPNOTSUPP;
833
834 switch (event->attr.type) {
835 case PERF_TYPE_RAW:
836 if ((event->attr.config != PERF_EVENT_CPUM_SF) &&
837 (event->attr.config != PERF_EVENT_CPUM_SF_DIAG))
838 return -ENOENT;
839 break;
840 case PERF_TYPE_HARDWARE:
841 /* Support sampling of CPU cycles in addition to the
842 * counter facility. However, the counter facility
843 * is more precise and, hence, restrict this PMU to
844 * sampling events only.
845 */
846 if (event->attr.config != PERF_COUNT_HW_CPU_CYCLES)
847 return -ENOENT;
848 if (!is_sampling_event(event))
849 return -ENOENT;
850 break;
851 default:
852 return -ENOENT;
853 }
854
855 /* Check online status of the CPU to which the event is pinned */
856 if (event->cpu >= 0 && !cpu_online(event->cpu))
857 return -ENODEV;
858
859 /* Force reset of idle/hv excludes regardless of what the
860 * user requested.
861 */
862 if (event->attr.exclude_hv)
863 event->attr.exclude_hv = 0;
864 if (event->attr.exclude_idle)
865 event->attr.exclude_idle = 0;
866
867 err = __hw_perf_event_init(event);
868 if (unlikely(err))
869 if (event->destroy)
870 event->destroy(event);
871 return err;
872 }
873
874 static void cpumsf_pmu_enable(struct pmu *pmu)
875 {
876 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
877 struct hw_perf_event *hwc;
878 int err;
879
880 if (cpuhw->flags & PMU_F_ENABLED)
881 return;
882
883 if (cpuhw->flags & PMU_F_ERR_MASK)
884 return;
885
886 /* Check whether to extent the sampling buffer.
887 *
888 * Two conditions trigger an increase of the sampling buffer for a
889 * perf event:
890 * 1. Postponed buffer allocations from the event initialization.
891 * 2. Sampling overflows that contribute to pending allocations.
892 *
893 * Note that the extend_sampling_buffer() function disables the sampling
894 * facility, but it can be fully re-enabled using sampling controls that
895 * have been saved in cpumsf_pmu_disable().
896 */
897 if (cpuhw->event) {
898 hwc = &cpuhw->event->hw;
899 if (!(SAMPL_DIAG_MODE(hwc))) {
900 /*
901 * Account number of overflow-designated
902 * buffer extents
903 */
904 sfb_account_overflows(cpuhw, hwc);
905 if (sfb_has_pending_allocs(&cpuhw->sfb, hwc))
906 extend_sampling_buffer(&cpuhw->sfb, hwc);
907 }
908 }
909
910 /* (Re)enable the PMU and sampling facility */
911 cpuhw->flags |= PMU_F_ENABLED;
912 barrier();
913
914 err = lsctl(&cpuhw->lsctl);
915 if (err) {
916 cpuhw->flags &= ~PMU_F_ENABLED;
917 pr_err("Loading sampling controls failed: op=%i err=%i\n",
918 1, err);
919 return;
920 }
921
922 /* Load current program parameter */
923 lpp(&S390_lowcore.lpp);
924
925 debug_sprintf_event(sfdbg, 6, "pmu_enable: es=%i cs=%i ed=%i cd=%i "
926 "tear=%p dear=%p\n", cpuhw->lsctl.es, cpuhw->lsctl.cs,
927 cpuhw->lsctl.ed, cpuhw->lsctl.cd,
928 (void *) cpuhw->lsctl.tear, (void *) cpuhw->lsctl.dear);
929 }
930
931 static void cpumsf_pmu_disable(struct pmu *pmu)
932 {
933 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
934 struct hws_lsctl_request_block inactive;
935 struct hws_qsi_info_block si;
936 int err;
937
938 if (!(cpuhw->flags & PMU_F_ENABLED))
939 return;
940
941 if (cpuhw->flags & PMU_F_ERR_MASK)
942 return;
943
944 /* Switch off sampling activation control */
945 inactive = cpuhw->lsctl;
946 inactive.cs = 0;
947 inactive.cd = 0;
948
949 err = lsctl(&inactive);
950 if (err) {
951 pr_err("Loading sampling controls failed: op=%i err=%i\n",
952 2, err);
953 return;
954 }
955
956 /* Save state of TEAR and DEAR register contents */
957 if (!qsi(&si)) {
958 /* TEAR/DEAR values are valid only if the sampling facility is
959 * enabled. Note that cpumsf_pmu_disable() might be called even
960 * for a disabled sampling facility because cpumsf_pmu_enable()
961 * controls the enable/disable state.
962 */
963 if (si.es) {
964 cpuhw->lsctl.tear = si.tear;
965 cpuhw->lsctl.dear = si.dear;
966 }
967 } else
968 debug_sprintf_event(sfdbg, 3, "cpumsf_pmu_disable: "
969 "qsi() failed with err=%i\n", err);
970
971 cpuhw->flags &= ~PMU_F_ENABLED;
972 }
973
974 /* perf_exclude_event() - Filter event
975 * @event: The perf event
976 * @regs: pt_regs structure
977 * @sde_regs: Sample-data-entry (sde) regs structure
978 *
979 * Filter perf events according to their exclude specification.
980 *
981 * Return non-zero if the event shall be excluded.
982 */
983 static int perf_exclude_event(struct perf_event *event, struct pt_regs *regs,
984 struct perf_sf_sde_regs *sde_regs)
985 {
986 if (event->attr.exclude_user && user_mode(regs))
987 return 1;
988 if (event->attr.exclude_kernel && !user_mode(regs))
989 return 1;
990 if (event->attr.exclude_guest && sde_regs->in_guest)
991 return 1;
992 if (event->attr.exclude_host && !sde_regs->in_guest)
993 return 1;
994 return 0;
995 }
996
997 /* perf_push_sample() - Push samples to perf
998 * @event: The perf event
999 * @sample: Hardware sample data
1000 *
1001 * Use the hardware sample data to create perf event sample. The sample
1002 * is the pushed to the event subsystem and the function checks for
1003 * possible event overflows. If an event overflow occurs, the PMU is
1004 * stopped.
1005 *
1006 * Return non-zero if an event overflow occurred.
1007 */
1008 static int perf_push_sample(struct perf_event *event,
1009 struct hws_basic_entry *basic)
1010 {
1011 int overflow;
1012 struct pt_regs regs;
1013 struct perf_sf_sde_regs *sde_regs;
1014 struct perf_sample_data data;
1015
1016 /* Setup perf sample */
1017 perf_sample_data_init(&data, 0, event->hw.last_period);
1018
1019 /* Setup pt_regs to look like an CPU-measurement external interrupt
1020 * using the Program Request Alert code. The regs.int_parm_long
1021 * field which is unused contains additional sample-data-entry related
1022 * indicators.
1023 */
1024 memset(&regs, 0, sizeof(regs));
1025 regs.int_code = 0x1407;
1026 regs.int_parm = CPU_MF_INT_SF_PRA;
1027 sde_regs = (struct perf_sf_sde_regs *) &regs.int_parm_long;
1028
1029 psw_bits(regs.psw).ia = basic->ia;
1030 psw_bits(regs.psw).dat = basic->T;
1031 psw_bits(regs.psw).wait = basic->W;
1032 psw_bits(regs.psw).pstate = basic->P;
1033 psw_bits(regs.psw).as = basic->AS;
1034
1035 /*
1036 * Use the hardware provided configuration level to decide if the
1037 * sample belongs to a guest or host. If that is not available,
1038 * fall back to the following heuristics:
1039 * A non-zero guest program parameter always indicates a guest
1040 * sample. Some early samples or samples from guests without
1041 * lpp usage would be misaccounted to the host. We use the asn
1042 * value as an addon heuristic to detect most of these guest samples.
1043 * If the value differs from 0xffff (the host value), we assume to
1044 * be a KVM guest.
1045 */
1046 switch (basic->CL) {
1047 case 1: /* logical partition */
1048 sde_regs->in_guest = 0;
1049 break;
1050 case 2: /* virtual machine */
1051 sde_regs->in_guest = 1;
1052 break;
1053 default: /* old machine, use heuristics */
1054 if (basic->gpp || basic->prim_asn != 0xffff)
1055 sde_regs->in_guest = 1;
1056 break;
1057 }
1058
1059 /*
1060 * Store the PID value from the sample-data-entry to be
1061 * processed and resolved by cpumsf_output_event_pid().
1062 */
1063 data.tid_entry.pid = basic->hpp & LPP_PID_MASK;
1064
1065 overflow = 0;
1066 if (perf_exclude_event(event, &regs, sde_regs))
1067 goto out;
1068 if (perf_event_overflow(event, &data, &regs)) {
1069 overflow = 1;
1070 event->pmu->stop(event, 0);
1071 }
1072 perf_event_update_userpage(event);
1073 out:
1074 return overflow;
1075 }
1076
1077 static void perf_event_count_update(struct perf_event *event, u64 count)
1078 {
1079 local64_add(count, &event->count);
1080 }
1081
1082 static void debug_sample_entry(struct hws_basic_entry *sample,
1083 struct hws_trailer_entry *te)
1084 {
1085 debug_sprintf_event(sfdbg, 4, "hw_collect_samples: Found unknown "
1086 "sampling data entry: te->f=%i basic.def=%04x (%p)\n",
1087 te->f, sample->def, sample);
1088 }
1089
1090 /* hw_collect_samples() - Walk through a sample-data-block and collect samples
1091 * @event: The perf event
1092 * @sdbt: Sample-data-block table
1093 * @overflow: Event overflow counter
1094 *
1095 * Walks through a sample-data-block and collects sampling data entries that are
1096 * then pushed to the perf event subsystem. Depending on the sampling function,
1097 * there can be either basic-sampling or combined-sampling data entries. A
1098 * combined-sampling data entry consists of a basic- and a diagnostic-sampling
1099 * data entry. The sampling function is determined by the flags in the perf
1100 * event hardware structure. The function always works with a combined-sampling
1101 * data entry but ignores the the diagnostic portion if it is not available.
1102 *
1103 * Note that the implementation focuses on basic-sampling data entries and, if
1104 * such an entry is not valid, the entire combined-sampling data entry is
1105 * ignored.
1106 *
1107 * The overflow variables counts the number of samples that has been discarded
1108 * due to a perf event overflow.
1109 */
1110 static void hw_collect_samples(struct perf_event *event, unsigned long *sdbt,
1111 unsigned long long *overflow)
1112 {
1113 struct hws_trailer_entry *te;
1114 struct hws_basic_entry *sample;
1115
1116 te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt);
1117 sample = (struct hws_basic_entry *) *sdbt;
1118 while ((unsigned long *) sample < (unsigned long *) te) {
1119 /* Check for an empty sample */
1120 if (!sample->def)
1121 break;
1122
1123 /* Update perf event period */
1124 perf_event_count_update(event, SAMPL_RATE(&event->hw));
1125
1126 /* Check whether sample is valid */
1127 if (sample->def == 0x0001) {
1128 /* If an event overflow occurred, the PMU is stopped to
1129 * throttle event delivery. Remaining sample data is
1130 * discarded.
1131 */
1132 if (!*overflow) {
1133 /* Check whether sample is consistent */
1134 if (sample->I == 0 && sample->W == 0) {
1135 /* Deliver sample data to perf */
1136 *overflow = perf_push_sample(event,
1137 sample);
1138 }
1139 } else
1140 /* Count discarded samples */
1141 *overflow += 1;
1142 } else {
1143 debug_sample_entry(sample, te);
1144 /* Sample slot is not yet written or other record.
1145 *
1146 * This condition can occur if the buffer was reused
1147 * from a combined basic- and diagnostic-sampling.
1148 * If only basic-sampling is then active, entries are
1149 * written into the larger diagnostic entries.
1150 * This is typically the case for sample-data-blocks
1151 * that are not full. Stop processing if the first
1152 * invalid format was detected.
1153 */
1154 if (!te->f)
1155 break;
1156 }
1157
1158 /* Reset sample slot and advance to next sample */
1159 sample->def = 0;
1160 sample++;
1161 }
1162 }
1163
1164 /* hw_perf_event_update() - Process sampling buffer
1165 * @event: The perf event
1166 * @flush_all: Flag to also flush partially filled sample-data-blocks
1167 *
1168 * Processes the sampling buffer and create perf event samples.
1169 * The sampling buffer position are retrieved and saved in the TEAR_REG
1170 * register of the specified perf event.
1171 *
1172 * Only full sample-data-blocks are processed. Specify the flash_all flag
1173 * to also walk through partially filled sample-data-blocks. It is ignored
1174 * if PERF_CPUM_SF_FULL_BLOCKS is set. The PERF_CPUM_SF_FULL_BLOCKS flag
1175 * enforces the processing of full sample-data-blocks only (trailer entries
1176 * with the block-full-indicator bit set).
1177 */
1178 static void hw_perf_event_update(struct perf_event *event, int flush_all)
1179 {
1180 struct hw_perf_event *hwc = &event->hw;
1181 struct hws_trailer_entry *te;
1182 unsigned long *sdbt;
1183 unsigned long long event_overflow, sampl_overflow, num_sdb, te_flags;
1184 int done;
1185
1186 /*
1187 * AUX buffer is used when in diagnostic sampling mode.
1188 * No perf events/samples are created.
1189 */
1190 if (SAMPL_DIAG_MODE(&event->hw))
1191 return;
1192
1193 if (flush_all && SDB_FULL_BLOCKS(hwc))
1194 flush_all = 0;
1195
1196 sdbt = (unsigned long *) TEAR_REG(hwc);
1197 done = event_overflow = sampl_overflow = num_sdb = 0;
1198 while (!done) {
1199 /* Get the trailer entry of the sample-data-block */
1200 te = (struct hws_trailer_entry *) trailer_entry_ptr(*sdbt);
1201
1202 /* Leave loop if no more work to do (block full indicator) */
1203 if (!te->f) {
1204 done = 1;
1205 if (!flush_all)
1206 break;
1207 }
1208
1209 /* Check the sample overflow count */
1210 if (te->overflow)
1211 /* Account sample overflows and, if a particular limit
1212 * is reached, extend the sampling buffer.
1213 * For details, see sfb_account_overflows().
1214 */
1215 sampl_overflow += te->overflow;
1216
1217 /* Timestamps are valid for full sample-data-blocks only */
1218 debug_sprintf_event(sfdbg, 6, "hw_perf_event_update: sdbt=%p "
1219 "overflow=%llu timestamp=0x%llx\n",
1220 sdbt, te->overflow,
1221 (te->f) ? trailer_timestamp(te) : 0ULL);
1222
1223 /* Collect all samples from a single sample-data-block and
1224 * flag if an (perf) event overflow happened. If so, the PMU
1225 * is stopped and remaining samples will be discarded.
1226 */
1227 hw_collect_samples(event, sdbt, &event_overflow);
1228 num_sdb++;
1229
1230 /* Reset trailer (using compare-double-and-swap) */
1231 do {
1232 te_flags = te->flags & ~SDB_TE_BUFFER_FULL_MASK;
1233 te_flags |= SDB_TE_ALERT_REQ_MASK;
1234 } while (!cmpxchg_double(&te->flags, &te->overflow,
1235 te->flags, te->overflow,
1236 te_flags, 0ULL));
1237
1238 /* Advance to next sample-data-block */
1239 sdbt++;
1240 if (is_link_entry(sdbt))
1241 sdbt = get_next_sdbt(sdbt);
1242
1243 /* Update event hardware registers */
1244 TEAR_REG(hwc) = (unsigned long) sdbt;
1245
1246 /* Stop processing sample-data if all samples of the current
1247 * sample-data-block were flushed even if it was not full.
1248 */
1249 if (flush_all && done)
1250 break;
1251
1252 /* If an event overflow happened, discard samples by
1253 * processing any remaining sample-data-blocks.
1254 */
1255 if (event_overflow)
1256 flush_all = 1;
1257 }
1258
1259 /* Account sample overflows in the event hardware structure */
1260 if (sampl_overflow)
1261 OVERFLOW_REG(hwc) = DIV_ROUND_UP(OVERFLOW_REG(hwc) +
1262 sampl_overflow, 1 + num_sdb);
1263 if (sampl_overflow || event_overflow)
1264 debug_sprintf_event(sfdbg, 4, "hw_perf_event_update: "
1265 "overflow stats: sample=%llu event=%llu\n",
1266 sampl_overflow, event_overflow);
1267 }
1268
1269 #define AUX_SDB_INDEX(aux, i) ((i) % aux->sfb.num_sdb)
1270 #define AUX_SDB_NUM(aux, start, end) (end >= start ? end - start + 1 : 0)
1271 #define AUX_SDB_NUM_ALERT(aux) AUX_SDB_NUM(aux, aux->head, aux->alert_mark)
1272 #define AUX_SDB_NUM_EMPTY(aux) AUX_SDB_NUM(aux, aux->head, aux->empty_mark)
1273
1274 /*
1275 * Get trailer entry by index of SDB.
1276 */
1277 static struct hws_trailer_entry *aux_sdb_trailer(struct aux_buffer *aux,
1278 unsigned long index)
1279 {
1280 unsigned long sdb;
1281
1282 index = AUX_SDB_INDEX(aux, index);
1283 sdb = aux->sdb_index[index];
1284 return (struct hws_trailer_entry *)trailer_entry_ptr(sdb);
1285 }
1286
1287 /*
1288 * Finish sampling on the cpu. Called by cpumsf_pmu_del() with pmu
1289 * disabled. Collect the full SDBs in AUX buffer which have not reached
1290 * the point of alert indicator. And ignore the SDBs which are not
1291 * full.
1292 *
1293 * 1. Scan SDBs to see how much data is there and consume them.
1294 * 2. Remove alert indicator in the buffer.
1295 */
1296 static void aux_output_end(struct perf_output_handle *handle)
1297 {
1298 unsigned long i, range_scan, idx;
1299 struct aux_buffer *aux;
1300 struct hws_trailer_entry *te;
1301
1302 aux = perf_get_aux(handle);
1303 if (!aux)
1304 return;
1305
1306 range_scan = AUX_SDB_NUM_ALERT(aux);
1307 for (i = 0, idx = aux->head; i < range_scan; i++, idx++) {
1308 te = aux_sdb_trailer(aux, idx);
1309 if (!(te->flags & SDB_TE_BUFFER_FULL_MASK))
1310 break;
1311 }
1312 /* i is num of SDBs which are full */
1313 perf_aux_output_end(handle, i << PAGE_SHIFT);
1314
1315 /* Remove alert indicators in the buffer */
1316 te = aux_sdb_trailer(aux, aux->alert_mark);
1317 te->flags &= ~SDB_TE_ALERT_REQ_MASK;
1318
1319 debug_sprintf_event(sfdbg, 6, "aux_output_end: collect %lx SDBs\n", i);
1320 }
1321
1322 /*
1323 * Start sampling on the CPU. Called by cpumsf_pmu_add() when an event
1324 * is first added to the CPU or rescheduled again to the CPU. It is called
1325 * with pmu disabled.
1326 *
1327 * 1. Reset the trailer of SDBs to get ready for new data.
1328 * 2. Tell the hardware where to put the data by reset the SDBs buffer
1329 * head(tear/dear).
1330 */
1331 static int aux_output_begin(struct perf_output_handle *handle,
1332 struct aux_buffer *aux,
1333 struct cpu_hw_sf *cpuhw)
1334 {
1335 unsigned long range;
1336 unsigned long i, range_scan, idx;
1337 unsigned long head, base, offset;
1338 struct hws_trailer_entry *te;
1339
1340 if (WARN_ON_ONCE(handle->head & ~PAGE_MASK))
1341 return -EINVAL;
1342
1343 aux->head = handle->head >> PAGE_SHIFT;
1344 range = (handle->size + 1) >> PAGE_SHIFT;
1345 if (range <= 1)
1346 return -ENOMEM;
1347
1348 /*
1349 * SDBs between aux->head and aux->empty_mark are already ready
1350 * for new data. range_scan is num of SDBs not within them.
1351 */
1352 if (range > AUX_SDB_NUM_EMPTY(aux)) {
1353 range_scan = range - AUX_SDB_NUM_EMPTY(aux);
1354 idx = aux->empty_mark + 1;
1355 for (i = 0; i < range_scan; i++, idx++) {
1356 te = aux_sdb_trailer(aux, idx);
1357 te->flags = te->flags & ~SDB_TE_BUFFER_FULL_MASK;
1358 te->flags = te->flags & ~SDB_TE_ALERT_REQ_MASK;
1359 te->overflow = 0;
1360 }
1361 /* Save the position of empty SDBs */
1362 aux->empty_mark = aux->head + range - 1;
1363 }
1364
1365 /* Set alert indicator */
1366 aux->alert_mark = aux->head + range/2 - 1;
1367 te = aux_sdb_trailer(aux, aux->alert_mark);
1368 te->flags = te->flags | SDB_TE_ALERT_REQ_MASK;
1369
1370 /* Reset hardware buffer head */
1371 head = AUX_SDB_INDEX(aux, aux->head);
1372 base = aux->sdbt_index[head / CPUM_SF_SDB_PER_TABLE];
1373 offset = head % CPUM_SF_SDB_PER_TABLE;
1374 cpuhw->lsctl.tear = base + offset * sizeof(unsigned long);
1375 cpuhw->lsctl.dear = aux->sdb_index[head];
1376
1377 debug_sprintf_event(sfdbg, 6, "aux_output_begin: "
1378 "head->alert_mark->empty_mark (num_alert, range)"
1379 "[%lx -> %lx -> %lx] (%lx, %lx) "
1380 "tear index %lx, tear %lx dear %lx\n",
1381 aux->head, aux->alert_mark, aux->empty_mark,
1382 AUX_SDB_NUM_ALERT(aux), range,
1383 head / CPUM_SF_SDB_PER_TABLE,
1384 cpuhw->lsctl.tear,
1385 cpuhw->lsctl.dear);
1386
1387 return 0;
1388 }
1389
1390 /*
1391 * Set alert indicator on SDB at index @alert_index while sampler is running.
1392 *
1393 * Return true if successfully.
1394 * Return false if full indicator is already set by hardware sampler.
1395 */
1396 static bool aux_set_alert(struct aux_buffer *aux, unsigned long alert_index,
1397 unsigned long long *overflow)
1398 {
1399 unsigned long long orig_overflow, orig_flags, new_flags;
1400 struct hws_trailer_entry *te;
1401
1402 te = aux_sdb_trailer(aux, alert_index);
1403 do {
1404 orig_flags = te->flags;
1405 orig_overflow = te->overflow;
1406 *overflow = orig_overflow;
1407 if (orig_flags & SDB_TE_BUFFER_FULL_MASK) {
1408 /*
1409 * SDB is already set by hardware.
1410 * Abort and try to set somewhere
1411 * behind.
1412 */
1413 return false;
1414 }
1415 new_flags = orig_flags | SDB_TE_ALERT_REQ_MASK;
1416 } while (!cmpxchg_double(&te->flags, &te->overflow,
1417 orig_flags, orig_overflow,
1418 new_flags, 0ULL));
1419 return true;
1420 }
1421
1422 /*
1423 * aux_reset_buffer() - Scan and setup SDBs for new samples
1424 * @aux: The AUX buffer to set
1425 * @range: The range of SDBs to scan started from aux->head
1426 * @overflow: Set to overflow count
1427 *
1428 * Set alert indicator on the SDB at index of aux->alert_mark. If this SDB is
1429 * marked as empty, check if it is already set full by the hardware sampler.
1430 * If yes, that means new data is already there before we can set an alert
1431 * indicator. Caller should try to set alert indicator to some position behind.
1432 *
1433 * Scan the SDBs in AUX buffer from behind aux->empty_mark. They are used
1434 * previously and have already been consumed by user space. Reset these SDBs
1435 * (clear full indicator and alert indicator) for new data.
1436 * If aux->alert_mark fall in this area, just set it. Overflow count is
1437 * recorded while scanning.
1438 *
1439 * SDBs between aux->head and aux->empty_mark are already reset at last time.
1440 * and ready for new samples. So scanning on this area could be skipped.
1441 *
1442 * Return true if alert indicator is set successfully and false if not.
1443 */
1444 static bool aux_reset_buffer(struct aux_buffer *aux, unsigned long range,
1445 unsigned long long *overflow)
1446 {
1447 unsigned long long orig_overflow, orig_flags, new_flags;
1448 unsigned long i, range_scan, idx;
1449 struct hws_trailer_entry *te;
1450
1451 if (range <= AUX_SDB_NUM_EMPTY(aux))
1452 /*
1453 * No need to scan. All SDBs in range are marked as empty.
1454 * Just set alert indicator. Should check race with hardware
1455 * sampler.
1456 */
1457 return aux_set_alert(aux, aux->alert_mark, overflow);
1458
1459 if (aux->alert_mark <= aux->empty_mark)
1460 /*
1461 * Set alert indicator on empty SDB. Should check race
1462 * with hardware sampler.
1463 */
1464 if (!aux_set_alert(aux, aux->alert_mark, overflow))
1465 return false;
1466
1467 /*
1468 * Scan the SDBs to clear full and alert indicator used previously.
1469 * Start scanning from one SDB behind empty_mark. If the new alert
1470 * indicator fall into this range, set it.
1471 */
1472 range_scan = range - AUX_SDB_NUM_EMPTY(aux);
1473 idx = aux->empty_mark + 1;
1474 for (i = 0; i < range_scan; i++, idx++) {
1475 te = aux_sdb_trailer(aux, idx);
1476 do {
1477 orig_flags = te->flags;
1478 orig_overflow = te->overflow;
1479 new_flags = orig_flags & ~SDB_TE_BUFFER_FULL_MASK;
1480 if (idx == aux->alert_mark)
1481 new_flags |= SDB_TE_ALERT_REQ_MASK;
1482 else
1483 new_flags &= ~SDB_TE_ALERT_REQ_MASK;
1484 } while (!cmpxchg_double(&te->flags, &te->overflow,
1485 orig_flags, orig_overflow,
1486 new_flags, 0ULL));
1487 *overflow += orig_overflow;
1488 }
1489
1490 /* Update empty_mark to new position */
1491 aux->empty_mark = aux->head + range - 1;
1492
1493 return true;
1494 }
1495
1496 /*
1497 * Measurement alert handler for diagnostic mode sampling.
1498 */
1499 static void hw_collect_aux(struct cpu_hw_sf *cpuhw)
1500 {
1501 struct aux_buffer *aux;
1502 int done = 0;
1503 unsigned long range = 0, size;
1504 unsigned long long overflow = 0;
1505 struct perf_output_handle *handle = &cpuhw->handle;
1506 unsigned long num_sdb;
1507
1508 aux = perf_get_aux(handle);
1509 if (WARN_ON_ONCE(!aux))
1510 return;
1511
1512 /* Inform user space new data arrived */
1513 size = AUX_SDB_NUM_ALERT(aux) << PAGE_SHIFT;
1514 perf_aux_output_end(handle, size);
1515 num_sdb = aux->sfb.num_sdb;
1516
1517 while (!done) {
1518 /* Get an output handle */
1519 aux = perf_aux_output_begin(handle, cpuhw->event);
1520 if (handle->size == 0) {
1521 pr_err("The AUX buffer with %lu pages for the "
1522 "diagnostic-sampling mode is full\n",
1523 num_sdb);
1524 debug_sprintf_event(sfdbg, 1, "AUX buffer used up\n");
1525 break;
1526 }
1527 if (WARN_ON_ONCE(!aux))
1528 return;
1529
1530 /* Update head and alert_mark to new position */
1531 aux->head = handle->head >> PAGE_SHIFT;
1532 range = (handle->size + 1) >> PAGE_SHIFT;
1533 if (range == 1)
1534 aux->alert_mark = aux->head;
1535 else
1536 aux->alert_mark = aux->head + range/2 - 1;
1537
1538 if (aux_reset_buffer(aux, range, &overflow)) {
1539 if (!overflow) {
1540 done = 1;
1541 break;
1542 }
1543 size = range << PAGE_SHIFT;
1544 perf_aux_output_end(&cpuhw->handle, size);
1545 pr_err("Sample data caused the AUX buffer with %lu "
1546 "pages to overflow\n", num_sdb);
1547 debug_sprintf_event(sfdbg, 1, "head %lx range %lx "
1548 "overflow %llx\n",
1549 aux->head, range, overflow);
1550 } else {
1551 size = AUX_SDB_NUM_ALERT(aux) << PAGE_SHIFT;
1552 perf_aux_output_end(&cpuhw->handle, size);
1553 debug_sprintf_event(sfdbg, 6, "head %lx alert %lx "
1554 "already full, try another\n",
1555 aux->head, aux->alert_mark);
1556 }
1557 }
1558
1559 if (done)
1560 debug_sprintf_event(sfdbg, 6, "aux_reset_buffer: "
1561 "[%lx -> %lx -> %lx] (%lx, %lx)\n",
1562 aux->head, aux->alert_mark, aux->empty_mark,
1563 AUX_SDB_NUM_ALERT(aux), range);
1564 }
1565
1566 /*
1567 * Callback when freeing AUX buffers.
1568 */
1569 static void aux_buffer_free(void *data)
1570 {
1571 struct aux_buffer *aux = data;
1572 unsigned long i, num_sdbt;
1573
1574 if (!aux)
1575 return;
1576
1577 /* Free SDBT. SDB is freed by the caller */
1578 num_sdbt = aux->sfb.num_sdbt;
1579 for (i = 0; i < num_sdbt; i++)
1580 free_page(aux->sdbt_index[i]);
1581
1582 kfree(aux->sdbt_index);
1583 kfree(aux->sdb_index);
1584 kfree(aux);
1585
1586 debug_sprintf_event(sfdbg, 4, "aux_buffer_free: free "
1587 "%lu SDBTs\n", num_sdbt);
1588 }
1589
1590 static void aux_sdb_init(unsigned long sdb)
1591 {
1592 struct hws_trailer_entry *te;
1593
1594 te = (struct hws_trailer_entry *)trailer_entry_ptr(sdb);
1595
1596 /* Save clock base */
1597 te->clock_base = 1;
1598 memcpy(&te->progusage2, &tod_clock_base[1], 8);
1599 }
1600
1601 /*
1602 * aux_buffer_setup() - Setup AUX buffer for diagnostic mode sampling
1603 * @event: Event the buffer is setup for, event->cpu == -1 means current
1604 * @pages: Array of pointers to buffer pages passed from perf core
1605 * @nr_pages: Total pages
1606 * @snapshot: Flag for snapshot mode
1607 *
1608 * This is the callback when setup an event using AUX buffer. Perf tool can
1609 * trigger this by an additional mmap() call on the event. Unlike the buffer
1610 * for basic samples, AUX buffer belongs to the event. It is scheduled with
1611 * the task among online cpus when it is a per-thread event.
1612 *
1613 * Return the private AUX buffer structure if success or NULL if fails.
1614 */
1615 static void *aux_buffer_setup(struct perf_event *event, void **pages,
1616 int nr_pages, bool snapshot)
1617 {
1618 struct sf_buffer *sfb;
1619 struct aux_buffer *aux;
1620 unsigned long *new, *tail;
1621 int i, n_sdbt;
1622
1623 if (!nr_pages || !pages)
1624 return NULL;
1625
1626 if (nr_pages > CPUM_SF_MAX_SDB * CPUM_SF_SDB_DIAG_FACTOR) {
1627 pr_err("AUX buffer size (%i pages) is larger than the "
1628 "maximum sampling buffer limit\n",
1629 nr_pages);
1630 return NULL;
1631 } else if (nr_pages < CPUM_SF_MIN_SDB * CPUM_SF_SDB_DIAG_FACTOR) {
1632 pr_err("AUX buffer size (%i pages) is less than the "
1633 "minimum sampling buffer limit\n",
1634 nr_pages);
1635 return NULL;
1636 }
1637
1638 /* Allocate aux_buffer struct for the event */
1639 aux = kmalloc(sizeof(struct aux_buffer), GFP_KERNEL);
1640 if (!aux)
1641 goto no_aux;
1642 sfb = &aux->sfb;
1643
1644 /* Allocate sdbt_index for fast reference */
1645 n_sdbt = (nr_pages + CPUM_SF_SDB_PER_TABLE - 1) / CPUM_SF_SDB_PER_TABLE;
1646 aux->sdbt_index = kmalloc_array(n_sdbt, sizeof(void *), GFP_KERNEL);
1647 if (!aux->sdbt_index)
1648 goto no_sdbt_index;
1649
1650 /* Allocate sdb_index for fast reference */
1651 aux->sdb_index = kmalloc_array(nr_pages, sizeof(void *), GFP_KERNEL);
1652 if (!aux->sdb_index)
1653 goto no_sdb_index;
1654
1655 /* Allocate the first SDBT */
1656 sfb->num_sdbt = 0;
1657 sfb->sdbt = (unsigned long *) get_zeroed_page(GFP_KERNEL);
1658 if (!sfb->sdbt)
1659 goto no_sdbt;
1660 aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)sfb->sdbt;
1661 tail = sfb->tail = sfb->sdbt;
1662
1663 /*
1664 * Link the provided pages of AUX buffer to SDBT.
1665 * Allocate SDBT if needed.
1666 */
1667 for (i = 0; i < nr_pages; i++, tail++) {
1668 if (require_table_link(tail)) {
1669 new = (unsigned long *) get_zeroed_page(GFP_KERNEL);
1670 if (!new)
1671 goto no_sdbt;
1672 aux->sdbt_index[sfb->num_sdbt++] = (unsigned long)new;
1673 /* Link current page to tail of chain */
1674 *tail = (unsigned long)(void *) new + 1;
1675 tail = new;
1676 }
1677 /* Tail is the entry in a SDBT */
1678 *tail = (unsigned long)pages[i];
1679 aux->sdb_index[i] = (unsigned long)pages[i];
1680 aux_sdb_init((unsigned long)pages[i]);
1681 }
1682 sfb->num_sdb = nr_pages;
1683
1684 /* Link the last entry in the SDBT to the first SDBT */
1685 *tail = (unsigned long) sfb->sdbt + 1;
1686 sfb->tail = tail;
1687
1688 /*
1689 * Initial all SDBs are zeroed. Mark it as empty.
1690 * So there is no need to clear the full indicator
1691 * when this event is first added.
1692 */
1693 aux->empty_mark = sfb->num_sdb - 1;
1694
1695 debug_sprintf_event(sfdbg, 4, "aux_buffer_setup: setup %lu SDBTs"
1696 " and %lu SDBs\n",
1697 sfb->num_sdbt, sfb->num_sdb);
1698
1699 return aux;
1700
1701 no_sdbt:
1702 /* SDBs (AUX buffer pages) are freed by caller */
1703 for (i = 0; i < sfb->num_sdbt; i++)
1704 free_page(aux->sdbt_index[i]);
1705 kfree(aux->sdb_index);
1706 no_sdb_index:
1707 kfree(aux->sdbt_index);
1708 no_sdbt_index:
1709 kfree(aux);
1710 no_aux:
1711 return NULL;
1712 }
1713
1714 static void cpumsf_pmu_read(struct perf_event *event)
1715 {
1716 /* Nothing to do ... updates are interrupt-driven */
1717 }
1718
1719 /* Activate sampling control.
1720 * Next call of pmu_enable() starts sampling.
1721 */
1722 static void cpumsf_pmu_start(struct perf_event *event, int flags)
1723 {
1724 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1725
1726 if (WARN_ON_ONCE(!(event->hw.state & PERF_HES_STOPPED)))
1727 return;
1728
1729 if (flags & PERF_EF_RELOAD)
1730 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
1731
1732 perf_pmu_disable(event->pmu);
1733 event->hw.state = 0;
1734 cpuhw->lsctl.cs = 1;
1735 if (SAMPL_DIAG_MODE(&event->hw))
1736 cpuhw->lsctl.cd = 1;
1737 perf_pmu_enable(event->pmu);
1738 }
1739
1740 /* Deactivate sampling control.
1741 * Next call of pmu_enable() stops sampling.
1742 */
1743 static void cpumsf_pmu_stop(struct perf_event *event, int flags)
1744 {
1745 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1746
1747 if (event->hw.state & PERF_HES_STOPPED)
1748 return;
1749
1750 perf_pmu_disable(event->pmu);
1751 cpuhw->lsctl.cs = 0;
1752 cpuhw->lsctl.cd = 0;
1753 event->hw.state |= PERF_HES_STOPPED;
1754
1755 if ((flags & PERF_EF_UPDATE) && !(event->hw.state & PERF_HES_UPTODATE)) {
1756 hw_perf_event_update(event, 1);
1757 event->hw.state |= PERF_HES_UPTODATE;
1758 }
1759 perf_pmu_enable(event->pmu);
1760 }
1761
1762 static int cpumsf_pmu_add(struct perf_event *event, int flags)
1763 {
1764 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1765 struct aux_buffer *aux;
1766 int err;
1767
1768 if (cpuhw->flags & PMU_F_IN_USE)
1769 return -EAGAIN;
1770
1771 if (!SAMPL_DIAG_MODE(&event->hw) && !cpuhw->sfb.sdbt)
1772 return -EINVAL;
1773
1774 err = 0;
1775 perf_pmu_disable(event->pmu);
1776
1777 event->hw.state = PERF_HES_UPTODATE | PERF_HES_STOPPED;
1778
1779 /* Set up sampling controls. Always program the sampling register
1780 * using the SDB-table start. Reset TEAR_REG event hardware register
1781 * that is used by hw_perf_event_update() to store the sampling buffer
1782 * position after samples have been flushed.
1783 */
1784 cpuhw->lsctl.s = 0;
1785 cpuhw->lsctl.h = 1;
1786 cpuhw->lsctl.interval = SAMPL_RATE(&event->hw);
1787 if (!SAMPL_DIAG_MODE(&event->hw)) {
1788 cpuhw->lsctl.tear = (unsigned long) cpuhw->sfb.sdbt;
1789 cpuhw->lsctl.dear = *(unsigned long *) cpuhw->sfb.sdbt;
1790 hw_reset_registers(&event->hw, cpuhw->sfb.sdbt);
1791 }
1792
1793 /* Ensure sampling functions are in the disabled state. If disabled,
1794 * switch on sampling enable control. */
1795 if (WARN_ON_ONCE(cpuhw->lsctl.es == 1 || cpuhw->lsctl.ed == 1)) {
1796 err = -EAGAIN;
1797 goto out;
1798 }
1799 if (SAMPL_DIAG_MODE(&event->hw)) {
1800 aux = perf_aux_output_begin(&cpuhw->handle, event);
1801 if (!aux) {
1802 err = -EINVAL;
1803 goto out;
1804 }
1805 err = aux_output_begin(&cpuhw->handle, aux, cpuhw);
1806 if (err)
1807 goto out;
1808 cpuhw->lsctl.ed = 1;
1809 }
1810 cpuhw->lsctl.es = 1;
1811
1812 /* Set in_use flag and store event */
1813 cpuhw->event = event;
1814 cpuhw->flags |= PMU_F_IN_USE;
1815
1816 if (flags & PERF_EF_START)
1817 cpumsf_pmu_start(event, PERF_EF_RELOAD);
1818 out:
1819 perf_event_update_userpage(event);
1820 perf_pmu_enable(event->pmu);
1821 return err;
1822 }
1823
1824 static void cpumsf_pmu_del(struct perf_event *event, int flags)
1825 {
1826 struct cpu_hw_sf *cpuhw = this_cpu_ptr(&cpu_hw_sf);
1827
1828 perf_pmu_disable(event->pmu);
1829 cpumsf_pmu_stop(event, PERF_EF_UPDATE);
1830
1831 cpuhw->lsctl.es = 0;
1832 cpuhw->lsctl.ed = 0;
1833 cpuhw->flags &= ~PMU_F_IN_USE;
1834 cpuhw->event = NULL;
1835
1836 if (SAMPL_DIAG_MODE(&event->hw))
1837 aux_output_end(&cpuhw->handle);
1838 perf_event_update_userpage(event);
1839 perf_pmu_enable(event->pmu);
1840 }
1841
1842 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC, PERF_EVENT_CPUM_SF);
1843 CPUMF_EVENT_ATTR(SF, SF_CYCLES_BASIC_DIAG, PERF_EVENT_CPUM_SF_DIAG);
1844
1845 /* Attribute list for CPU_SF.
1846 *
1847 * The availablitiy depends on the CPU_MF sampling facility authorization
1848 * for basic + diagnositic samples. This is determined at initialization
1849 * time by the sampling facility device driver.
1850 * If the authorization for basic samples is turned off, it should be
1851 * also turned off for diagnostic sampling.
1852 *
1853 * During initialization of the device driver, check the authorization
1854 * level for diagnostic sampling and installs the attribute
1855 * file for diagnostic sampling if necessary.
1856 *
1857 * For now install a placeholder to reference all possible attributes:
1858 * SF_CYCLES_BASIC and SF_CYCLES_BASIC_DIAG.
1859 * Add another entry for the final NULL pointer.
1860 */
1861 enum {
1862 SF_CYCLES_BASIC_ATTR_IDX = 0,
1863 SF_CYCLES_BASIC_DIAG_ATTR_IDX,
1864 SF_CYCLES_ATTR_MAX
1865 };
1866
1867 static struct attribute *cpumsf_pmu_events_attr[SF_CYCLES_ATTR_MAX + 1] = {
1868 [SF_CYCLES_BASIC_ATTR_IDX] = CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC)
1869 };
1870
1871 PMU_FORMAT_ATTR(event, "config:0-63");
1872
1873 static struct attribute *cpumsf_pmu_format_attr[] = {
1874 &format_attr_event.attr,
1875 NULL,
1876 };
1877
1878 static struct attribute_group cpumsf_pmu_events_group = {
1879 .name = "events",
1880 .attrs = cpumsf_pmu_events_attr,
1881 };
1882 static struct attribute_group cpumsf_pmu_format_group = {
1883 .name = "format",
1884 .attrs = cpumsf_pmu_format_attr,
1885 };
1886 static const struct attribute_group *cpumsf_pmu_attr_groups[] = {
1887 &cpumsf_pmu_events_group,
1888 &cpumsf_pmu_format_group,
1889 NULL,
1890 };
1891
1892 static struct pmu cpumf_sampling = {
1893 .pmu_enable = cpumsf_pmu_enable,
1894 .pmu_disable = cpumsf_pmu_disable,
1895
1896 .event_init = cpumsf_pmu_event_init,
1897 .add = cpumsf_pmu_add,
1898 .del = cpumsf_pmu_del,
1899
1900 .start = cpumsf_pmu_start,
1901 .stop = cpumsf_pmu_stop,
1902 .read = cpumsf_pmu_read,
1903
1904 .attr_groups = cpumsf_pmu_attr_groups,
1905
1906 .setup_aux = aux_buffer_setup,
1907 .free_aux = aux_buffer_free,
1908 };
1909
1910 static void cpumf_measurement_alert(struct ext_code ext_code,
1911 unsigned int alert, unsigned long unused)
1912 {
1913 struct cpu_hw_sf *cpuhw;
1914
1915 if (!(alert & CPU_MF_INT_SF_MASK))
1916 return;
1917 inc_irq_stat(IRQEXT_CMS);
1918 cpuhw = this_cpu_ptr(&cpu_hw_sf);
1919
1920 /* Measurement alerts are shared and might happen when the PMU
1921 * is not reserved. Ignore these alerts in this case. */
1922 if (!(cpuhw->flags & PMU_F_RESERVED))
1923 return;
1924
1925 /* The processing below must take care of multiple alert events that
1926 * might be indicated concurrently. */
1927
1928 /* Program alert request */
1929 if (alert & CPU_MF_INT_SF_PRA) {
1930 if (cpuhw->flags & PMU_F_IN_USE)
1931 if (SAMPL_DIAG_MODE(&cpuhw->event->hw))
1932 hw_collect_aux(cpuhw);
1933 else
1934 hw_perf_event_update(cpuhw->event, 0);
1935 else
1936 WARN_ON_ONCE(!(cpuhw->flags & PMU_F_IN_USE));
1937 }
1938
1939 /* Report measurement alerts only for non-PRA codes */
1940 if (alert != CPU_MF_INT_SF_PRA)
1941 debug_sprintf_event(sfdbg, 6, "measurement alert: 0x%x\n", alert);
1942
1943 /* Sampling authorization change request */
1944 if (alert & CPU_MF_INT_SF_SACA)
1945 qsi(&cpuhw->qsi);
1946
1947 /* Loss of sample data due to high-priority machine activities */
1948 if (alert & CPU_MF_INT_SF_LSDA) {
1949 pr_err("Sample data was lost\n");
1950 cpuhw->flags |= PMU_F_ERR_LSDA;
1951 sf_disable();
1952 }
1953
1954 /* Invalid sampling buffer entry */
1955 if (alert & (CPU_MF_INT_SF_IAE|CPU_MF_INT_SF_ISE)) {
1956 pr_err("A sampling buffer entry is incorrect (alert=0x%x)\n",
1957 alert);
1958 cpuhw->flags |= PMU_F_ERR_IBE;
1959 sf_disable();
1960 }
1961 }
1962 static int cpusf_pmu_setup(unsigned int cpu, int flags)
1963 {
1964 /* Ignore the notification if no events are scheduled on the PMU.
1965 * This might be racy...
1966 */
1967 if (!atomic_read(&num_events))
1968 return 0;
1969
1970 local_irq_disable();
1971 setup_pmc_cpu(&flags);
1972 local_irq_enable();
1973 return 0;
1974 }
1975
1976 static int s390_pmu_sf_online_cpu(unsigned int cpu)
1977 {
1978 return cpusf_pmu_setup(cpu, PMC_INIT);
1979 }
1980
1981 static int s390_pmu_sf_offline_cpu(unsigned int cpu)
1982 {
1983 return cpusf_pmu_setup(cpu, PMC_RELEASE);
1984 }
1985
1986 static int param_get_sfb_size(char *buffer, const struct kernel_param *kp)
1987 {
1988 if (!cpum_sf_avail())
1989 return -ENODEV;
1990 return sprintf(buffer, "%lu,%lu", CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
1991 }
1992
1993 static int param_set_sfb_size(const char *val, const struct kernel_param *kp)
1994 {
1995 int rc;
1996 unsigned long min, max;
1997
1998 if (!cpum_sf_avail())
1999 return -ENODEV;
2000 if (!val || !strlen(val))
2001 return -EINVAL;
2002
2003 /* Valid parameter values: "min,max" or "max" */
2004 min = CPUM_SF_MIN_SDB;
2005 max = CPUM_SF_MAX_SDB;
2006 if (strchr(val, ','))
2007 rc = (sscanf(val, "%lu,%lu", &min, &max) == 2) ? 0 : -EINVAL;
2008 else
2009 rc = kstrtoul(val, 10, &max);
2010
2011 if (min < 2 || min >= max || max > get_num_physpages())
2012 rc = -EINVAL;
2013 if (rc)
2014 return rc;
2015
2016 sfb_set_limits(min, max);
2017 pr_info("The sampling buffer limits have changed to: "
2018 "min=%lu max=%lu (diag=x%lu)\n",
2019 CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB, CPUM_SF_SDB_DIAG_FACTOR);
2020 return 0;
2021 }
2022
2023 #define param_check_sfb_size(name, p) __param_check(name, p, void)
2024 static const struct kernel_param_ops param_ops_sfb_size = {
2025 .set = param_set_sfb_size,
2026 .get = param_get_sfb_size,
2027 };
2028
2029 #define RS_INIT_FAILURE_QSI 0x0001
2030 #define RS_INIT_FAILURE_BSDES 0x0002
2031 #define RS_INIT_FAILURE_ALRT 0x0003
2032 #define RS_INIT_FAILURE_PERF 0x0004
2033 static void __init pr_cpumsf_err(unsigned int reason)
2034 {
2035 pr_err("Sampling facility support for perf is not available: "
2036 "reason=%04x\n", reason);
2037 }
2038
2039 static int __init init_cpum_sampling_pmu(void)
2040 {
2041 struct hws_qsi_info_block si;
2042 int err;
2043
2044 if (!cpum_sf_avail())
2045 return -ENODEV;
2046
2047 memset(&si, 0, sizeof(si));
2048 if (qsi(&si)) {
2049 pr_cpumsf_err(RS_INIT_FAILURE_QSI);
2050 return -ENODEV;
2051 }
2052
2053 if (!si.as && !si.ad)
2054 return -ENODEV;
2055
2056 if (si.bsdes != sizeof(struct hws_basic_entry)) {
2057 pr_cpumsf_err(RS_INIT_FAILURE_BSDES);
2058 return -EINVAL;
2059 }
2060
2061 if (si.ad) {
2062 sfb_set_limits(CPUM_SF_MIN_SDB, CPUM_SF_MAX_SDB);
2063 /* Sampling of diagnostic data authorized,
2064 * install event into attribute list of PMU device.
2065 */
2066 cpumsf_pmu_events_attr[SF_CYCLES_BASIC_DIAG_ATTR_IDX] =
2067 CPUMF_EVENT_PTR(SF, SF_CYCLES_BASIC_DIAG);
2068 }
2069
2070 sfdbg = debug_register(KMSG_COMPONENT, 2, 1, 80);
2071 if (!sfdbg) {
2072 pr_err("Registering for s390dbf failed\n");
2073 return -ENOMEM;
2074 }
2075 debug_register_view(sfdbg, &debug_sprintf_view);
2076
2077 err = register_external_irq(EXT_IRQ_MEASURE_ALERT,
2078 cpumf_measurement_alert);
2079 if (err) {
2080 pr_cpumsf_err(RS_INIT_FAILURE_ALRT);
2081 debug_unregister(sfdbg);
2082 goto out;
2083 }
2084
2085 err = perf_pmu_register(&cpumf_sampling, "cpum_sf", PERF_TYPE_RAW);
2086 if (err) {
2087 pr_cpumsf_err(RS_INIT_FAILURE_PERF);
2088 unregister_external_irq(EXT_IRQ_MEASURE_ALERT,
2089 cpumf_measurement_alert);
2090 debug_unregister(sfdbg);
2091 goto out;
2092 }
2093
2094 cpuhp_setup_state(CPUHP_AP_PERF_S390_SF_ONLINE, "perf/s390/sf:online",
2095 s390_pmu_sf_online_cpu, s390_pmu_sf_offline_cpu);
2096 out:
2097 return err;
2098 }
2099 arch_initcall(init_cpum_sampling_pmu);
2100 core_param(cpum_sfb_size, CPUM_SF_MAX_SDB, sfb_size, 0640);