]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/s390/kernel/ptrace.c
audit: fix a double fetch in audit_log_single_execve_arg()
[mirror_ubuntu-bionic-kernel.git] / arch / s390 / kernel / ptrace.c
1 /*
2 * Ptrace user space interface.
3 *
4 * Copyright IBM Corp. 1999, 2010
5 * Author(s): Denis Joseph Barrow
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/mm.h>
12 #include <linux/smp.h>
13 #include <linux/errno.h>
14 #include <linux/ptrace.h>
15 #include <linux/user.h>
16 #include <linux/security.h>
17 #include <linux/audit.h>
18 #include <linux/signal.h>
19 #include <linux/elf.h>
20 #include <linux/regset.h>
21 #include <linux/tracehook.h>
22 #include <linux/seccomp.h>
23 #include <linux/compat.h>
24 #include <trace/syscall.h>
25 #include <asm/segment.h>
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/pgalloc.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/switch_to.h>
32 #include "entry.h"
33
34 #ifdef CONFIG_COMPAT
35 #include "compat_ptrace.h"
36 #endif
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/syscalls.h>
40
41 void update_cr_regs(struct task_struct *task)
42 {
43 struct pt_regs *regs = task_pt_regs(task);
44 struct thread_struct *thread = &task->thread;
45 struct per_regs old, new;
46
47 /* Take care of the enable/disable of transactional execution. */
48 if (MACHINE_HAS_TE) {
49 unsigned long cr, cr_new;
50
51 __ctl_store(cr, 0, 0);
52 /* Set or clear transaction execution TXC bit 8. */
53 cr_new = cr | (1UL << 55);
54 if (task->thread.per_flags & PER_FLAG_NO_TE)
55 cr_new &= ~(1UL << 55);
56 if (cr_new != cr)
57 __ctl_load(cr_new, 0, 0);
58 /* Set or clear transaction execution TDC bits 62 and 63. */
59 __ctl_store(cr, 2, 2);
60 cr_new = cr & ~3UL;
61 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND) {
62 if (task->thread.per_flags & PER_FLAG_TE_ABORT_RAND_TEND)
63 cr_new |= 1UL;
64 else
65 cr_new |= 2UL;
66 }
67 if (cr_new != cr)
68 __ctl_load(cr_new, 2, 2);
69 }
70 /* Copy user specified PER registers */
71 new.control = thread->per_user.control;
72 new.start = thread->per_user.start;
73 new.end = thread->per_user.end;
74
75 /* merge TIF_SINGLE_STEP into user specified PER registers. */
76 if (test_tsk_thread_flag(task, TIF_SINGLE_STEP) ||
77 test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP)) {
78 if (test_tsk_thread_flag(task, TIF_BLOCK_STEP))
79 new.control |= PER_EVENT_BRANCH;
80 else
81 new.control |= PER_EVENT_IFETCH;
82 new.control |= PER_CONTROL_SUSPENSION;
83 new.control |= PER_EVENT_TRANSACTION_END;
84 if (test_tsk_thread_flag(task, TIF_UPROBE_SINGLESTEP))
85 new.control |= PER_EVENT_IFETCH;
86 new.start = 0;
87 new.end = -1UL;
88 }
89
90 /* Take care of the PER enablement bit in the PSW. */
91 if (!(new.control & PER_EVENT_MASK)) {
92 regs->psw.mask &= ~PSW_MASK_PER;
93 return;
94 }
95 regs->psw.mask |= PSW_MASK_PER;
96 __ctl_store(old, 9, 11);
97 if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
98 __ctl_load(new, 9, 11);
99 }
100
101 void user_enable_single_step(struct task_struct *task)
102 {
103 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
104 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
105 }
106
107 void user_disable_single_step(struct task_struct *task)
108 {
109 clear_tsk_thread_flag(task, TIF_BLOCK_STEP);
110 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
111 }
112
113 void user_enable_block_step(struct task_struct *task)
114 {
115 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
116 set_tsk_thread_flag(task, TIF_BLOCK_STEP);
117 }
118
119 /*
120 * Called by kernel/ptrace.c when detaching..
121 *
122 * Clear all debugging related fields.
123 */
124 void ptrace_disable(struct task_struct *task)
125 {
126 memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
127 memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
128 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
129 clear_pt_regs_flag(task_pt_regs(task), PIF_PER_TRAP);
130 task->thread.per_flags = 0;
131 }
132
133 #define __ADDR_MASK 7
134
135 static inline unsigned long __peek_user_per(struct task_struct *child,
136 addr_t addr)
137 {
138 struct per_struct_kernel *dummy = NULL;
139
140 if (addr == (addr_t) &dummy->cr9)
141 /* Control bits of the active per set. */
142 return test_thread_flag(TIF_SINGLE_STEP) ?
143 PER_EVENT_IFETCH : child->thread.per_user.control;
144 else if (addr == (addr_t) &dummy->cr10)
145 /* Start address of the active per set. */
146 return test_thread_flag(TIF_SINGLE_STEP) ?
147 0 : child->thread.per_user.start;
148 else if (addr == (addr_t) &dummy->cr11)
149 /* End address of the active per set. */
150 return test_thread_flag(TIF_SINGLE_STEP) ?
151 -1UL : child->thread.per_user.end;
152 else if (addr == (addr_t) &dummy->bits)
153 /* Single-step bit. */
154 return test_thread_flag(TIF_SINGLE_STEP) ?
155 (1UL << (BITS_PER_LONG - 1)) : 0;
156 else if (addr == (addr_t) &dummy->starting_addr)
157 /* Start address of the user specified per set. */
158 return child->thread.per_user.start;
159 else if (addr == (addr_t) &dummy->ending_addr)
160 /* End address of the user specified per set. */
161 return child->thread.per_user.end;
162 else if (addr == (addr_t) &dummy->perc_atmid)
163 /* PER code, ATMID and AI of the last PER trap */
164 return (unsigned long)
165 child->thread.per_event.cause << (BITS_PER_LONG - 16);
166 else if (addr == (addr_t) &dummy->address)
167 /* Address of the last PER trap */
168 return child->thread.per_event.address;
169 else if (addr == (addr_t) &dummy->access_id)
170 /* Access id of the last PER trap */
171 return (unsigned long)
172 child->thread.per_event.paid << (BITS_PER_LONG - 8);
173 return 0;
174 }
175
176 /*
177 * Read the word at offset addr from the user area of a process. The
178 * trouble here is that the information is littered over different
179 * locations. The process registers are found on the kernel stack,
180 * the floating point stuff and the trace settings are stored in
181 * the task structure. In addition the different structures in
182 * struct user contain pad bytes that should be read as zeroes.
183 * Lovely...
184 */
185 static unsigned long __peek_user(struct task_struct *child, addr_t addr)
186 {
187 struct user *dummy = NULL;
188 addr_t offset, tmp;
189
190 if (addr < (addr_t) &dummy->regs.acrs) {
191 /*
192 * psw and gprs are stored on the stack
193 */
194 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
195 if (addr == (addr_t) &dummy->regs.psw.mask) {
196 /* Return a clean psw mask. */
197 tmp &= PSW_MASK_USER | PSW_MASK_RI;
198 tmp |= PSW_USER_BITS;
199 }
200
201 } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
202 /*
203 * access registers are stored in the thread structure
204 */
205 offset = addr - (addr_t) &dummy->regs.acrs;
206 /*
207 * Very special case: old & broken 64 bit gdb reading
208 * from acrs[15]. Result is a 64 bit value. Read the
209 * 32 bit acrs[15] value and shift it by 32. Sick...
210 */
211 if (addr == (addr_t) &dummy->regs.acrs[15])
212 tmp = ((unsigned long) child->thread.acrs[15]) << 32;
213 else
214 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
215
216 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
217 /*
218 * orig_gpr2 is stored on the kernel stack
219 */
220 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
221
222 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
223 /*
224 * prevent reads of padding hole between
225 * orig_gpr2 and fp_regs on s390.
226 */
227 tmp = 0;
228
229 } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
230 /*
231 * floating point control reg. is in the thread structure
232 */
233 tmp = child->thread.fpu.fpc;
234 tmp <<= BITS_PER_LONG - 32;
235
236 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
237 /*
238 * floating point regs. are either in child->thread.fpu
239 * or the child->thread.fpu.vxrs array
240 */
241 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
242 if (MACHINE_HAS_VX)
243 tmp = *(addr_t *)
244 ((addr_t) child->thread.fpu.vxrs + 2*offset);
245 else
246 tmp = *(addr_t *)
247 ((addr_t) child->thread.fpu.fprs + offset);
248
249 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
250 /*
251 * Handle access to the per_info structure.
252 */
253 addr -= (addr_t) &dummy->regs.per_info;
254 tmp = __peek_user_per(child, addr);
255
256 } else
257 tmp = 0;
258
259 return tmp;
260 }
261
262 static int
263 peek_user(struct task_struct *child, addr_t addr, addr_t data)
264 {
265 addr_t tmp, mask;
266
267 /*
268 * Stupid gdb peeks/pokes the access registers in 64 bit with
269 * an alignment of 4. Programmers from hell...
270 */
271 mask = __ADDR_MASK;
272 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
273 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
274 mask = 3;
275 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
276 return -EIO;
277
278 tmp = __peek_user(child, addr);
279 return put_user(tmp, (addr_t __user *) data);
280 }
281
282 static inline void __poke_user_per(struct task_struct *child,
283 addr_t addr, addr_t data)
284 {
285 struct per_struct_kernel *dummy = NULL;
286
287 /*
288 * There are only three fields in the per_info struct that the
289 * debugger user can write to.
290 * 1) cr9: the debugger wants to set a new PER event mask
291 * 2) starting_addr: the debugger wants to set a new starting
292 * address to use with the PER event mask.
293 * 3) ending_addr: the debugger wants to set a new ending
294 * address to use with the PER event mask.
295 * The user specified PER event mask and the start and end
296 * addresses are used only if single stepping is not in effect.
297 * Writes to any other field in per_info are ignored.
298 */
299 if (addr == (addr_t) &dummy->cr9)
300 /* PER event mask of the user specified per set. */
301 child->thread.per_user.control =
302 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
303 else if (addr == (addr_t) &dummy->starting_addr)
304 /* Starting address of the user specified per set. */
305 child->thread.per_user.start = data;
306 else if (addr == (addr_t) &dummy->ending_addr)
307 /* Ending address of the user specified per set. */
308 child->thread.per_user.end = data;
309 }
310
311 /*
312 * Write a word to the user area of a process at location addr. This
313 * operation does have an additional problem compared to peek_user.
314 * Stores to the program status word and on the floating point
315 * control register needs to get checked for validity.
316 */
317 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
318 {
319 struct user *dummy = NULL;
320 addr_t offset;
321
322 if (addr < (addr_t) &dummy->regs.acrs) {
323 /*
324 * psw and gprs are stored on the stack
325 */
326 if (addr == (addr_t) &dummy->regs.psw.mask) {
327 unsigned long mask = PSW_MASK_USER;
328
329 mask |= is_ri_task(child) ? PSW_MASK_RI : 0;
330 if ((data ^ PSW_USER_BITS) & ~mask)
331 /* Invalid psw mask. */
332 return -EINVAL;
333 if ((data & PSW_MASK_ASC) == PSW_ASC_HOME)
334 /* Invalid address-space-control bits */
335 return -EINVAL;
336 if ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))
337 /* Invalid addressing mode bits */
338 return -EINVAL;
339 }
340 *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
341
342 } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
343 /*
344 * access registers are stored in the thread structure
345 */
346 offset = addr - (addr_t) &dummy->regs.acrs;
347 /*
348 * Very special case: old & broken 64 bit gdb writing
349 * to acrs[15] with a 64 bit value. Ignore the lower
350 * half of the value and write the upper 32 bit to
351 * acrs[15]. Sick...
352 */
353 if (addr == (addr_t) &dummy->regs.acrs[15])
354 child->thread.acrs[15] = (unsigned int) (data >> 32);
355 else
356 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
357
358 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
359 /*
360 * orig_gpr2 is stored on the kernel stack
361 */
362 task_pt_regs(child)->orig_gpr2 = data;
363
364 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
365 /*
366 * prevent writes of padding hole between
367 * orig_gpr2 and fp_regs on s390.
368 */
369 return 0;
370
371 } else if (addr == (addr_t) &dummy->regs.fp_regs.fpc) {
372 /*
373 * floating point control reg. is in the thread structure
374 */
375 if ((unsigned int) data != 0 ||
376 test_fp_ctl(data >> (BITS_PER_LONG - 32)))
377 return -EINVAL;
378 child->thread.fpu.fpc = data >> (BITS_PER_LONG - 32);
379
380 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
381 /*
382 * floating point regs. are either in child->thread.fpu
383 * or the child->thread.fpu.vxrs array
384 */
385 offset = addr - (addr_t) &dummy->regs.fp_regs.fprs;
386 if (MACHINE_HAS_VX)
387 *(addr_t *)((addr_t)
388 child->thread.fpu.vxrs + 2*offset) = data;
389 else
390 *(addr_t *)((addr_t)
391 child->thread.fpu.fprs + offset) = data;
392
393 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
394 /*
395 * Handle access to the per_info structure.
396 */
397 addr -= (addr_t) &dummy->regs.per_info;
398 __poke_user_per(child, addr, data);
399
400 }
401
402 return 0;
403 }
404
405 static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
406 {
407 addr_t mask;
408
409 /*
410 * Stupid gdb peeks/pokes the access registers in 64 bit with
411 * an alignment of 4. Programmers from hell indeed...
412 */
413 mask = __ADDR_MASK;
414 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
415 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
416 mask = 3;
417 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
418 return -EIO;
419
420 return __poke_user(child, addr, data);
421 }
422
423 long arch_ptrace(struct task_struct *child, long request,
424 unsigned long addr, unsigned long data)
425 {
426 ptrace_area parea;
427 int copied, ret;
428
429 switch (request) {
430 case PTRACE_PEEKUSR:
431 /* read the word at location addr in the USER area. */
432 return peek_user(child, addr, data);
433
434 case PTRACE_POKEUSR:
435 /* write the word at location addr in the USER area */
436 return poke_user(child, addr, data);
437
438 case PTRACE_PEEKUSR_AREA:
439 case PTRACE_POKEUSR_AREA:
440 if (copy_from_user(&parea, (void __force __user *) addr,
441 sizeof(parea)))
442 return -EFAULT;
443 addr = parea.kernel_addr;
444 data = parea.process_addr;
445 copied = 0;
446 while (copied < parea.len) {
447 if (request == PTRACE_PEEKUSR_AREA)
448 ret = peek_user(child, addr, data);
449 else {
450 addr_t utmp;
451 if (get_user(utmp,
452 (addr_t __force __user *) data))
453 return -EFAULT;
454 ret = poke_user(child, addr, utmp);
455 }
456 if (ret)
457 return ret;
458 addr += sizeof(unsigned long);
459 data += sizeof(unsigned long);
460 copied += sizeof(unsigned long);
461 }
462 return 0;
463 case PTRACE_GET_LAST_BREAK:
464 put_user(task_thread_info(child)->last_break,
465 (unsigned long __user *) data);
466 return 0;
467 case PTRACE_ENABLE_TE:
468 if (!MACHINE_HAS_TE)
469 return -EIO;
470 child->thread.per_flags &= ~PER_FLAG_NO_TE;
471 return 0;
472 case PTRACE_DISABLE_TE:
473 if (!MACHINE_HAS_TE)
474 return -EIO;
475 child->thread.per_flags |= PER_FLAG_NO_TE;
476 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
477 return 0;
478 case PTRACE_TE_ABORT_RAND:
479 if (!MACHINE_HAS_TE || (child->thread.per_flags & PER_FLAG_NO_TE))
480 return -EIO;
481 switch (data) {
482 case 0UL:
483 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND;
484 break;
485 case 1UL:
486 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
487 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND_TEND;
488 break;
489 case 2UL:
490 child->thread.per_flags |= PER_FLAG_TE_ABORT_RAND;
491 child->thread.per_flags &= ~PER_FLAG_TE_ABORT_RAND_TEND;
492 break;
493 default:
494 return -EINVAL;
495 }
496 return 0;
497 default:
498 return ptrace_request(child, request, addr, data);
499 }
500 }
501
502 #ifdef CONFIG_COMPAT
503 /*
504 * Now the fun part starts... a 31 bit program running in the
505 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
506 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
507 * to handle, the difference to the 64 bit versions of the requests
508 * is that the access is done in multiples of 4 byte instead of
509 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
510 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
511 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
512 * is a 31 bit program too, the content of struct user can be
513 * emulated. A 31 bit program peeking into the struct user of
514 * a 64 bit program is a no-no.
515 */
516
517 /*
518 * Same as peek_user_per but for a 31 bit program.
519 */
520 static inline __u32 __peek_user_per_compat(struct task_struct *child,
521 addr_t addr)
522 {
523 struct compat_per_struct_kernel *dummy32 = NULL;
524
525 if (addr == (addr_t) &dummy32->cr9)
526 /* Control bits of the active per set. */
527 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
528 PER_EVENT_IFETCH : child->thread.per_user.control;
529 else if (addr == (addr_t) &dummy32->cr10)
530 /* Start address of the active per set. */
531 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
532 0 : child->thread.per_user.start;
533 else if (addr == (addr_t) &dummy32->cr11)
534 /* End address of the active per set. */
535 return test_thread_flag(TIF_SINGLE_STEP) ?
536 PSW32_ADDR_INSN : child->thread.per_user.end;
537 else if (addr == (addr_t) &dummy32->bits)
538 /* Single-step bit. */
539 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
540 0x80000000 : 0;
541 else if (addr == (addr_t) &dummy32->starting_addr)
542 /* Start address of the user specified per set. */
543 return (__u32) child->thread.per_user.start;
544 else if (addr == (addr_t) &dummy32->ending_addr)
545 /* End address of the user specified per set. */
546 return (__u32) child->thread.per_user.end;
547 else if (addr == (addr_t) &dummy32->perc_atmid)
548 /* PER code, ATMID and AI of the last PER trap */
549 return (__u32) child->thread.per_event.cause << 16;
550 else if (addr == (addr_t) &dummy32->address)
551 /* Address of the last PER trap */
552 return (__u32) child->thread.per_event.address;
553 else if (addr == (addr_t) &dummy32->access_id)
554 /* Access id of the last PER trap */
555 return (__u32) child->thread.per_event.paid << 24;
556 return 0;
557 }
558
559 /*
560 * Same as peek_user but for a 31 bit program.
561 */
562 static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
563 {
564 struct compat_user *dummy32 = NULL;
565 addr_t offset;
566 __u32 tmp;
567
568 if (addr < (addr_t) &dummy32->regs.acrs) {
569 struct pt_regs *regs = task_pt_regs(child);
570 /*
571 * psw and gprs are stored on the stack
572 */
573 if (addr == (addr_t) &dummy32->regs.psw.mask) {
574 /* Fake a 31 bit psw mask. */
575 tmp = (__u32)(regs->psw.mask >> 32);
576 tmp &= PSW32_MASK_USER | PSW32_MASK_RI;
577 tmp |= PSW32_USER_BITS;
578 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
579 /* Fake a 31 bit psw address. */
580 tmp = (__u32) regs->psw.addr |
581 (__u32)(regs->psw.mask & PSW_MASK_BA);
582 } else {
583 /* gpr 0-15 */
584 tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
585 }
586 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
587 /*
588 * access registers are stored in the thread structure
589 */
590 offset = addr - (addr_t) &dummy32->regs.acrs;
591 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
592
593 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
594 /*
595 * orig_gpr2 is stored on the kernel stack
596 */
597 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
598
599 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
600 /*
601 * prevent reads of padding hole between
602 * orig_gpr2 and fp_regs on s390.
603 */
604 tmp = 0;
605
606 } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
607 /*
608 * floating point control reg. is in the thread structure
609 */
610 tmp = child->thread.fpu.fpc;
611
612 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
613 /*
614 * floating point regs. are either in child->thread.fpu
615 * or the child->thread.fpu.vxrs array
616 */
617 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
618 if (MACHINE_HAS_VX)
619 tmp = *(__u32 *)
620 ((addr_t) child->thread.fpu.vxrs + 2*offset);
621 else
622 tmp = *(__u32 *)
623 ((addr_t) child->thread.fpu.fprs + offset);
624
625 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
626 /*
627 * Handle access to the per_info structure.
628 */
629 addr -= (addr_t) &dummy32->regs.per_info;
630 tmp = __peek_user_per_compat(child, addr);
631
632 } else
633 tmp = 0;
634
635 return tmp;
636 }
637
638 static int peek_user_compat(struct task_struct *child,
639 addr_t addr, addr_t data)
640 {
641 __u32 tmp;
642
643 if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
644 return -EIO;
645
646 tmp = __peek_user_compat(child, addr);
647 return put_user(tmp, (__u32 __user *) data);
648 }
649
650 /*
651 * Same as poke_user_per but for a 31 bit program.
652 */
653 static inline void __poke_user_per_compat(struct task_struct *child,
654 addr_t addr, __u32 data)
655 {
656 struct compat_per_struct_kernel *dummy32 = NULL;
657
658 if (addr == (addr_t) &dummy32->cr9)
659 /* PER event mask of the user specified per set. */
660 child->thread.per_user.control =
661 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
662 else if (addr == (addr_t) &dummy32->starting_addr)
663 /* Starting address of the user specified per set. */
664 child->thread.per_user.start = data;
665 else if (addr == (addr_t) &dummy32->ending_addr)
666 /* Ending address of the user specified per set. */
667 child->thread.per_user.end = data;
668 }
669
670 /*
671 * Same as poke_user but for a 31 bit program.
672 */
673 static int __poke_user_compat(struct task_struct *child,
674 addr_t addr, addr_t data)
675 {
676 struct compat_user *dummy32 = NULL;
677 __u32 tmp = (__u32) data;
678 addr_t offset;
679
680 if (addr < (addr_t) &dummy32->regs.acrs) {
681 struct pt_regs *regs = task_pt_regs(child);
682 /*
683 * psw, gprs, acrs and orig_gpr2 are stored on the stack
684 */
685 if (addr == (addr_t) &dummy32->regs.psw.mask) {
686 __u32 mask = PSW32_MASK_USER;
687
688 mask |= is_ri_task(child) ? PSW32_MASK_RI : 0;
689 /* Build a 64 bit psw mask from 31 bit mask. */
690 if ((tmp ^ PSW32_USER_BITS) & ~mask)
691 /* Invalid psw mask. */
692 return -EINVAL;
693 if ((data & PSW32_MASK_ASC) == PSW32_ASC_HOME)
694 /* Invalid address-space-control bits */
695 return -EINVAL;
696 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
697 (regs->psw.mask & PSW_MASK_BA) |
698 (__u64)(tmp & mask) << 32;
699 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
700 /* Build a 64 bit psw address from 31 bit address. */
701 regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
702 /* Transfer 31 bit amode bit to psw mask. */
703 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
704 (__u64)(tmp & PSW32_ADDR_AMODE);
705 } else {
706 /* gpr 0-15 */
707 *(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
708 }
709 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
710 /*
711 * access registers are stored in the thread structure
712 */
713 offset = addr - (addr_t) &dummy32->regs.acrs;
714 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
715
716 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
717 /*
718 * orig_gpr2 is stored on the kernel stack
719 */
720 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
721
722 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
723 /*
724 * prevent writess of padding hole between
725 * orig_gpr2 and fp_regs on s390.
726 */
727 return 0;
728
729 } else if (addr == (addr_t) &dummy32->regs.fp_regs.fpc) {
730 /*
731 * floating point control reg. is in the thread structure
732 */
733 if (test_fp_ctl(tmp))
734 return -EINVAL;
735 child->thread.fpu.fpc = data;
736
737 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
738 /*
739 * floating point regs. are either in child->thread.fpu
740 * or the child->thread.fpu.vxrs array
741 */
742 offset = addr - (addr_t) &dummy32->regs.fp_regs.fprs;
743 if (MACHINE_HAS_VX)
744 *(__u32 *)((addr_t)
745 child->thread.fpu.vxrs + 2*offset) = tmp;
746 else
747 *(__u32 *)((addr_t)
748 child->thread.fpu.fprs + offset) = tmp;
749
750 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
751 /*
752 * Handle access to the per_info structure.
753 */
754 addr -= (addr_t) &dummy32->regs.per_info;
755 __poke_user_per_compat(child, addr, data);
756 }
757
758 return 0;
759 }
760
761 static int poke_user_compat(struct task_struct *child,
762 addr_t addr, addr_t data)
763 {
764 if (!is_compat_task() || (addr & 3) ||
765 addr > sizeof(struct compat_user) - 3)
766 return -EIO;
767
768 return __poke_user_compat(child, addr, data);
769 }
770
771 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
772 compat_ulong_t caddr, compat_ulong_t cdata)
773 {
774 unsigned long addr = caddr;
775 unsigned long data = cdata;
776 compat_ptrace_area parea;
777 int copied, ret;
778
779 switch (request) {
780 case PTRACE_PEEKUSR:
781 /* read the word at location addr in the USER area. */
782 return peek_user_compat(child, addr, data);
783
784 case PTRACE_POKEUSR:
785 /* write the word at location addr in the USER area */
786 return poke_user_compat(child, addr, data);
787
788 case PTRACE_PEEKUSR_AREA:
789 case PTRACE_POKEUSR_AREA:
790 if (copy_from_user(&parea, (void __force __user *) addr,
791 sizeof(parea)))
792 return -EFAULT;
793 addr = parea.kernel_addr;
794 data = parea.process_addr;
795 copied = 0;
796 while (copied < parea.len) {
797 if (request == PTRACE_PEEKUSR_AREA)
798 ret = peek_user_compat(child, addr, data);
799 else {
800 __u32 utmp;
801 if (get_user(utmp,
802 (__u32 __force __user *) data))
803 return -EFAULT;
804 ret = poke_user_compat(child, addr, utmp);
805 }
806 if (ret)
807 return ret;
808 addr += sizeof(unsigned int);
809 data += sizeof(unsigned int);
810 copied += sizeof(unsigned int);
811 }
812 return 0;
813 case PTRACE_GET_LAST_BREAK:
814 put_user(task_thread_info(child)->last_break,
815 (unsigned int __user *) data);
816 return 0;
817 }
818 return compat_ptrace_request(child, request, addr, data);
819 }
820 #endif
821
822 asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
823 {
824 long ret = 0;
825 unsigned long mask = -1UL;
826
827 /* Do the secure computing check first. */
828 if (secure_computing()) {
829 /* seccomp failures shouldn't expose any additional code. */
830 ret = -1;
831 goto out;
832 }
833
834 /*
835 * The sysc_tracesys code in entry.S stored the system
836 * call number to gprs[2].
837 */
838 if (test_thread_flag(TIF_SYSCALL_TRACE) &&
839 (tracehook_report_syscall_entry(regs) ||
840 regs->gprs[2] >= NR_syscalls)) {
841 /*
842 * Tracing decided this syscall should not happen or the
843 * debugger stored an invalid system call number. Skip
844 * the system call and the system call restart handling.
845 */
846 clear_pt_regs_flag(regs, PIF_SYSCALL);
847 ret = -1;
848 }
849
850 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
851 trace_sys_enter(regs, regs->gprs[2]);
852
853 if (is_compat_task())
854 mask = 0xffffffff;
855
856 audit_syscall_entry(regs->gprs[2], regs->orig_gpr2 & mask,
857 regs->gprs[3] & mask, regs->gprs[4] & mask,
858 regs->gprs[5] & mask);
859 out:
860 return ret ?: regs->gprs[2];
861 }
862
863 asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
864 {
865 audit_syscall_exit(regs);
866
867 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
868 trace_sys_exit(regs, regs->gprs[2]);
869
870 if (test_thread_flag(TIF_SYSCALL_TRACE))
871 tracehook_report_syscall_exit(regs, 0);
872 }
873
874 /*
875 * user_regset definitions.
876 */
877
878 static int s390_regs_get(struct task_struct *target,
879 const struct user_regset *regset,
880 unsigned int pos, unsigned int count,
881 void *kbuf, void __user *ubuf)
882 {
883 if (target == current)
884 save_access_regs(target->thread.acrs);
885
886 if (kbuf) {
887 unsigned long *k = kbuf;
888 while (count > 0) {
889 *k++ = __peek_user(target, pos);
890 count -= sizeof(*k);
891 pos += sizeof(*k);
892 }
893 } else {
894 unsigned long __user *u = ubuf;
895 while (count > 0) {
896 if (__put_user(__peek_user(target, pos), u++))
897 return -EFAULT;
898 count -= sizeof(*u);
899 pos += sizeof(*u);
900 }
901 }
902 return 0;
903 }
904
905 static int s390_regs_set(struct task_struct *target,
906 const struct user_regset *regset,
907 unsigned int pos, unsigned int count,
908 const void *kbuf, const void __user *ubuf)
909 {
910 int rc = 0;
911
912 if (target == current)
913 save_access_regs(target->thread.acrs);
914
915 if (kbuf) {
916 const unsigned long *k = kbuf;
917 while (count > 0 && !rc) {
918 rc = __poke_user(target, pos, *k++);
919 count -= sizeof(*k);
920 pos += sizeof(*k);
921 }
922 } else {
923 const unsigned long __user *u = ubuf;
924 while (count > 0 && !rc) {
925 unsigned long word;
926 rc = __get_user(word, u++);
927 if (rc)
928 break;
929 rc = __poke_user(target, pos, word);
930 count -= sizeof(*u);
931 pos += sizeof(*u);
932 }
933 }
934
935 if (rc == 0 && target == current)
936 restore_access_regs(target->thread.acrs);
937
938 return rc;
939 }
940
941 static int s390_fpregs_get(struct task_struct *target,
942 const struct user_regset *regset, unsigned int pos,
943 unsigned int count, void *kbuf, void __user *ubuf)
944 {
945 _s390_fp_regs fp_regs;
946
947 if (target == current)
948 save_fpu_regs();
949
950 fp_regs.fpc = target->thread.fpu.fpc;
951 fpregs_store(&fp_regs, &target->thread.fpu);
952
953 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
954 &fp_regs, 0, -1);
955 }
956
957 static int s390_fpregs_set(struct task_struct *target,
958 const struct user_regset *regset, unsigned int pos,
959 unsigned int count, const void *kbuf,
960 const void __user *ubuf)
961 {
962 int rc = 0;
963 freg_t fprs[__NUM_FPRS];
964
965 if (target == current)
966 save_fpu_regs();
967
968 /* If setting FPC, must validate it first. */
969 if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
970 u32 ufpc[2] = { target->thread.fpu.fpc, 0 };
971 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &ufpc,
972 0, offsetof(s390_fp_regs, fprs));
973 if (rc)
974 return rc;
975 if (ufpc[1] != 0 || test_fp_ctl(ufpc[0]))
976 return -EINVAL;
977 target->thread.fpu.fpc = ufpc[0];
978 }
979
980 if (rc == 0 && count > 0)
981 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
982 fprs, offsetof(s390_fp_regs, fprs), -1);
983 if (rc)
984 return rc;
985
986 if (MACHINE_HAS_VX)
987 convert_fp_to_vx(target->thread.fpu.vxrs, fprs);
988 else
989 memcpy(target->thread.fpu.fprs, &fprs, sizeof(fprs));
990
991 return rc;
992 }
993
994 static int s390_last_break_get(struct task_struct *target,
995 const struct user_regset *regset,
996 unsigned int pos, unsigned int count,
997 void *kbuf, void __user *ubuf)
998 {
999 if (count > 0) {
1000 if (kbuf) {
1001 unsigned long *k = kbuf;
1002 *k = task_thread_info(target)->last_break;
1003 } else {
1004 unsigned long __user *u = ubuf;
1005 if (__put_user(task_thread_info(target)->last_break, u))
1006 return -EFAULT;
1007 }
1008 }
1009 return 0;
1010 }
1011
1012 static int s390_last_break_set(struct task_struct *target,
1013 const struct user_regset *regset,
1014 unsigned int pos, unsigned int count,
1015 const void *kbuf, const void __user *ubuf)
1016 {
1017 return 0;
1018 }
1019
1020 static int s390_tdb_get(struct task_struct *target,
1021 const struct user_regset *regset,
1022 unsigned int pos, unsigned int count,
1023 void *kbuf, void __user *ubuf)
1024 {
1025 struct pt_regs *regs = task_pt_regs(target);
1026 unsigned char *data;
1027
1028 if (!(regs->int_code & 0x200))
1029 return -ENODATA;
1030 data = target->thread.trap_tdb;
1031 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, data, 0, 256);
1032 }
1033
1034 static int s390_tdb_set(struct task_struct *target,
1035 const struct user_regset *regset,
1036 unsigned int pos, unsigned int count,
1037 const void *kbuf, const void __user *ubuf)
1038 {
1039 return 0;
1040 }
1041
1042 static int s390_vxrs_low_get(struct task_struct *target,
1043 const struct user_regset *regset,
1044 unsigned int pos, unsigned int count,
1045 void *kbuf, void __user *ubuf)
1046 {
1047 __u64 vxrs[__NUM_VXRS_LOW];
1048 int i;
1049
1050 if (!MACHINE_HAS_VX)
1051 return -ENODEV;
1052 if (target == current)
1053 save_fpu_regs();
1054 for (i = 0; i < __NUM_VXRS_LOW; i++)
1055 vxrs[i] = *((__u64 *)(target->thread.fpu.vxrs + i) + 1);
1056 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1057 }
1058
1059 static int s390_vxrs_low_set(struct task_struct *target,
1060 const struct user_regset *regset,
1061 unsigned int pos, unsigned int count,
1062 const void *kbuf, const void __user *ubuf)
1063 {
1064 __u64 vxrs[__NUM_VXRS_LOW];
1065 int i, rc;
1066
1067 if (!MACHINE_HAS_VX)
1068 return -ENODEV;
1069 if (target == current)
1070 save_fpu_regs();
1071
1072 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1073 if (rc == 0)
1074 for (i = 0; i < __NUM_VXRS_LOW; i++)
1075 *((__u64 *)(target->thread.fpu.vxrs + i) + 1) = vxrs[i];
1076
1077 return rc;
1078 }
1079
1080 static int s390_vxrs_high_get(struct task_struct *target,
1081 const struct user_regset *regset,
1082 unsigned int pos, unsigned int count,
1083 void *kbuf, void __user *ubuf)
1084 {
1085 __vector128 vxrs[__NUM_VXRS_HIGH];
1086
1087 if (!MACHINE_HAS_VX)
1088 return -ENODEV;
1089 if (target == current)
1090 save_fpu_regs();
1091 memcpy(vxrs, target->thread.fpu.vxrs + __NUM_VXRS_LOW, sizeof(vxrs));
1092
1093 return user_regset_copyout(&pos, &count, &kbuf, &ubuf, vxrs, 0, -1);
1094 }
1095
1096 static int s390_vxrs_high_set(struct task_struct *target,
1097 const struct user_regset *regset,
1098 unsigned int pos, unsigned int count,
1099 const void *kbuf, const void __user *ubuf)
1100 {
1101 int rc;
1102
1103 if (!MACHINE_HAS_VX)
1104 return -ENODEV;
1105 if (target == current)
1106 save_fpu_regs();
1107
1108 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1109 target->thread.fpu.vxrs + __NUM_VXRS_LOW, 0, -1);
1110 return rc;
1111 }
1112
1113 static int s390_system_call_get(struct task_struct *target,
1114 const struct user_regset *regset,
1115 unsigned int pos, unsigned int count,
1116 void *kbuf, void __user *ubuf)
1117 {
1118 unsigned int *data = &task_thread_info(target)->system_call;
1119 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
1120 data, 0, sizeof(unsigned int));
1121 }
1122
1123 static int s390_system_call_set(struct task_struct *target,
1124 const struct user_regset *regset,
1125 unsigned int pos, unsigned int count,
1126 const void *kbuf, const void __user *ubuf)
1127 {
1128 unsigned int *data = &task_thread_info(target)->system_call;
1129 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
1130 data, 0, sizeof(unsigned int));
1131 }
1132
1133 static const struct user_regset s390_regsets[] = {
1134 {
1135 .core_note_type = NT_PRSTATUS,
1136 .n = sizeof(s390_regs) / sizeof(long),
1137 .size = sizeof(long),
1138 .align = sizeof(long),
1139 .get = s390_regs_get,
1140 .set = s390_regs_set,
1141 },
1142 {
1143 .core_note_type = NT_PRFPREG,
1144 .n = sizeof(s390_fp_regs) / sizeof(long),
1145 .size = sizeof(long),
1146 .align = sizeof(long),
1147 .get = s390_fpregs_get,
1148 .set = s390_fpregs_set,
1149 },
1150 {
1151 .core_note_type = NT_S390_SYSTEM_CALL,
1152 .n = 1,
1153 .size = sizeof(unsigned int),
1154 .align = sizeof(unsigned int),
1155 .get = s390_system_call_get,
1156 .set = s390_system_call_set,
1157 },
1158 {
1159 .core_note_type = NT_S390_LAST_BREAK,
1160 .n = 1,
1161 .size = sizeof(long),
1162 .align = sizeof(long),
1163 .get = s390_last_break_get,
1164 .set = s390_last_break_set,
1165 },
1166 {
1167 .core_note_type = NT_S390_TDB,
1168 .n = 1,
1169 .size = 256,
1170 .align = 1,
1171 .get = s390_tdb_get,
1172 .set = s390_tdb_set,
1173 },
1174 {
1175 .core_note_type = NT_S390_VXRS_LOW,
1176 .n = __NUM_VXRS_LOW,
1177 .size = sizeof(__u64),
1178 .align = sizeof(__u64),
1179 .get = s390_vxrs_low_get,
1180 .set = s390_vxrs_low_set,
1181 },
1182 {
1183 .core_note_type = NT_S390_VXRS_HIGH,
1184 .n = __NUM_VXRS_HIGH,
1185 .size = sizeof(__vector128),
1186 .align = sizeof(__vector128),
1187 .get = s390_vxrs_high_get,
1188 .set = s390_vxrs_high_set,
1189 },
1190 };
1191
1192 static const struct user_regset_view user_s390_view = {
1193 .name = UTS_MACHINE,
1194 .e_machine = EM_S390,
1195 .regsets = s390_regsets,
1196 .n = ARRAY_SIZE(s390_regsets)
1197 };
1198
1199 #ifdef CONFIG_COMPAT
1200 static int s390_compat_regs_get(struct task_struct *target,
1201 const struct user_regset *regset,
1202 unsigned int pos, unsigned int count,
1203 void *kbuf, void __user *ubuf)
1204 {
1205 if (target == current)
1206 save_access_regs(target->thread.acrs);
1207
1208 if (kbuf) {
1209 compat_ulong_t *k = kbuf;
1210 while (count > 0) {
1211 *k++ = __peek_user_compat(target, pos);
1212 count -= sizeof(*k);
1213 pos += sizeof(*k);
1214 }
1215 } else {
1216 compat_ulong_t __user *u = ubuf;
1217 while (count > 0) {
1218 if (__put_user(__peek_user_compat(target, pos), u++))
1219 return -EFAULT;
1220 count -= sizeof(*u);
1221 pos += sizeof(*u);
1222 }
1223 }
1224 return 0;
1225 }
1226
1227 static int s390_compat_regs_set(struct task_struct *target,
1228 const struct user_regset *regset,
1229 unsigned int pos, unsigned int count,
1230 const void *kbuf, const void __user *ubuf)
1231 {
1232 int rc = 0;
1233
1234 if (target == current)
1235 save_access_regs(target->thread.acrs);
1236
1237 if (kbuf) {
1238 const compat_ulong_t *k = kbuf;
1239 while (count > 0 && !rc) {
1240 rc = __poke_user_compat(target, pos, *k++);
1241 count -= sizeof(*k);
1242 pos += sizeof(*k);
1243 }
1244 } else {
1245 const compat_ulong_t __user *u = ubuf;
1246 while (count > 0 && !rc) {
1247 compat_ulong_t word;
1248 rc = __get_user(word, u++);
1249 if (rc)
1250 break;
1251 rc = __poke_user_compat(target, pos, word);
1252 count -= sizeof(*u);
1253 pos += sizeof(*u);
1254 }
1255 }
1256
1257 if (rc == 0 && target == current)
1258 restore_access_regs(target->thread.acrs);
1259
1260 return rc;
1261 }
1262
1263 static int s390_compat_regs_high_get(struct task_struct *target,
1264 const struct user_regset *regset,
1265 unsigned int pos, unsigned int count,
1266 void *kbuf, void __user *ubuf)
1267 {
1268 compat_ulong_t *gprs_high;
1269
1270 gprs_high = (compat_ulong_t *)
1271 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1272 if (kbuf) {
1273 compat_ulong_t *k = kbuf;
1274 while (count > 0) {
1275 *k++ = *gprs_high;
1276 gprs_high += 2;
1277 count -= sizeof(*k);
1278 }
1279 } else {
1280 compat_ulong_t __user *u = ubuf;
1281 while (count > 0) {
1282 if (__put_user(*gprs_high, u++))
1283 return -EFAULT;
1284 gprs_high += 2;
1285 count -= sizeof(*u);
1286 }
1287 }
1288 return 0;
1289 }
1290
1291 static int s390_compat_regs_high_set(struct task_struct *target,
1292 const struct user_regset *regset,
1293 unsigned int pos, unsigned int count,
1294 const void *kbuf, const void __user *ubuf)
1295 {
1296 compat_ulong_t *gprs_high;
1297 int rc = 0;
1298
1299 gprs_high = (compat_ulong_t *)
1300 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1301 if (kbuf) {
1302 const compat_ulong_t *k = kbuf;
1303 while (count > 0) {
1304 *gprs_high = *k++;
1305 *gprs_high += 2;
1306 count -= sizeof(*k);
1307 }
1308 } else {
1309 const compat_ulong_t __user *u = ubuf;
1310 while (count > 0 && !rc) {
1311 unsigned long word;
1312 rc = __get_user(word, u++);
1313 if (rc)
1314 break;
1315 *gprs_high = word;
1316 *gprs_high += 2;
1317 count -= sizeof(*u);
1318 }
1319 }
1320
1321 return rc;
1322 }
1323
1324 static int s390_compat_last_break_get(struct task_struct *target,
1325 const struct user_regset *regset,
1326 unsigned int pos, unsigned int count,
1327 void *kbuf, void __user *ubuf)
1328 {
1329 compat_ulong_t last_break;
1330
1331 if (count > 0) {
1332 last_break = task_thread_info(target)->last_break;
1333 if (kbuf) {
1334 unsigned long *k = kbuf;
1335 *k = last_break;
1336 } else {
1337 unsigned long __user *u = ubuf;
1338 if (__put_user(last_break, u))
1339 return -EFAULT;
1340 }
1341 }
1342 return 0;
1343 }
1344
1345 static int s390_compat_last_break_set(struct task_struct *target,
1346 const struct user_regset *regset,
1347 unsigned int pos, unsigned int count,
1348 const void *kbuf, const void __user *ubuf)
1349 {
1350 return 0;
1351 }
1352
1353 static const struct user_regset s390_compat_regsets[] = {
1354 {
1355 .core_note_type = NT_PRSTATUS,
1356 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1357 .size = sizeof(compat_long_t),
1358 .align = sizeof(compat_long_t),
1359 .get = s390_compat_regs_get,
1360 .set = s390_compat_regs_set,
1361 },
1362 {
1363 .core_note_type = NT_PRFPREG,
1364 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1365 .size = sizeof(compat_long_t),
1366 .align = sizeof(compat_long_t),
1367 .get = s390_fpregs_get,
1368 .set = s390_fpregs_set,
1369 },
1370 {
1371 .core_note_type = NT_S390_SYSTEM_CALL,
1372 .n = 1,
1373 .size = sizeof(compat_uint_t),
1374 .align = sizeof(compat_uint_t),
1375 .get = s390_system_call_get,
1376 .set = s390_system_call_set,
1377 },
1378 {
1379 .core_note_type = NT_S390_LAST_BREAK,
1380 .n = 1,
1381 .size = sizeof(long),
1382 .align = sizeof(long),
1383 .get = s390_compat_last_break_get,
1384 .set = s390_compat_last_break_set,
1385 },
1386 {
1387 .core_note_type = NT_S390_TDB,
1388 .n = 1,
1389 .size = 256,
1390 .align = 1,
1391 .get = s390_tdb_get,
1392 .set = s390_tdb_set,
1393 },
1394 {
1395 .core_note_type = NT_S390_VXRS_LOW,
1396 .n = __NUM_VXRS_LOW,
1397 .size = sizeof(__u64),
1398 .align = sizeof(__u64),
1399 .get = s390_vxrs_low_get,
1400 .set = s390_vxrs_low_set,
1401 },
1402 {
1403 .core_note_type = NT_S390_VXRS_HIGH,
1404 .n = __NUM_VXRS_HIGH,
1405 .size = sizeof(__vector128),
1406 .align = sizeof(__vector128),
1407 .get = s390_vxrs_high_get,
1408 .set = s390_vxrs_high_set,
1409 },
1410 {
1411 .core_note_type = NT_S390_HIGH_GPRS,
1412 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1413 .size = sizeof(compat_long_t),
1414 .align = sizeof(compat_long_t),
1415 .get = s390_compat_regs_high_get,
1416 .set = s390_compat_regs_high_set,
1417 },
1418 };
1419
1420 static const struct user_regset_view user_s390_compat_view = {
1421 .name = "s390",
1422 .e_machine = EM_S390,
1423 .regsets = s390_compat_regsets,
1424 .n = ARRAY_SIZE(s390_compat_regsets)
1425 };
1426 #endif
1427
1428 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1429 {
1430 #ifdef CONFIG_COMPAT
1431 if (test_tsk_thread_flag(task, TIF_31BIT))
1432 return &user_s390_compat_view;
1433 #endif
1434 return &user_s390_view;
1435 }
1436
1437 static const char *gpr_names[NUM_GPRS] = {
1438 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1439 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1440 };
1441
1442 unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1443 {
1444 if (offset >= NUM_GPRS)
1445 return 0;
1446 return regs->gprs[offset];
1447 }
1448
1449 int regs_query_register_offset(const char *name)
1450 {
1451 unsigned long offset;
1452
1453 if (!name || *name != 'r')
1454 return -EINVAL;
1455 if (kstrtoul(name + 1, 10, &offset))
1456 return -EINVAL;
1457 if (offset >= NUM_GPRS)
1458 return -EINVAL;
1459 return offset;
1460 }
1461
1462 const char *regs_query_register_name(unsigned int offset)
1463 {
1464 if (offset >= NUM_GPRS)
1465 return NULL;
1466 return gpr_names[offset];
1467 }
1468
1469 static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1470 {
1471 unsigned long ksp = kernel_stack_pointer(regs);
1472
1473 return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1474 }
1475
1476 /**
1477 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1478 * @regs:pt_regs which contains kernel stack pointer.
1479 * @n:stack entry number.
1480 *
1481 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1482 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1483 * this returns 0.
1484 */
1485 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1486 {
1487 unsigned long addr;
1488
1489 addr = kernel_stack_pointer(regs) + n * sizeof(long);
1490 if (!regs_within_kernel_stack(regs, addr))
1491 return 0;
1492 return *(unsigned long *)addr;
1493 }