]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/s390/kernel/ptrace.c
Merge tag 'nfs-for-4.2-1' of git://git.linux-nfs.org/projects/trondmy/linux-nfs
[mirror_ubuntu-bionic-kernel.git] / arch / s390 / kernel / ptrace.c
1 /*
2 * Ptrace user space interface.
3 *
4 * Copyright IBM Corp. 1999, 2010
5 * Author(s): Denis Joseph Barrow
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/mm.h>
12 #include <linux/smp.h>
13 #include <linux/errno.h>
14 #include <linux/ptrace.h>
15 #include <linux/user.h>
16 #include <linux/security.h>
17 #include <linux/audit.h>
18 #include <linux/signal.h>
19 #include <linux/elf.h>
20 #include <linux/regset.h>
21 #include <linux/tracehook.h>
22 #include <linux/seccomp.h>
23 #include <linux/compat.h>
24 #include <trace/syscall.h>
25 #include <asm/segment.h>
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/pgalloc.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/switch_to.h>
32 #include "entry.h"
33
34 #ifdef CONFIG_COMPAT
35 #include "compat_ptrace.h"
36 #endif
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/syscalls.h>
40
41 void update_cr_regs(struct task_struct *task)
42 {
43 struct pt_regs *regs = task_pt_regs(task);
44 struct thread_struct *thread = &task->thread;
45 struct per_regs old, new;
46
47 /* Take care of the enable/disable of transactional execution. */
48 if (MACHINE_HAS_TE || MACHINE_HAS_VX) {
49 unsigned long cr, cr_new;
50
51 __ctl_store(cr, 0, 0);
52 cr_new = cr;
53 if (MACHINE_HAS_TE) {
54 /* Set or clear transaction execution TXC bit 8. */
55 cr_new |= (1UL << 55);
56 if (task->thread.per_flags & PER_FLAG_NO_TE)
57 cr_new &= ~(1UL << 55);
58 }
59 if (MACHINE_HAS_VX) {
60 /* Enable/disable of vector extension */
61 cr_new &= ~(1UL << 17);
62 if (task->thread.vxrs)
63 cr_new |= (1UL << 17);
64 }
65 if (cr_new != cr)
66 __ctl_load(cr_new, 0, 0);
67 if (MACHINE_HAS_TE) {
68 /* Set/clear transaction execution TDC bits 62/63. */
69 __ctl_store(cr, 2, 2);
70 cr_new = cr & ~3UL;
71 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
72 if (task->thread.per_flags &
73 PER_FLAG_TE_ABORT_RAND_TEND)
74 cr_new |= 1UL;
75 else
76 cr_new |= 2UL;
77 }
78 if (cr_new != cr)
79 __ctl_load(cr_new, 2, 2);
80 }
81 }
82 /* Copy user specified PER registers */
83 new.control = thread->per_user.control;
84 new.start = thread->per_user.start;
85 new.end = thread->per_user.end;
86
87 /* merge TIF_SINGLE_STEP into user specified PER registers. */
88 if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
89 test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
90 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
91 new.control |= PER_EVENT_BRANCH;
92 else
93 new.control |= PER_EVENT_IFETCH;
94 new.control |= PER_CONTROL_SUSPENSION;
95 new.control |= PER_EVENT_TRANSACTION_END;
96 if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
97 new.control |= PER_EVENT_IFETCH;
98 new.start = 0;
99 new.end = PSW_ADDR_INSN;
100 }
101
102 /* Take care of the PER enablement bit in the PSW. */
103 if (!(new.control & PER_EVENT_MASK)) {
104 regs->psw.mask &= ~PSW_MASK_PER;
105 return;
106 }
107 regs->psw.mask |= PSW_MASK_PER;
108 __ctl_store(old, 9, 11);
109 if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
110 __ctl_load(new, 9, 11);
111 }
112
113 void user_enable_single_step(struct task_struct *task)
114 {
115 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
116 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
117 }
118
119 void user_disable_single_step(struct task_struct *task)
120 {
121 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
122 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
123 }
124
125 void user_enable_block_step(struct task_struct *task)
126 {
127 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
128 set_tsk_thread_flag(task, TIF_BLOCK_STEP);
129 }
130
131 /*
132 * Called by kernel/ptrace.c when detaching..
133 *
134 * Clear all debugging related fields.
135 */
136 void ptrace_disable(struct task_struct *task)
137 {
138 memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
139 memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
140 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
141 clear_pt_regs_flag(task_pt_regs(task), PIF_PER_TRAP);
142 task->thread.per_flags = 0;
143 }
144
145 #define __ADDR_MASK 7
146
147 static inline unsigned long __peek_user_per(struct task_struct *child,
148 addr_t addr)
149 {
150 struct per_struct_kernel *dummy = NULL;
151
152 if (addr == (addr_t) &dummy->cr9)
153 /* Control bits of the active per set. */
154 return test_thread_flag(TIF_SINGLE_STEP) ?
155 PER_EVENT_IFETCH : child->thread.per_user.control;
156 else if (addr == (addr_t) &dummy->cr10)
157 /* Start address of the active per set. */
158 return test_thread_flag(TIF_SINGLE_STEP) ?
159 0 : child->thread.per_user.start;
160 else if (addr == (addr_t) &dummy->cr11)
161 /* End address of the active per set. */
162 return test_thread_flag(TIF_SINGLE_STEP) ?
163 PSW_ADDR_INSN : child->thread.per_user.end;
164 else if (addr == (addr_t) &dummy->bits)
165 /* Single-step bit. */
166 return test_thread_flag(TIF_SINGLE_STEP) ?
167 (1UL << (BITS_PER_LONG - 1)) : 0;
168 else if (addr == (addr_t) &dummy->starting_addr)
169 /* Start address of the user specified per set. */
170 return child->thread.per_user.start;
171 else if (addr == (addr_t) &dummy->ending_addr)
172 /* End address of the user specified per set. */
173 return child->thread.per_user.end;
174 else if (addr == (addr_t) &dummy->perc_atmid)
175 /* PER code, ATMID and AI of the last PER trap */
176 return (unsigned long)
177 child->thread.per_event.cause << (BITS_PER_LONG - 16);
178 else if (addr == (addr_t) &dummy->address)
179 /* Address of the last PER trap */
180 return child->thread.per_event.address;
181 else if (addr == (addr_t) &dummy->access_id)
182 /* Access id of the last PER trap */
183 return (unsigned long)
184 child->thread.per_event.paid << (BITS_PER_LONG - 8);
185 return 0;
186 }
187
188 /*
189 * Read the word at offset addr from the user area of a process. The
190 * trouble here is that the information is littered over different
191 * locations. The process registers are found on the kernel stack,
192 * the floating point stuff and the trace settings are stored in
193 * the task structure. In addition the different structures in
194 * struct user contain pad bytes that should be read as zeroes.
195 * Lovely...
196 */
197 static unsigned long __peek_user(struct task_struct *child, addr_t addr)
198 {
199 struct user *dummy = NULL;
200 addr_t offset, tmp;
201
202 if (addr < (addr_t) &dummy->regs.acrs) {
203 /*
204 * psw and gprs are stored on the stack
205 */
206 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
207 if (addr == (addr_t) &dummy->regs.psw.mask) {
208 /* Return a clean psw mask. */
209 tmp &= PSW_MASK_USER | PSW_MASK_RI;
210 tmp |= PSW_USER_BITS;
211 }
212
213 } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
214 /*
215 * access registers are stored in the thread structure
216 */
217 offset = addr - (addr_t) &dummy->regs.acrs;
218 /*
219 * Very special case: old & broken 64 bit gdb reading
220 * from acrs[15]. Result is a 64 bit value. Read the
221 * 32 bit acrs[15] value and shift it by 32. Sick...
222 */
223 if (addr == (addr_t) &dummy->regs.acrs[15])
224 tmp = ((unsigned long) child->thread.acrs[15]) << 32;
225 else
226 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
227
228 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
229 /*
230 * orig_gpr2 is stored on the kernel stack
231 */
232 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
233
234 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
235 /*
236 * prevent reads of padding hole between
237 * orig_gpr2 and fp_regs on s390.
238 */
239 tmp = 0;
240
241 } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
242 /*
243 * floating point control reg. is in the thread structure
244 */
245 tmp = child->thread.fp_regs.fpc;
246 tmp <<= BITS_PER_LONG - 32;
247
248 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
249 /*
250 * floating point regs. are either in child->thread.fp_regs
251 * or the child->thread.vxrs array
252 */
253 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
254 if (child->thread.vxrs)
255 tmp = *(addr_t *)
256 ((addr_t) child->thread.vxrs + 2*offset);
257 else
258 tmp = *(addr_t *)
259 ((addr_t) &child->thread.fp_regs.fprs + offset);
260
261 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
262 /*
263 * Handle access to the per_info structure.
264 */
265 addr -= (addr_t) &dummy->regs.per_info;
266 tmp = __peek_user_per(child, addr);
267
268 } else
269 tmp = 0;
270
271 return tmp;
272 }
273
274 static int
275 peek_user(struct task_struct *child, addr_t addr, addr_t data)
276 {
277 addr_t tmp, mask;
278
279 /*
280 * Stupid gdb peeks/pokes the access registers in 64 bit with
281 * an alignment of 4. Programmers from hell...
282 */
283 mask = __ADDR_MASK;
284 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
285 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
286 mask = 3;
287 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
288 return -EIO;
289
290 tmp = __peek_user(child, addr);
291 return put_user(tmp, (addr_t __user *) data);
292 }
293
294 static inline void __poke_user_per(struct task_struct *child,
295 addr_t addr, addr_t data)
296 {
297 struct per_struct_kernel *dummy = NULL;
298
299 /*
300 * There are only three fields in the per_info struct that the
301 * debugger user can write to.
302 * 1) cr9: the debugger wants to set a new PER event mask
303 * 2) starting_addr: the debugger wants to set a new starting
304 * address to use with the PER event mask.
305 * 3) ending_addr: the debugger wants to set a new ending
306 * address to use with the PER event mask.
307 * The user specified PER event mask and the start and end
308 * addresses are used only if single stepping is not in effect.
309 * Writes to any other field in per_info are ignored.
310 */
311 if (addr == (addr_t) &dummy->cr9)
312 /* PER event mask of the user specified per set. */
313 child->thread.per_user.control =
314 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
315 else if (addr == (addr_t) &dummy->starting_addr)
316 /* Starting address of the user specified per set. */
317 child->thread.per_user.start = data;
318 else if (addr == (addr_t) &dummy->ending_addr)
319 /* Ending address of the user specified per set. */
320 child->thread.per_user.end = data;
321 }
322
323 /*
324 * Write a word to the user area of a process at location addr. This
325 * operation does have an additional problem compared to peek_user.
326 * Stores to the program status word and on the floating point
327 * control register needs to get checked for validity.
328 */
329 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
330 {
331 struct user *dummy = NULL;
332 addr_t offset;
333
334 if (addr < (addr_t) &dummy->regs.acrs) {
335 /*
336 * psw and gprs are stored on the stack
337 */
338 if (addr == (addr_t) &dummy->regs.psw.mask) {
339 unsigned long mask = PSW_MASK_USER;
340
341 mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
342 if ((data ^ PSW_USER_BITS) & ~mask)
343 /* Invalid psw mask. */
344 return -EINVAL;
345 if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
346 /* Invalid address-space-control bits */
347 return -EINVAL;
348 if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
349 /* Invalid addressing mode bits */
350 return -EINVAL;
351 }
352 *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
353
354 } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
355 /*
356 * access registers are stored in the thread structure
357 */
358 offset = addr - (addr_t) &dummy->regs.acrs;
359 /*
360 * Very special case: old & broken 64 bit gdb writing
361 * to acrs[15] with a 64 bit value. Ignore the lower
362 * half of the value and write the upper 32 bit to
363 * acrs[15]. Sick...
364 */
365 if (addr == (addr_t) &dummy->regs.acrs[15])
366 child->thread.acrs[15] = (unsigned int) (data >> 32);
367 else
368 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
369
370 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
371 /*
372 * orig_gpr2 is stored on the kernel stack
373 */
374 task_pt_regs(child)->orig_gpr2 = data;
375
376 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
377 /*
378 * prevent writes of padding hole between
379 * orig_gpr2 and fp_regs on s390.
380 */
381 return 0;
382
383 } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
384 /*
385 * floating point control reg. is in the thread structure
386 */
387 if ((unsigned int) data != 0 ||
388 test_fp_ctl(data >> (BITS_PER_LONG - 32)))
389 return -EINVAL;
390 child->thread.fp_regs.fpc = data >> (BITS_PER_LONG - 32);
391
392 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
393 /*
394 * floating point regs. are either in child->thread.fp_regs
395 * or the child->thread.vxrs array
396 */
397 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
398 if (child->thread.vxrs)
399 *(addr_t *)((addr_t)
400 child->thread.vxrs + 2*offset) = data;
401 else
402 *(addr_t *)((addr_t)
403 &child->thread.fp_regs.fprs + offset) = data;
404
405 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
406 /*
407 * Handle access to the per_info structure.
408 */
409 addr -= (addr_t) &dummy->regs.per_info;
410 __poke_user_per(child, addr, data);
411
412 }
413
414 return 0;
415 }
416
417 static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
418 {
419 addr_t mask;
420
421 /*
422 * Stupid gdb peeks/pokes the access registers in 64 bit with
423 * an alignment of 4. Programmers from hell indeed...
424 */
425 mask = __ADDR_MASK;
426 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
427 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
428 mask = 3;
429 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
430 return -EIO;
431
432 return __poke_user(child, addr, data);
433 }
434
435 long arch_ptrace(struct task_struct *child, long request,
436 unsigned long addr, unsigned long data)
437 {
438 ptrace_area parea;
439 int copied, ret;
440
441 switch (request) {
442 case PTRACE_PEEKUSR:
443 /* read the word at location addr in the USER area. */
444 return peek_user(child, addr, data);
445
446 case PTRACE_POKEUSR:
447 /* write the word at location addr in the USER area */
448 return poke_user(child, addr, data);
449
450 case PTRACE_PEEKUSR_AREA:
451 case PTRACE_POKEUSR_AREA:
452 if (copy_from_user(&parea, (void __force __user *) addr,
453 sizeof(parea)))
454 return -EFAULT;
455 addr = parea.kernel_addr;
456 data = parea.process_addr;
457 copied = 0;
458 while (copied < parea.len) {
459 if (request == PTRACE_PEEKUSR_AREA)
460 ret = peek_user(child, addr, data);
461 else {
462 addr_t utmp;
463 if (get_user(utmp,
464 (addr_t __force __user *) data))
465 return -EFAULT;
466 ret = poke_user(child, addr, utmp);
467 }
468 if (ret)
469 return ret;
470 addr += sizeof(unsigned long);
471 data += sizeof(unsigned long);
472 copied += sizeof(unsigned long);
473 }
474 return 0;
475 case PTRACE_GET_LAST_BREAK:
476 put_user(task_thread_info(child)->last_break,
477 (unsigned long __user *) data);
478 return 0;
479 case PTRACE_ENABLE_TE:
480 if (!MACHINE_HAS_TE)
481 return -EIO;
482 child->thread.per_flags &= ~PER_FLAG_NO_TE;
483 return 0;
484 case PTRACE_DISABLE_TE:
485 if (!MACHINE_HAS_TE)
486 return -EIO;
487 child->thread.per_flags |= PER_FLAG_NO_TE;
488 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
489 return 0;
490 case PTRACE_TE_ABORT_RAND:
491 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
492 return -EIO;
493 switch (data) {
494 case 0UL:
495 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
496 break;
497 case 1UL:
498 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
499 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
500 break;
501 case 2UL:
502 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
503 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
504 break;
505 default:
506 return -EINVAL;
507 }
508 return 0;
509 default:
510 /* Removing high order bit from addr (only for 31 bit). */
511 addr &= PSW_ADDR_INSN;
512 return ptrace_request(child, request, addr, data);
513 }
514 }
515
516 #ifdef CONFIG_COMPAT
517 /*
518 * Now the fun part starts... a 31 bit program running in the
519 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
520 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
521 * to handle, the difference to the 64 bit versions of the requests
522 * is that the access is done in multiples of 4 byte instead of
523 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
524 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
525 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
526 * is a 31 bit program too, the content of struct user can be
527 * emulated. A 31 bit program peeking into the struct user of
528 * a 64 bit program is a no-no.
529 */
530
531 /*
532 * Same as peek_user_per but for a 31 bit program.
533 */
534 static inline __u32 __peek_user_per_compat(struct task_struct *child,
535 addr_t addr)
536 {
537 struct compat_per_struct_kernel *dummy32 = NULL;
538
539 if (addr == (addr_t) &dummy32->cr9)
540 /* Control bits of the active per set. */
541 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
542 PER_EVENT_IFETCH : child->thread.per_user.control;
543 else if (addr == (addr_t) &dummy32->cr10)
544 /* Start address of the active per set. */
545 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
546 0 : child->thread.per_user.start;
547 else if (addr == (addr_t) &dummy32->cr11)
548 /* End address of the active per set. */
549 return test_thread_flag(TIF_SINGLE_STEP) ?
550 PSW32_ADDR_INSN : child->thread.per_user.end;
551 else if (addr == (addr_t) &dummy32->bits)
552 /* Single-step bit. */
553 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
554 0x80000000 : 0;
555 else if (addr == (addr_t) &dummy32->starting_addr)
556 /* Start address of the user specified per set. */
557 return (__u32) child->thread.per_user.start;
558 else if (addr == (addr_t) &dummy32->ending_addr)
559 /* End address of the user specified per set. */
560 return (__u32) child->thread.per_user.end;
561 else if (addr == (addr_t) &dummy32->perc_atmid)
562 /* PER code, ATMID and AI of the last PER trap */
563 return (__u32) child->thread.per_event.cause << 16;
564 else if (addr == (addr_t) &dummy32->address)
565 /* Address of the last PER trap */
566 return (__u32) child->thread.per_event.address;
567 else if (addr == (addr_t) &dummy32->access_id)
568 /* Access id of the last PER trap */
569 return (__u32) child->thread.per_event.paid << 24;
570 return 0;
571 }
572
573 /*
574 * Same as peek_user but for a 31 bit program.
575 */
576 static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
577 {
578 struct compat_user *dummy32 = NULL;
579 addr_t offset;
580 __u32 tmp;
581
582 if (addr < (addr_t) &dummy32->regs.acrs) {
583 struct pt_regs *regs = task_pt_regs(child);
584 /*
585 * psw and gprs are stored on the stack
586 */
587 if (addr == (addr_t) &dummy32->regs.psw.mask) {
588 /* Fake a 31 bit psw mask. */
589 tmp = (__u32)(regs->psw.mask >> 32);
590 tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
591 tmp |= PSW32_USER_BITS;
592 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
593 /* Fake a 31 bit psw address. */
594 tmp = (__u32) regs->psw.addr |
595 (__u32)(regs->psw.mask & PSW_MASK_BA);
596 } else {
597 /* gpr 0-15 */
598 tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
599 }
600 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
601 /*
602 * access registers are stored in the thread structure
603 */
604 offset = addr - (addr_t) &dummy32->regs.acrs;
605 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
606
607 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
608 /*
609 * orig_gpr2 is stored on the kernel stack
610 */
611 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
612
613 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
614 /*
615 * prevent reads of padding hole between
616 * orig_gpr2 and fp_regs on s390.
617 */
618 tmp = 0;
619
620 } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
621 /*
622 * floating point control reg. is in the thread structure
623 */
624 tmp = child->thread.fp_regs.fpc;
625
626 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
627 /*
628 * floating point regs. are either in child->thread.fp_regs
629 * or the child->thread.vxrs array
630 */
631 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
632 if (child->thread.vxrs)
633 tmp = *(__u32 *)
634 ((addr_t) child->thread.vxrs + 2*offset);
635 else
636 tmp = *(__u32 *)
637 ((addr_t) &child->thread.fp_regs.fprs + offset);
638
639 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
640 /*
641 * Handle access to the per_info structure.
642 */
643 addr -= (addr_t) &dummy32->regs.per_info;
644 tmp = __peek_user_per_compat(child, addr);
645
646 } else
647 tmp = 0;
648
649 return tmp;
650 }
651
652 static int peek_user_compat(struct task_struct *child,
653 addr_t addr, addr_t data)
654 {
655 __u32 tmp;
656
657 if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
658 return -EIO;
659
660 tmp = __peek_user_compat(child, addr);
661 return put_user(tmp, (__u32 __user *) data);
662 }
663
664 /*
665 * Same as poke_user_per but for a 31 bit program.
666 */
667 static inline void __poke_user_per_compat(struct task_struct *child,
668 addr_t addr, __u32 data)
669 {
670 struct compat_per_struct_kernel *dummy32 = NULL;
671
672 if (addr == (addr_t) &dummy32->cr9)
673 /* PER event mask of the user specified per set. */
674 child->thread.per_user.control =
675 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
676 else if (addr == (addr_t) &dummy32->starting_addr)
677 /* Starting address of the user specified per set. */
678 child->thread.per_user.start = data;
679 else if (addr == (addr_t) &dummy32->ending_addr)
680 /* Ending address of the user specified per set. */
681 child->thread.per_user.end = data;
682 }
683
684 /*
685 * Same as poke_user but for a 31 bit program.
686 */
687 static int __poke_user_compat(struct task_struct *child,
688 addr_t addr, addr_t data)
689 {
690 struct compat_user *dummy32 = NULL;
691 __u32 tmp = (__u32) data;
692 addr_t offset;
693
694 if (addr < (addr_t) &dummy32->regs.acrs) {
695 struct pt_regs *regs = task_pt_regs(child);
696 /*
697 * psw, gprs, acrs and orig_gpr2 are stored on the stack
698 */
699 if (addr == (addr_t) &dummy32->regs.psw.mask) {
700 __u32 mask = PSW32_MASK_USER;
701
702 mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
703 /* Build a 64 bit psw mask from 31 bit mask. */
704 if ((tmp ^ PSW32_USER_BITS) & ~mask)
705 /* Invalid psw mask. */
706 return -EINVAL;
707 if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
708 /* Invalid address-space-control bits */
709 return -EINVAL;
710 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
711 (regs->psw.mask & PSW_MASK_BA) |
712 (__u64)(tmp & mask) << 32;
713 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
714 /* Build a 64 bit psw address from 31 bit address. */
715 regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
716 /* Transfer 31 bit amode bit to psw mask. */
717 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
718 (__u64)(tmp & PSW32_ADDR_AMODE);
719 } else {
720 /* gpr 0-15 */
721 *(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
722 }
723 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
724 /*
725 * access registers are stored in the thread structure
726 */
727 offset = addr - (addr_t) &dummy32->regs.acrs;
728 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
729
730 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
731 /*
732 * orig_gpr2 is stored on the kernel stack
733 */
734 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
735
736 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
737 /*
738 * prevent writess of padding hole between
739 * orig_gpr2 and fp_regs on s390.
740 */
741 return 0;
742
743 } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
744 /*
745 * floating point control reg. is in the thread structure
746 */
747 if (test_fp_ctl(tmp))
748 return -EINVAL;
749 child->thread.fp_regs.fpc = data;
750
751 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
752 /*
753 * floating point regs. are either in child->thread.fp_regs
754 * or the child->thread.vxrs array
755 */
756 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
757 if (child->thread.vxrs)
758 *(__u32 *)((addr_t)
759 child->thread.vxrs + 2*offset) = tmp;
760 else
761 *(__u32 *)((addr_t)
762 &child->thread.fp_regs.fprs + offset) = tmp;
763
764 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
765 /*
766 * Handle access to the per_info structure.
767 */
768 addr -= (addr_t) &dummy32->regs.per_info;
769 __poke_user_per_compat(child, addr, data);
770 }
771
772 return 0;
773 }
774
775 static int poke_user_compat(struct task_struct *child,
776 addr_t addr, addr_t data)
777 {
778 if (!is_compat_task() || (addr & 3) ||
779 addr > sizeof(struct compat_user) - 3)
780 return -EIO;
781
782 return __poke_user_compat(child, addr, data);
783 }
784
785 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
786 compat_ulong_t caddr, compat_ulong_t cdata)
787 {
788 unsigned long addr = caddr;
789 unsigned long data = cdata;
790 compat_ptrace_area parea;
791 int copied, ret;
792
793 switch (request) {
794 case PTRACE_PEEKUSR:
795 /* read the word at location addr in the USER area. */
796 return peek_user_compat(child, addr, data);
797
798 case PTRACE_POKEUSR:
799 /* write the word at location addr in the USER area */
800 return poke_user_compat(child, addr, data);
801
802 case PTRACE_PEEKUSR_AREA:
803 case PTRACE_POKEUSR_AREA:
804 if (copy_from_user(&parea, (void __force __user *) addr,
805 sizeof(parea)))
806 return -EFAULT;
807 addr = parea.kernel_addr;
808 data = parea.process_addr;
809 copied = 0;
810 while (copied < parea.len) {
811 if (request == PTRACE_PEEKUSR_AREA)
812 ret = peek_user_compat(child, addr, data);
813 else {
814 __u32 utmp;
815 if (get_user(utmp,
816 (__u32 __force __user *) data))
817 return -EFAULT;
818 ret = poke_user_compat(child, addr, utmp);
819 }
820 if (ret)
821 return ret;
822 addr += sizeof(unsigned int);
823 data += sizeof(unsigned int);
824 copied += sizeof(unsigned int);
825 }
826 return 0;
827 case PTRACE_GET_LAST_BREAK:
828 put_user(task_thread_info(child)->last_break,
829 (unsigned int __user *) data);
830 return 0;
831 }
832 return compat_ptrace_request(child, request, addr, data);
833 }
834 #endif
835
836 asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
837 {
838 long ret = 0;
839
840 /* Do the secure computing check first. */
841 if (secure_computing()) {
842 /* seccomp failures shouldn't expose any additional code. */
843 ret = -1;
844 goto out;
845 }
846
847 /*
848 * The sysc_tracesys code in entry.S stored the system
849 * call number to gprs[2].
850 */
851 if (test_thread_flag(TIF_SYSCALL_TRACE) &&
852 (tracehook_report_syscall_entry(regs) ||
853 regs->gprs[2] >= NR_syscalls)) {
854 /*
855 * Tracing decided this syscall should not happen or the
856 * debugger stored an invalid system call number. Skip
857 * the system call and the system call restart handling.
858 */
859 clear_pt_regs_flag(regs, PIF_SYSCALL);
860 ret = -1;
861 }
862
863 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
864 trace_sys_enter(regs, regs->gprs[2]);
865
866 audit_syscall_entry(regs->gprs[2], regs->orig_gpr2,
867 regs->gprs[3], regs->gprs[4],
868 regs->gprs[5]);
869 out:
870 return ret ?: regs->gprs[2];
871 }
872
873 asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
874 {
875 audit_syscall_exit(regs);
876
877 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
878 trace_sys_exit(regs, regs->gprs[2]);
879
880 if (test_thread_flag(TIF_SYSCALL_TRACE))
881 tracehook_report_syscall_exit(regs, 0);
882 }
883
884 /*
885 * user_regset definitions.
886 */
887
888 static int s390_regs_get(struct task_struct *target,
889 const struct user_regset *regset,
890 unsigned int pos, unsigned int count,
891 void *kbuf, void __user *ubuf)
892 {
893 if (target == current)
894 save_access_regs(target->thread.acrs);
895
896 if (kbuf) {
897 unsigned long *k = kbuf;
898 while (count > 0) {
899 *k++ = __peek_user(target, pos);
900 count -= sizeof(*k);
901 pos += sizeof(*k);
902 }
903 } else {
904 unsigned long __user *u = ubuf;
905 while (count > 0) {
906 if (__put_user(__peek_user(target, pos), u++))
907 return -EFAULT;
908 count -= sizeof(*u);
909 pos += sizeof(*u);
910 }
911 }
912 return 0;
913 }
914
915 static int s390_regs_set(struct task_struct *target,
916 const struct user_regset *regset,
917 unsigned int pos, unsigned int count,
918 const void *kbuf, const void __user *ubuf)
919 {
920 int rc = 0;
921
922 if (target == current)
923 save_access_regs(target->thread.acrs);
924
925 if (kbuf) {
926 const unsigned long *k = kbuf;
927 while (count > 0 && !rc) {
928 rc = __poke_user(target, pos, *k++);
929 count -= sizeof(*k);
930 pos += sizeof(*k);
931 }
932 } else {
933 const unsigned long __user *u = ubuf;
934 while (count > 0 && !rc) {
935 unsigned long word;
936 rc = __get_user(word, u++);
937 if (rc)
938 break;
939 rc = __poke_user(target, pos, word);
940 count -= sizeof(*u);
941 pos += sizeof(*u);
942 }
943 }
944
945 if (rc == 0 && target == current)
946 restore_access_regs(target->thread.acrs);
947
948 return rc;
949 }
950
951 static int s390_fpregs_get(struct task_struct *target,
952 const struct user_regset *regset, unsigned int pos,
953 unsigned int count, void *kbuf, void __user *ubuf)
954 {
955 if (target == current) {
956 save_fp_ctl(&target->thread.fp_regs.fpc);
957 save_fp_regs(target->thread.fp_regs.fprs);
958 } else if (target->thread.vxrs) {
959 int i;
960
961 for (i = 0; i < __NUM_VXRS_LOW; i++)
962 target->thread.fp_regs.fprs[i] =
963 *(freg_t *)(target->thread.vxrs + i);
964 }
965 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
966 &target->thread.fp_regs, 0, -1);
967 }
968
969 static int s390_fpregs_set(struct task_struct *target,
970 const struct user_regset *regset, unsigned int pos,
971 unsigned int count, const void *kbuf,
972 const void __user *ubuf)
973 {
974 int rc = 0;
975
976 if (target == current) {
977 save_fp_ctl(&target->thread.fp_regs.fpc);
978 save_fp_regs(target->thread.fp_regs.fprs);
979 }
980
981 /* If setting FPC, must validate it first. */
982 if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
983 u32 ufpc[2] = { target->thread.fp_regs.fpc, 0 };
984 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
985 0, offsetof(s390_fp_regs, fprs));
986 if (rc)
987 return rc;
988 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
989 return -EINVAL;
990 target->thread.fp_regs.fpc = ufpc[0];
991 }
992
993 if (rc == 0 && count > 0)
994 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
995 target->thread.fp_regs.fprs,
996 offsetof(s390_fp_regs, fprs), -1);
997
998 if (rc == 0) {
999 if (target == current) {
1000 restore_fp_ctl(&target->thread.fp_regs.fpc);
1001 restore_fp_regs(target->thread.fp_regs.fprs);
1002 } else if (target->thread.vxrs) {
1003 int i;
1004
1005 for (i = 0; i < __NUM_VXRS_LOW; i++)
1006 *(freg_t *)(target->thread.vxrs + i) =
1007 target->thread.fp_regs.fprs[i];
1008 }
1009 }
1010
1011 return rc;
1012 }
1013
1014 static int s390_last_break_get(struct task_struct *target,
1015 const struct user_regset *regset,
1016 unsigned int pos, unsigned int count,
1017 void *kbuf, void __user *ubuf)
1018 {
1019 if (count > 0) {
1020 if (kbuf) {
1021 unsigned long *k = kbuf;
1022 *k = task_thread_info(target)->last_break;
1023 } else {
1024 unsigned long __user *u = ubuf;
1025 if (__put_user(task_thread_info(target)->last_break, u))
1026 return -EFAULT;
1027 }
1028 }
1029 return 0;
1030 }
1031
1032 static int s390_last_break_set(struct task_struct *target,
1033 const struct user_regset *regset,
1034 unsigned int pos, unsigned int count,
1035 const void *kbuf, const void __user *ubuf)
1036 {
1037 return 0;
1038 }
1039
1040 static int s390_tdb_get(struct task_struct *target,
1041 const struct user_regset *regset,
1042 unsigned int pos, unsigned int count,
1043 void *kbuf, void __user *ubuf)
1044 {
1045 struct pt_regs *regs = task_pt_regs(target);
1046 unsigned char *data;
1047
1048 if (!(regs->int_code & 0x200))
1049 return -ENODATA;
1050 data = target->thread.trap_tdb;
1051 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1052 }
1053
1054 static int s390_tdb_set(struct task_struct *target,
1055 const struct user_regset *regset,
1056 unsigned int pos, unsigned int count,
1057 const void *kbuf, const void __user *ubuf)
1058 {
1059 return 0;
1060 }
1061
1062 static int s390_vxrs_low_get(struct task_struct *target,
1063 const struct user_regset *regset,
1064 unsigned int pos, unsigned int count,
1065 void *kbuf, void __user *ubuf)
1066 {
1067 __u64 vxrs[__NUM_VXRS_LOW];
1068 int i;
1069
1070 if (!MACHINE_HAS_VX)
1071 return -ENODEV;
1072 if (target->thread.vxrs) {
1073 if (target == current)
1074 save_vx_regs(target->thread.vxrs);
1075 for (i = 0; i < __NUM_VXRS_LOW; i++)
1076 vxrs[i] = *((__u64 *)(target->thread.vxrs + i) + 1);
1077 } else
1078 memset(vxrs, 0, sizeof(vxrs));
1079 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1080 }
1081
1082 static int s390_vxrs_low_set(struct task_struct *target,
1083 const struct user_regset *regset,
1084 unsigned int pos, unsigned int count,
1085 const void *kbuf, const void __user *ubuf)
1086 {
1087 __u64 vxrs[__NUM_VXRS_LOW];
1088 int i, rc;
1089
1090 if (!MACHINE_HAS_VX)
1091 return -ENODEV;
1092 if (!target->thread.vxrs) {
1093 rc = alloc_vector_registers(target);
1094 if (rc)
1095 return rc;
1096 } else if (target == current)
1097 save_vx_regs(target->thread.vxrs);
1098
1099 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1100 if (rc == 0) {
1101 for (i = 0; i < __NUM_VXRS_LOW; i++)
1102 *((__u64 *)(target->thread.vxrs + i) + 1) = vxrs[i];
1103 if (target == current)
1104 restore_vx_regs(target->thread.vxrs);
1105 }
1106
1107 return rc;
1108 }
1109
1110 static int s390_vxrs_high_get(struct task_struct *target,
1111 const struct user_regset *regset,
1112 unsigned int pos, unsigned int count,
1113 void *kbuf, void __user *ubuf)
1114 {
1115 __vector128 vxrs[__NUM_VXRS_HIGH];
1116
1117 if (!MACHINE_HAS_VX)
1118 return -ENODEV;
1119 if (target->thread.vxrs) {
1120 if (target == current)
1121 save_vx_regs(target->thread.vxrs);
1122 memcpy(vxrs, target->thread.vxrs + __NUM_VXRS_LOW,
1123 sizeof(vxrs));
1124 } else
1125 memset(vxrs, 0, sizeof(vxrs));
1126 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1127 }
1128
1129 static int s390_vxrs_high_set(struct task_struct *target,
1130 const struct user_regset *regset,
1131 unsigned int pos, unsigned int count,
1132 const void *kbuf, const void __user *ubuf)
1133 {
1134 int rc;
1135
1136 if (!MACHINE_HAS_VX)
1137 return -ENODEV;
1138 if (!target->thread.vxrs) {
1139 rc = alloc_vector_registers(target);
1140 if (rc)
1141 return rc;
1142 } else if (target == current)
1143 save_vx_regs(target->thread.vxrs);
1144
1145 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1146 target->thread.vxrs + __NUM_VXRS_LOW, 0, -1);
1147 if (rc == 0 && target == current)
1148 restore_vx_regs(target->thread.vxrs);
1149
1150 return rc;
1151 }
1152
1153 static int s390_system_call_get(struct task_struct *target,
1154 const struct user_regset *regset,
1155 unsigned int pos, unsigned int count,
1156 void *kbuf, void __user *ubuf)
1157 {
1158 unsigned int *data = &task_thread_info(target)->system_call;
1159 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1160 data, 0, sizeof(unsigned int));
1161 }
1162
1163 static int s390_system_call_set(struct task_struct *target,
1164 const struct user_regset *regset,
1165 unsigned int pos, unsigned int count,
1166 const void *kbuf, const void __user *ubuf)
1167 {
1168 unsigned int *data = &task_thread_info(target)->system_call;
1169 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1170 data, 0, sizeof(unsigned int));
1171 }
1172
1173 static const struct user_regset s390_regsets[] = {
1174 {
1175 .core_note_type = NT_PRSTATUS,
1176 .n = sizeof(s390_regs) / sizeof(long),
1177 .size = sizeof(long),
1178 .align = sizeof(long),
1179 .get = s390_regs_get,
1180 .set = s390_regs_set,
1181 },
1182 {
1183 .core_note_type = NT_PRFPREG,
1184 .n = sizeof(s390_fp_regs) / sizeof(long),
1185 .size = sizeof(long),
1186 .align = sizeof(long),
1187 .get = s390_fpregs_get,
1188 .set = s390_fpregs_set,
1189 },
1190 {
1191 .core_note_type = NT_S390_SYSTEM_CALL,
1192 .n = 1,
1193 .size = sizeof(unsigned int),
1194 .align = sizeof(unsigned int),
1195 .get = s390_system_call_get,
1196 .set = s390_system_call_set,
1197 },
1198 {
1199 .core_note_type = NT_S390_LAST_BREAK,
1200 .n = 1,
1201 .size = sizeof(long),
1202 .align = sizeof(long),
1203 .get = s390_last_break_get,
1204 .set = s390_last_break_set,
1205 },
1206 {
1207 .core_note_type = NT_S390_TDB,
1208 .n = 1,
1209 .size = 256,
1210 .align = 1,
1211 .get = s390_tdb_get,
1212 .set = s390_tdb_set,
1213 },
1214 {
1215 .core_note_type = NT_S390_VXRS_LOW,
1216 .n = __NUM_VXRS_LOW,
1217 .size = sizeof(__u64),
1218 .align = sizeof(__u64),
1219 .get = s390_vxrs_low_get,
1220 .set = s390_vxrs_low_set,
1221 },
1222 {
1223 .core_note_type = NT_S390_VXRS_HIGH,
1224 .n = __NUM_VXRS_HIGH,
1225 .size = sizeof(__vector128),
1226 .align = sizeof(__vector128),
1227 .get = s390_vxrs_high_get,
1228 .set = s390_vxrs_high_set,
1229 },
1230 };
1231
1232 static const struct user_regset_view user_s390_view = {
1233 .name = UTS_MACHINE,
1234 .e_machine = EM_S390,
1235 .regsets = s390_regsets,
1236 .n = ARRAY_SIZE(s390_regsets)
1237 };
1238
1239 #ifdef CONFIG_COMPAT
1240 static int s390_compat_regs_get(struct task_struct *target,
1241 const struct user_regset *regset,
1242 unsigned int pos, unsigned int count,
1243 void *kbuf, void __user *ubuf)
1244 {
1245 if (target == current)
1246 save_access_regs(target->thread.acrs);
1247
1248 if (kbuf) {
1249 compat_ulong_t *k = kbuf;
1250 while (count > 0) {
1251 *k++ = __peek_user_compat(target, pos);
1252 count -= sizeof(*k);
1253 pos += sizeof(*k);
1254 }
1255 } else {
1256 compat_ulong_t __user *u = ubuf;
1257 while (count > 0) {
1258 if (__put_user(__peek_user_compat(target, pos), u++))
1259 return -EFAULT;
1260 count -= sizeof(*u);
1261 pos += sizeof(*u);
1262 }
1263 }
1264 return 0;
1265 }
1266
1267 static int s390_compat_regs_set(struct task_struct *target,
1268 const struct user_regset *regset,
1269 unsigned int pos, unsigned int count,
1270 const void *kbuf, const void __user *ubuf)
1271 {
1272 int rc = 0;
1273
1274 if (target == current)
1275 save_access_regs(target->thread.acrs);
1276
1277 if (kbuf) {
1278 const compat_ulong_t *k = kbuf;
1279 while (count > 0 && !rc) {
1280 rc = __poke_user_compat(target, pos, *k++);
1281 count -= sizeof(*k);
1282 pos += sizeof(*k);
1283 }
1284 } else {
1285 const compat_ulong_t __user *u = ubuf;
1286 while (count > 0 && !rc) {
1287 compat_ulong_t word;
1288 rc = __get_user(word, u++);
1289 if (rc)
1290 break;
1291 rc = __poke_user_compat(target, pos, word);
1292 count -= sizeof(*u);
1293 pos += sizeof(*u);
1294 }
1295 }
1296
1297 if (rc == 0 && target == current)
1298 restore_access_regs(target->thread.acrs);
1299
1300 return rc;
1301 }
1302
1303 static int s390_compat_regs_high_get(struct task_struct *target,
1304 const struct user_regset *regset,
1305 unsigned int pos, unsigned int count,
1306 void *kbuf, void __user *ubuf)
1307 {
1308 compat_ulong_t *gprs_high;
1309
1310 gprs_high = (compat_ulong_t *)
1311 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1312 if (kbuf) {
1313 compat_ulong_t *k = kbuf;
1314 while (count > 0) {
1315 *k++ = *gprs_high;
1316 gprs_high += 2;
1317 count -= sizeof(*k);
1318 }
1319 } else {
1320 compat_ulong_t __user *u = ubuf;
1321 while (count > 0) {
1322 if (__put_user(*gprs_high, u++))
1323 return -EFAULT;
1324 gprs_high += 2;
1325 count -= sizeof(*u);
1326 }
1327 }
1328 return 0;
1329 }
1330
1331 static int s390_compat_regs_high_set(struct task_struct *target,
1332 const struct user_regset *regset,
1333 unsigned int pos, unsigned int count,
1334 const void *kbuf, const void __user *ubuf)
1335 {
1336 compat_ulong_t *gprs_high;
1337 int rc = 0;
1338
1339 gprs_high = (compat_ulong_t *)
1340 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1341 if (kbuf) {
1342 const compat_ulong_t *k = kbuf;
1343 while (count > 0) {
1344 *gprs_high = *k++;
1345 *gprs_high += 2;
1346 count -= sizeof(*k);
1347 }
1348 } else {
1349 const compat_ulong_t __user *u = ubuf;
1350 while (count > 0 && !rc) {
1351 unsigned long word;
1352 rc = __get_user(word, u++);
1353 if (rc)
1354 break;
1355 *gprs_high = word;
1356 *gprs_high += 2;
1357 count -= sizeof(*u);
1358 }
1359 }
1360
1361 return rc;
1362 }
1363
1364 static int s390_compat_last_break_get(struct task_struct *target,
1365 const struct user_regset *regset,
1366 unsigned int pos, unsigned int count,
1367 void *kbuf, void __user *ubuf)
1368 {
1369 compat_ulong_t last_break;
1370
1371 if (count > 0) {
1372 last_break = task_thread_info(target)->last_break;
1373 if (kbuf) {
1374 unsigned long *k = kbuf;
1375 *k = last_break;
1376 } else {
1377 unsigned long __user *u = ubuf;
1378 if (__put_user(last_break, u))
1379 return -EFAULT;
1380 }
1381 }
1382 return 0;
1383 }
1384
1385 static int s390_compat_last_break_set(struct task_struct *target,
1386 const struct user_regset *regset,
1387 unsigned int pos, unsigned int count,
1388 const void *kbuf, const void __user *ubuf)
1389 {
1390 return 0;
1391 }
1392
1393 static const struct user_regset s390_compat_regsets[] = {
1394 {
1395 .core_note_type = NT_PRSTATUS,
1396 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1397 .size = sizeof(compat_long_t),
1398 .align = sizeof(compat_long_t),
1399 .get = s390_compat_regs_get,
1400 .set = s390_compat_regs_set,
1401 },
1402 {
1403 .core_note_type = NT_PRFPREG,
1404 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1405 .size = sizeof(compat_long_t),
1406 .align = sizeof(compat_long_t),
1407 .get = s390_fpregs_get,
1408 .set = s390_fpregs_set,
1409 },
1410 {
1411 .core_note_type = NT_S390_SYSTEM_CALL,
1412 .n = 1,
1413 .size = sizeof(compat_uint_t),
1414 .align = sizeof(compat_uint_t),
1415 .get = s390_system_call_get,
1416 .set = s390_system_call_set,
1417 },
1418 {
1419 .core_note_type = NT_S390_LAST_BREAK,
1420 .n = 1,
1421 .size = sizeof(long),
1422 .align = sizeof(long),
1423 .get = s390_compat_last_break_get,
1424 .set = s390_compat_last_break_set,
1425 },
1426 {
1427 .core_note_type = NT_S390_TDB,
1428 .n = 1,
1429 .size = 256,
1430 .align = 1,
1431 .get = s390_tdb_get,
1432 .set = s390_tdb_set,
1433 },
1434 {
1435 .core_note_type = NT_S390_VXRS_LOW,
1436 .n = __NUM_VXRS_LOW,
1437 .size = sizeof(__u64),
1438 .align = sizeof(__u64),
1439 .get = s390_vxrs_low_get,
1440 .set = s390_vxrs_low_set,
1441 },
1442 {
1443 .core_note_type = NT_S390_VXRS_HIGH,
1444 .n = __NUM_VXRS_HIGH,
1445 .size = sizeof(__vector128),
1446 .align = sizeof(__vector128),
1447 .get = s390_vxrs_high_get,
1448 .set = s390_vxrs_high_set,
1449 },
1450 {
1451 .core_note_type = NT_S390_HIGH_GPRS,
1452 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1453 .size = sizeof(compat_long_t),
1454 .align = sizeof(compat_long_t),
1455 .get = s390_compat_regs_high_get,
1456 .set = s390_compat_regs_high_set,
1457 },
1458 };
1459
1460 static const struct user_regset_view user_s390_compat_view = {
1461 .name = "s390",
1462 .e_machine = EM_S390,
1463 .regsets = s390_compat_regsets,
1464 .n = ARRAY_SIZE(s390_compat_regsets)
1465 };
1466 #endif
1467
1468 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1469 {
1470 #ifdef CONFIG_COMPAT
1471 if (test_tsk_thread_flag(task, TIF_31BIT))
1472 return &user_s390_compat_view;
1473 #endif
1474 return &user_s390_view;
1475 }
1476
1477 static const char *gpr_names[NUM_GPRS] = {
1478 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1479 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1480 };
1481
1482 unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1483 {
1484 if (offset >= NUM_GPRS)
1485 return 0;
1486 return regs->gprs[offset];
1487 }
1488
1489 int regs_query_register_offset(const char *name)
1490 {
1491 unsigned long offset;
1492
1493 if (!name || *name != 'r')
1494 return -EINVAL;
1495 if (kstrtoul(name + 1, 10, &offset))
1496 return -EINVAL;
1497 if (offset >= NUM_GPRS)
1498 return -EINVAL;
1499 return offset;
1500 }
1501
1502 const char *regs_query_register_name(unsigned int offset)
1503 {
1504 if (offset >= NUM_GPRS)
1505 return NULL;
1506 return gpr_names[offset];
1507 }
1508
1509 static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1510 {
1511 unsigned long ksp = kernel_stack_pointer(regs);
1512
1513 return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1514 }
1515
1516 /**
1517 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1518 * @regs:pt_regs which contains kernel stack pointer.
1519 * @n:stack entry number.
1520 *
1521 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1522 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1523 * this returns 0.
1524 */
1525 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1526 {
1527 unsigned long addr;
1528
1529 addr = kernel_stack_pointer(regs) + n * sizeof(long);
1530 if (!regs_within_kernel_stack(regs, addr))
1531 return 0;
1532 return *(unsigned long *)addr;
1533 }