]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/s390/kernel/process.c
Remove fs.h from mm.h
[mirror_ubuntu-artful-kernel.git] / arch / s390 / kernel / process.c
1 /*
2 * arch/s390/kernel/process.c
3 *
4 * S390 version
5 * Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
6 * Author(s): Martin Schwidefsky (schwidefsky@de.ibm.com),
7 * Hartmut Penner (hp@de.ibm.com),
8 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
9 *
10 * Derived from "arch/i386/kernel/process.c"
11 * Copyright (C) 1995, Linus Torvalds
12 */
13
14 /*
15 * This file handles the architecture-dependent parts of process handling..
16 */
17
18 #include <linux/compiler.h>
19 #include <linux/cpu.h>
20 #include <linux/errno.h>
21 #include <linux/sched.h>
22 #include <linux/kernel.h>
23 #include <linux/mm.h>
24 #include <linux/fs.h>
25 #include <linux/smp.h>
26 #include <linux/stddef.h>
27 #include <linux/unistd.h>
28 #include <linux/ptrace.h>
29 #include <linux/slab.h>
30 #include <linux/vmalloc.h>
31 #include <linux/user.h>
32 #include <linux/a.out.h>
33 #include <linux/interrupt.h>
34 #include <linux/delay.h>
35 #include <linux/reboot.h>
36 #include <linux/init.h>
37 #include <linux/module.h>
38 #include <linux/notifier.h>
39
40 #include <asm/uaccess.h>
41 #include <asm/pgtable.h>
42 #include <asm/system.h>
43 #include <asm/io.h>
44 #include <asm/processor.h>
45 #include <asm/irq.h>
46 #include <asm/timer.h>
47
48 asmlinkage void ret_from_fork(void) asm ("ret_from_fork");
49
50 /*
51 * Return saved PC of a blocked thread. used in kernel/sched.
52 * resume in entry.S does not create a new stack frame, it
53 * just stores the registers %r6-%r15 to the frame given by
54 * schedule. We want to return the address of the caller of
55 * schedule, so we have to walk the backchain one time to
56 * find the frame schedule() store its return address.
57 */
58 unsigned long thread_saved_pc(struct task_struct *tsk)
59 {
60 struct stack_frame *sf, *low, *high;
61
62 if (!tsk || !task_stack_page(tsk))
63 return 0;
64 low = task_stack_page(tsk);
65 high = (struct stack_frame *) task_pt_regs(tsk);
66 sf = (struct stack_frame *) (tsk->thread.ksp & PSW_ADDR_INSN);
67 if (sf <= low || sf > high)
68 return 0;
69 sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
70 if (sf <= low || sf > high)
71 return 0;
72 return sf->gprs[8];
73 }
74
75 /*
76 * Need to know about CPUs going idle?
77 */
78 static ATOMIC_NOTIFIER_HEAD(idle_chain);
79
80 int register_idle_notifier(struct notifier_block *nb)
81 {
82 return atomic_notifier_chain_register(&idle_chain, nb);
83 }
84 EXPORT_SYMBOL(register_idle_notifier);
85
86 int unregister_idle_notifier(struct notifier_block *nb)
87 {
88 return atomic_notifier_chain_unregister(&idle_chain, nb);
89 }
90 EXPORT_SYMBOL(unregister_idle_notifier);
91
92 void do_monitor_call(struct pt_regs *regs, long interruption_code)
93 {
94 /* disable monitor call class 0 */
95 __ctl_clear_bit(8, 15);
96
97 atomic_notifier_call_chain(&idle_chain, S390_CPU_NOT_IDLE,
98 (void *)(long) smp_processor_id());
99 }
100
101 extern void s390_handle_mcck(void);
102 /*
103 * The idle loop on a S390...
104 */
105 static void default_idle(void)
106 {
107 int cpu, rc;
108
109 /* CPU is going idle. */
110 cpu = smp_processor_id();
111
112 local_irq_disable();
113 if (need_resched()) {
114 local_irq_enable();
115 return;
116 }
117
118 rc = atomic_notifier_call_chain(&idle_chain,
119 S390_CPU_IDLE, (void *)(long) cpu);
120 if (rc != NOTIFY_OK && rc != NOTIFY_DONE)
121 BUG();
122 if (rc != NOTIFY_OK) {
123 local_irq_enable();
124 return;
125 }
126
127 /* enable monitor call class 0 */
128 __ctl_set_bit(8, 15);
129
130 #ifdef CONFIG_HOTPLUG_CPU
131 if (cpu_is_offline(cpu)) {
132 preempt_enable_no_resched();
133 cpu_die();
134 }
135 #endif
136
137 local_mcck_disable();
138 if (test_thread_flag(TIF_MCCK_PENDING)) {
139 local_mcck_enable();
140 local_irq_enable();
141 s390_handle_mcck();
142 return;
143 }
144
145 trace_hardirqs_on();
146 /* Wait for external, I/O or machine check interrupt. */
147 __load_psw_mask(psw_kernel_bits | PSW_MASK_WAIT |
148 PSW_MASK_IO | PSW_MASK_EXT);
149 }
150
151 void cpu_idle(void)
152 {
153 for (;;) {
154 while (!need_resched())
155 default_idle();
156
157 preempt_enable_no_resched();
158 schedule();
159 preempt_disable();
160 }
161 }
162
163 void show_regs(struct pt_regs *regs)
164 {
165 struct task_struct *tsk = current;
166
167 printk("CPU: %d %s\n", task_thread_info(tsk)->cpu, print_tainted());
168 printk("Process %s (pid: %d, task: %p, ksp: %p)\n",
169 current->comm, current->pid, (void *) tsk,
170 (void *) tsk->thread.ksp);
171
172 show_registers(regs);
173 /* Show stack backtrace if pt_regs is from kernel mode */
174 if (!(regs->psw.mask & PSW_MASK_PSTATE))
175 show_trace(NULL, (unsigned long *) regs->gprs[15]);
176 }
177
178 extern void kernel_thread_starter(void);
179
180 asm(
181 ".align 4\n"
182 "kernel_thread_starter:\n"
183 " la 2,0(10)\n"
184 " basr 14,9\n"
185 " la 2,0\n"
186 " br 11\n");
187
188 int kernel_thread(int (*fn)(void *), void * arg, unsigned long flags)
189 {
190 struct pt_regs regs;
191
192 memset(&regs, 0, sizeof(regs));
193 regs.psw.mask = psw_kernel_bits | PSW_MASK_IO | PSW_MASK_EXT;
194 regs.psw.addr = (unsigned long) kernel_thread_starter | PSW_ADDR_AMODE;
195 regs.gprs[9] = (unsigned long) fn;
196 regs.gprs[10] = (unsigned long) arg;
197 regs.gprs[11] = (unsigned long) do_exit;
198 regs.orig_gpr2 = -1;
199
200 /* Ok, create the new process.. */
201 return do_fork(flags | CLONE_VM | CLONE_UNTRACED,
202 0, &regs, 0, NULL, NULL);
203 }
204
205 /*
206 * Free current thread data structures etc..
207 */
208 void exit_thread(void)
209 {
210 }
211
212 void flush_thread(void)
213 {
214 clear_used_math();
215 clear_tsk_thread_flag(current, TIF_USEDFPU);
216 }
217
218 void release_thread(struct task_struct *dead_task)
219 {
220 }
221
222 int copy_thread(int nr, unsigned long clone_flags, unsigned long new_stackp,
223 unsigned long unused,
224 struct task_struct * p, struct pt_regs * regs)
225 {
226 struct fake_frame
227 {
228 struct stack_frame sf;
229 struct pt_regs childregs;
230 } *frame;
231
232 frame = container_of(task_pt_regs(p), struct fake_frame, childregs);
233 p->thread.ksp = (unsigned long) frame;
234 /* Store access registers to kernel stack of new process. */
235 frame->childregs = *regs;
236 frame->childregs.gprs[2] = 0; /* child returns 0 on fork. */
237 frame->childregs.gprs[15] = new_stackp;
238 frame->sf.back_chain = 0;
239
240 /* new return point is ret_from_fork */
241 frame->sf.gprs[8] = (unsigned long) ret_from_fork;
242
243 /* fake return stack for resume(), don't go back to schedule */
244 frame->sf.gprs[9] = (unsigned long) frame;
245
246 /* Save access registers to new thread structure. */
247 save_access_regs(&p->thread.acrs[0]);
248
249 #ifndef CONFIG_64BIT
250 /*
251 * save fprs to current->thread.fp_regs to merge them with
252 * the emulated registers and then copy the result to the child.
253 */
254 save_fp_regs(&current->thread.fp_regs);
255 memcpy(&p->thread.fp_regs, &current->thread.fp_regs,
256 sizeof(s390_fp_regs));
257 p->thread.user_seg = __pa((unsigned long) p->mm->pgd) | _SEGMENT_TABLE;
258 /* Set a new TLS ? */
259 if (clone_flags & CLONE_SETTLS)
260 p->thread.acrs[0] = regs->gprs[6];
261 #else /* CONFIG_64BIT */
262 /* Save the fpu registers to new thread structure. */
263 save_fp_regs(&p->thread.fp_regs);
264 p->thread.user_seg = __pa((unsigned long) p->mm->pgd) | _REGION_TABLE;
265 /* Set a new TLS ? */
266 if (clone_flags & CLONE_SETTLS) {
267 if (test_thread_flag(TIF_31BIT)) {
268 p->thread.acrs[0] = (unsigned int) regs->gprs[6];
269 } else {
270 p->thread.acrs[0] = (unsigned int)(regs->gprs[6] >> 32);
271 p->thread.acrs[1] = (unsigned int) regs->gprs[6];
272 }
273 }
274 #endif /* CONFIG_64BIT */
275 /* start new process with ar4 pointing to the correct address space */
276 p->thread.mm_segment = get_fs();
277 /* Don't copy debug registers */
278 memset(&p->thread.per_info,0,sizeof(p->thread.per_info));
279
280 return 0;
281 }
282
283 asmlinkage long sys_fork(void)
284 {
285 struct pt_regs *regs = task_pt_regs(current);
286 return do_fork(SIGCHLD, regs->gprs[15], regs, 0, NULL, NULL);
287 }
288
289 asmlinkage long sys_clone(void)
290 {
291 struct pt_regs *regs = task_pt_regs(current);
292 unsigned long clone_flags;
293 unsigned long newsp;
294 int __user *parent_tidptr, *child_tidptr;
295
296 clone_flags = regs->gprs[3];
297 newsp = regs->orig_gpr2;
298 parent_tidptr = (int __user *) regs->gprs[4];
299 child_tidptr = (int __user *) regs->gprs[5];
300 if (!newsp)
301 newsp = regs->gprs[15];
302 return do_fork(clone_flags, newsp, regs, 0,
303 parent_tidptr, child_tidptr);
304 }
305
306 /*
307 * This is trivial, and on the face of it looks like it
308 * could equally well be done in user mode.
309 *
310 * Not so, for quite unobvious reasons - register pressure.
311 * In user mode vfork() cannot have a stack frame, and if
312 * done by calling the "clone()" system call directly, you
313 * do not have enough call-clobbered registers to hold all
314 * the information you need.
315 */
316 asmlinkage long sys_vfork(void)
317 {
318 struct pt_regs *regs = task_pt_regs(current);
319 return do_fork(CLONE_VFORK | CLONE_VM | SIGCHLD,
320 regs->gprs[15], regs, 0, NULL, NULL);
321 }
322
323 asmlinkage void execve_tail(void)
324 {
325 task_lock(current);
326 current->ptrace &= ~PT_DTRACE;
327 task_unlock(current);
328 current->thread.fp_regs.fpc = 0;
329 if (MACHINE_HAS_IEEE)
330 asm volatile("sfpc %0,%0" : : "d" (0));
331 }
332
333 /*
334 * sys_execve() executes a new program.
335 */
336 asmlinkage long sys_execve(void)
337 {
338 struct pt_regs *regs = task_pt_regs(current);
339 char *filename;
340 unsigned long result;
341 int rc;
342
343 filename = getname((char __user *) regs->orig_gpr2);
344 if (IS_ERR(filename)) {
345 result = PTR_ERR(filename);
346 goto out;
347 }
348 rc = do_execve(filename, (char __user * __user *) regs->gprs[3],
349 (char __user * __user *) regs->gprs[4], regs);
350 if (rc) {
351 result = rc;
352 goto out_putname;
353 }
354 execve_tail();
355 result = regs->gprs[2];
356 out_putname:
357 putname(filename);
358 out:
359 return result;
360 }
361
362 /*
363 * fill in the FPU structure for a core dump.
364 */
365 int dump_fpu (struct pt_regs * regs, s390_fp_regs *fpregs)
366 {
367 #ifndef CONFIG_64BIT
368 /*
369 * save fprs to current->thread.fp_regs to merge them with
370 * the emulated registers and then copy the result to the dump.
371 */
372 save_fp_regs(&current->thread.fp_regs);
373 memcpy(fpregs, &current->thread.fp_regs, sizeof(s390_fp_regs));
374 #else /* CONFIG_64BIT */
375 save_fp_regs(fpregs);
376 #endif /* CONFIG_64BIT */
377 return 1;
378 }
379
380 unsigned long get_wchan(struct task_struct *p)
381 {
382 struct stack_frame *sf, *low, *high;
383 unsigned long return_address;
384 int count;
385
386 if (!p || p == current || p->state == TASK_RUNNING || !task_stack_page(p))
387 return 0;
388 low = task_stack_page(p);
389 high = (struct stack_frame *) task_pt_regs(p);
390 sf = (struct stack_frame *) (p->thread.ksp & PSW_ADDR_INSN);
391 if (sf <= low || sf > high)
392 return 0;
393 for (count = 0; count < 16; count++) {
394 sf = (struct stack_frame *) (sf->back_chain & PSW_ADDR_INSN);
395 if (sf <= low || sf > high)
396 return 0;
397 return_address = sf->gprs[8] & PSW_ADDR_INSN;
398 if (!in_sched_functions(return_address))
399 return return_address;
400 }
401 return 0;
402 }
403