]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/s390/kernel/ptrace.c
Merge tag 'dwc3-for-v3.7' of git://git.kernel.org/pub/scm/linux/kernel/git/balbi...
[mirror_ubuntu-artful-kernel.git] / arch / s390 / kernel / ptrace.c
1 /*
2 * Ptrace user space interface.
3 *
4 * Copyright IBM Corp. 1999, 2010
5 * Author(s): Denis Joseph Barrow
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 */
8
9 #include <linux/kernel.h>
10 #include <linux/sched.h>
11 #include <linux/mm.h>
12 #include <linux/smp.h>
13 #include <linux/errno.h>
14 #include <linux/ptrace.h>
15 #include <linux/user.h>
16 #include <linux/security.h>
17 #include <linux/audit.h>
18 #include <linux/signal.h>
19 #include <linux/elf.h>
20 #include <linux/regset.h>
21 #include <linux/tracehook.h>
22 #include <linux/seccomp.h>
23 #include <linux/compat.h>
24 #include <trace/syscall.h>
25 #include <asm/segment.h>
26 #include <asm/page.h>
27 #include <asm/pgtable.h>
28 #include <asm/pgalloc.h>
29 #include <asm/uaccess.h>
30 #include <asm/unistd.h>
31 #include <asm/switch_to.h>
32 #include "entry.h"
33
34 #ifdef CONFIG_COMPAT
35 #include "compat_ptrace.h"
36 #endif
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/syscalls.h>
40
41 enum s390_regset {
42 REGSET_GENERAL,
43 REGSET_FP,
44 REGSET_LAST_BREAK,
45 REGSET_SYSTEM_CALL,
46 REGSET_GENERAL_EXTENDED,
47 };
48
49 void update_per_regs(struct task_struct *task)
50 {
51 struct pt_regs *regs = task_pt_regs(task);
52 struct thread_struct *thread = &task->thread;
53 struct per_regs old, new;
54
55 /* Copy user specified PER registers */
56 new.control = thread->per_user.control;
57 new.start = thread->per_user.start;
58 new.end = thread->per_user.end;
59
60 /* merge TIF_SINGLE_STEP into user specified PER registers. */
61 if (test_tsk_thread_flag(task, TIF_SINGLE_STEP)) {
62 new.control |= PER_EVENT_IFETCH;
63 new.start = 0;
64 new.end = PSW_ADDR_INSN;
65 }
66
67 /* Take care of the PER enablement bit in the PSW. */
68 if (!(new.control & PER_EVENT_MASK)) {
69 regs->psw.mask &= ~PSW_MASK_PER;
70 return;
71 }
72 regs->psw.mask |= PSW_MASK_PER;
73 __ctl_store(old, 9, 11);
74 if (memcmp(&new, &old, sizeof(struct per_regs)) != 0)
75 __ctl_load(new, 9, 11);
76 }
77
78 void user_enable_single_step(struct task_struct *task)
79 {
80 set_tsk_thread_flag(task, TIF_SINGLE_STEP);
81 if (task == current)
82 update_per_regs(task);
83 }
84
85 void user_disable_single_step(struct task_struct *task)
86 {
87 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
88 if (task == current)
89 update_per_regs(task);
90 }
91
92 /*
93 * Called by kernel/ptrace.c when detaching..
94 *
95 * Clear all debugging related fields.
96 */
97 void ptrace_disable(struct task_struct *task)
98 {
99 memset(&task->thread.per_user, 0, sizeof(task->thread.per_user));
100 memset(&task->thread.per_event, 0, sizeof(task->thread.per_event));
101 clear_tsk_thread_flag(task, TIF_SINGLE_STEP);
102 clear_tsk_thread_flag(task, TIF_PER_TRAP);
103 }
104
105 #ifndef CONFIG_64BIT
106 # define __ADDR_MASK 3
107 #else
108 # define __ADDR_MASK 7
109 #endif
110
111 static inline unsigned long __peek_user_per(struct task_struct *child,
112 addr_t addr)
113 {
114 struct per_struct_kernel *dummy = NULL;
115
116 if (addr == (addr_t) &dummy->cr9)
117 /* Control bits of the active per set. */
118 return test_thread_flag(TIF_SINGLE_STEP) ?
119 PER_EVENT_IFETCH : child->thread.per_user.control;
120 else if (addr == (addr_t) &dummy->cr10)
121 /* Start address of the active per set. */
122 return test_thread_flag(TIF_SINGLE_STEP) ?
123 0 : child->thread.per_user.start;
124 else if (addr == (addr_t) &dummy->cr11)
125 /* End address of the active per set. */
126 return test_thread_flag(TIF_SINGLE_STEP) ?
127 PSW_ADDR_INSN : child->thread.per_user.end;
128 else if (addr == (addr_t) &dummy->bits)
129 /* Single-step bit. */
130 return test_thread_flag(TIF_SINGLE_STEP) ?
131 (1UL << (BITS_PER_LONG - 1)) : 0;
132 else if (addr == (addr_t) &dummy->starting_addr)
133 /* Start address of the user specified per set. */
134 return child->thread.per_user.start;
135 else if (addr == (addr_t) &dummy->ending_addr)
136 /* End address of the user specified per set. */
137 return child->thread.per_user.end;
138 else if (addr == (addr_t) &dummy->perc_atmid)
139 /* PER code, ATMID and AI of the last PER trap */
140 return (unsigned long)
141 child->thread.per_event.cause << (BITS_PER_LONG - 16);
142 else if (addr == (addr_t) &dummy->address)
143 /* Address of the last PER trap */
144 return child->thread.per_event.address;
145 else if (addr == (addr_t) &dummy->access_id)
146 /* Access id of the last PER trap */
147 return (unsigned long)
148 child->thread.per_event.paid << (BITS_PER_LONG - 8);
149 return 0;
150 }
151
152 /*
153 * Read the word at offset addr from the user area of a process. The
154 * trouble here is that the information is littered over different
155 * locations. The process registers are found on the kernel stack,
156 * the floating point stuff and the trace settings are stored in
157 * the task structure. In addition the different structures in
158 * struct user contain pad bytes that should be read as zeroes.
159 * Lovely...
160 */
161 static unsigned long __peek_user(struct task_struct *child, addr_t addr)
162 {
163 struct user *dummy = NULL;
164 addr_t offset, tmp;
165
166 if (addr < (addr_t) &dummy->regs.acrs) {
167 /*
168 * psw and gprs are stored on the stack
169 */
170 tmp = *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr);
171 if (addr == (addr_t) &dummy->regs.psw.mask)
172 /* Return a clean psw mask. */
173 tmp = psw_user_bits | (tmp & PSW_MASK_USER);
174
175 } else if (addr < (addr_t) &dummy->regs.orig_gpr2) {
176 /*
177 * access registers are stored in the thread structure
178 */
179 offset = addr - (addr_t) &dummy->regs.acrs;
180 #ifdef CONFIG_64BIT
181 /*
182 * Very special case: old & broken 64 bit gdb reading
183 * from acrs[15]. Result is a 64 bit value. Read the
184 * 32 bit acrs[15] value and shift it by 32. Sick...
185 */
186 if (addr == (addr_t) &dummy->regs.acrs[15])
187 tmp = ((unsigned long) child->thread.acrs[15]) << 32;
188 else
189 #endif
190 tmp = *(addr_t *)((addr_t) &child->thread.acrs + offset);
191
192 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
193 /*
194 * orig_gpr2 is stored on the kernel stack
195 */
196 tmp = (addr_t) task_pt_regs(child)->orig_gpr2;
197
198 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
199 /*
200 * prevent reads of padding hole between
201 * orig_gpr2 and fp_regs on s390.
202 */
203 tmp = 0;
204
205 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
206 /*
207 * floating point regs. are stored in the thread structure
208 */
209 offset = addr - (addr_t) &dummy->regs.fp_regs;
210 tmp = *(addr_t *)((addr_t) &child->thread.fp_regs + offset);
211 if (addr == (addr_t) &dummy->regs.fp_regs.fpc)
212 tmp &= (unsigned long) FPC_VALID_MASK
213 << (BITS_PER_LONG - 32);
214
215 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
216 /*
217 * Handle access to the per_info structure.
218 */
219 addr -= (addr_t) &dummy->regs.per_info;
220 tmp = __peek_user_per(child, addr);
221
222 } else
223 tmp = 0;
224
225 return tmp;
226 }
227
228 static int
229 peek_user(struct task_struct *child, addr_t addr, addr_t data)
230 {
231 addr_t tmp, mask;
232
233 /*
234 * Stupid gdb peeks/pokes the access registers in 64 bit with
235 * an alignment of 4. Programmers from hell...
236 */
237 mask = __ADDR_MASK;
238 #ifdef CONFIG_64BIT
239 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
240 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
241 mask = 3;
242 #endif
243 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
244 return -EIO;
245
246 tmp = __peek_user(child, addr);
247 return put_user(tmp, (addr_t __user *) data);
248 }
249
250 static inline void __poke_user_per(struct task_struct *child,
251 addr_t addr, addr_t data)
252 {
253 struct per_struct_kernel *dummy = NULL;
254
255 /*
256 * There are only three fields in the per_info struct that the
257 * debugger user can write to.
258 * 1) cr9: the debugger wants to set a new PER event mask
259 * 2) starting_addr: the debugger wants to set a new starting
260 * address to use with the PER event mask.
261 * 3) ending_addr: the debugger wants to set a new ending
262 * address to use with the PER event mask.
263 * The user specified PER event mask and the start and end
264 * addresses are used only if single stepping is not in effect.
265 * Writes to any other field in per_info are ignored.
266 */
267 if (addr == (addr_t) &dummy->cr9)
268 /* PER event mask of the user specified per set. */
269 child->thread.per_user.control =
270 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
271 else if (addr == (addr_t) &dummy->starting_addr)
272 /* Starting address of the user specified per set. */
273 child->thread.per_user.start = data;
274 else if (addr == (addr_t) &dummy->ending_addr)
275 /* Ending address of the user specified per set. */
276 child->thread.per_user.end = data;
277 }
278
279 /*
280 * Write a word to the user area of a process at location addr. This
281 * operation does have an additional problem compared to peek_user.
282 * Stores to the program status word and on the floating point
283 * control register needs to get checked for validity.
284 */
285 static int __poke_user(struct task_struct *child, addr_t addr, addr_t data)
286 {
287 struct user *dummy = NULL;
288 addr_t offset;
289
290 if (addr < (addr_t) &dummy->regs.acrs) {
291 /*
292 * psw and gprs are stored on the stack
293 */
294 if (addr == (addr_t) &dummy->regs.psw.mask &&
295 ((data & ~PSW_MASK_USER) != psw_user_bits ||
296 ((data & PSW_MASK_EA) && !(data & PSW_MASK_BA))))
297 /* Invalid psw mask. */
298 return -EINVAL;
299 *(addr_t *)((addr_t) &task_pt_regs(child)->psw + addr) = data;
300
301 } else if (addr < (addr_t) (&dummy->regs.orig_gpr2)) {
302 /*
303 * access registers are stored in the thread structure
304 */
305 offset = addr - (addr_t) &dummy->regs.acrs;
306 #ifdef CONFIG_64BIT
307 /*
308 * Very special case: old & broken 64 bit gdb writing
309 * to acrs[15] with a 64 bit value. Ignore the lower
310 * half of the value and write the upper 32 bit to
311 * acrs[15]. Sick...
312 */
313 if (addr == (addr_t) &dummy->regs.acrs[15])
314 child->thread.acrs[15] = (unsigned int) (data >> 32);
315 else
316 #endif
317 *(addr_t *)((addr_t) &child->thread.acrs + offset) = data;
318
319 } else if (addr == (addr_t) &dummy->regs.orig_gpr2) {
320 /*
321 * orig_gpr2 is stored on the kernel stack
322 */
323 task_pt_regs(child)->orig_gpr2 = data;
324
325 } else if (addr < (addr_t) &dummy->regs.fp_regs) {
326 /*
327 * prevent writes of padding hole between
328 * orig_gpr2 and fp_regs on s390.
329 */
330 return 0;
331
332 } else if (addr < (addr_t) (&dummy->regs.fp_regs + 1)) {
333 /*
334 * floating point regs. are stored in the thread structure
335 */
336 if (addr == (addr_t) &dummy->regs.fp_regs.fpc &&
337 (data & ~((unsigned long) FPC_VALID_MASK
338 << (BITS_PER_LONG - 32))) != 0)
339 return -EINVAL;
340 offset = addr - (addr_t) &dummy->regs.fp_regs;
341 *(addr_t *)((addr_t) &child->thread.fp_regs + offset) = data;
342
343 } else if (addr < (addr_t) (&dummy->regs.per_info + 1)) {
344 /*
345 * Handle access to the per_info structure.
346 */
347 addr -= (addr_t) &dummy->regs.per_info;
348 __poke_user_per(child, addr, data);
349
350 }
351
352 return 0;
353 }
354
355 static int poke_user(struct task_struct *child, addr_t addr, addr_t data)
356 {
357 addr_t mask;
358
359 /*
360 * Stupid gdb peeks/pokes the access registers in 64 bit with
361 * an alignment of 4. Programmers from hell indeed...
362 */
363 mask = __ADDR_MASK;
364 #ifdef CONFIG_64BIT
365 if (addr >= (addr_t) &((struct user *) NULL)->regs.acrs &&
366 addr < (addr_t) &((struct user *) NULL)->regs.orig_gpr2)
367 mask = 3;
368 #endif
369 if ((addr & mask) || addr > sizeof(struct user) - __ADDR_MASK)
370 return -EIO;
371
372 return __poke_user(child, addr, data);
373 }
374
375 long arch_ptrace(struct task_struct *child, long request,
376 unsigned long addr, unsigned long data)
377 {
378 ptrace_area parea;
379 int copied, ret;
380
381 switch (request) {
382 case PTRACE_PEEKUSR:
383 /* read the word at location addr in the USER area. */
384 return peek_user(child, addr, data);
385
386 case PTRACE_POKEUSR:
387 /* write the word at location addr in the USER area */
388 return poke_user(child, addr, data);
389
390 case PTRACE_PEEKUSR_AREA:
391 case PTRACE_POKEUSR_AREA:
392 if (copy_from_user(&parea, (void __force __user *) addr,
393 sizeof(parea)))
394 return -EFAULT;
395 addr = parea.kernel_addr;
396 data = parea.process_addr;
397 copied = 0;
398 while (copied < parea.len) {
399 if (request == PTRACE_PEEKUSR_AREA)
400 ret = peek_user(child, addr, data);
401 else {
402 addr_t utmp;
403 if (get_user(utmp,
404 (addr_t __force __user *) data))
405 return -EFAULT;
406 ret = poke_user(child, addr, utmp);
407 }
408 if (ret)
409 return ret;
410 addr += sizeof(unsigned long);
411 data += sizeof(unsigned long);
412 copied += sizeof(unsigned long);
413 }
414 return 0;
415 case PTRACE_GET_LAST_BREAK:
416 put_user(task_thread_info(child)->last_break,
417 (unsigned long __user *) data);
418 return 0;
419 default:
420 /* Removing high order bit from addr (only for 31 bit). */
421 addr &= PSW_ADDR_INSN;
422 return ptrace_request(child, request, addr, data);
423 }
424 }
425
426 #ifdef CONFIG_COMPAT
427 /*
428 * Now the fun part starts... a 31 bit program running in the
429 * 31 bit emulation tracing another program. PTRACE_PEEKTEXT,
430 * PTRACE_PEEKDATA, PTRACE_POKETEXT and PTRACE_POKEDATA are easy
431 * to handle, the difference to the 64 bit versions of the requests
432 * is that the access is done in multiples of 4 byte instead of
433 * 8 bytes (sizeof(unsigned long) on 31/64 bit).
434 * The ugly part are PTRACE_PEEKUSR, PTRACE_PEEKUSR_AREA,
435 * PTRACE_POKEUSR and PTRACE_POKEUSR_AREA. If the traced program
436 * is a 31 bit program too, the content of struct user can be
437 * emulated. A 31 bit program peeking into the struct user of
438 * a 64 bit program is a no-no.
439 */
440
441 /*
442 * Same as peek_user_per but for a 31 bit program.
443 */
444 static inline __u32 __peek_user_per_compat(struct task_struct *child,
445 addr_t addr)
446 {
447 struct compat_per_struct_kernel *dummy32 = NULL;
448
449 if (addr == (addr_t) &dummy32->cr9)
450 /* Control bits of the active per set. */
451 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
452 PER_EVENT_IFETCH : child->thread.per_user.control;
453 else if (addr == (addr_t) &dummy32->cr10)
454 /* Start address of the active per set. */
455 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
456 0 : child->thread.per_user.start;
457 else if (addr == (addr_t) &dummy32->cr11)
458 /* End address of the active per set. */
459 return test_thread_flag(TIF_SINGLE_STEP) ?
460 PSW32_ADDR_INSN : child->thread.per_user.end;
461 else if (addr == (addr_t) &dummy32->bits)
462 /* Single-step bit. */
463 return (__u32) test_thread_flag(TIF_SINGLE_STEP) ?
464 0x80000000 : 0;
465 else if (addr == (addr_t) &dummy32->starting_addr)
466 /* Start address of the user specified per set. */
467 return (__u32) child->thread.per_user.start;
468 else if (addr == (addr_t) &dummy32->ending_addr)
469 /* End address of the user specified per set. */
470 return (__u32) child->thread.per_user.end;
471 else if (addr == (addr_t) &dummy32->perc_atmid)
472 /* PER code, ATMID and AI of the last PER trap */
473 return (__u32) child->thread.per_event.cause << 16;
474 else if (addr == (addr_t) &dummy32->address)
475 /* Address of the last PER trap */
476 return (__u32) child->thread.per_event.address;
477 else if (addr == (addr_t) &dummy32->access_id)
478 /* Access id of the last PER trap */
479 return (__u32) child->thread.per_event.paid << 24;
480 return 0;
481 }
482
483 /*
484 * Same as peek_user but for a 31 bit program.
485 */
486 static u32 __peek_user_compat(struct task_struct *child, addr_t addr)
487 {
488 struct compat_user *dummy32 = NULL;
489 addr_t offset;
490 __u32 tmp;
491
492 if (addr < (addr_t) &dummy32->regs.acrs) {
493 struct pt_regs *regs = task_pt_regs(child);
494 /*
495 * psw and gprs are stored on the stack
496 */
497 if (addr == (addr_t) &dummy32->regs.psw.mask) {
498 /* Fake a 31 bit psw mask. */
499 tmp = (__u32)(regs->psw.mask >> 32);
500 tmp = psw32_user_bits | (tmp & PSW32_MASK_USER);
501 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
502 /* Fake a 31 bit psw address. */
503 tmp = (__u32) regs->psw.addr |
504 (__u32)(regs->psw.mask & PSW_MASK_BA);
505 } else {
506 /* gpr 0-15 */
507 tmp = *(__u32 *)((addr_t) &regs->psw + addr*2 + 4);
508 }
509 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
510 /*
511 * access registers are stored in the thread structure
512 */
513 offset = addr - (addr_t) &dummy32->regs.acrs;
514 tmp = *(__u32*)((addr_t) &child->thread.acrs + offset);
515
516 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
517 /*
518 * orig_gpr2 is stored on the kernel stack
519 */
520 tmp = *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4);
521
522 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
523 /*
524 * prevent reads of padding hole between
525 * orig_gpr2 and fp_regs on s390.
526 */
527 tmp = 0;
528
529 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
530 /*
531 * floating point regs. are stored in the thread structure
532 */
533 offset = addr - (addr_t) &dummy32->regs.fp_regs;
534 tmp = *(__u32 *)((addr_t) &child->thread.fp_regs + offset);
535
536 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
537 /*
538 * Handle access to the per_info structure.
539 */
540 addr -= (addr_t) &dummy32->regs.per_info;
541 tmp = __peek_user_per_compat(child, addr);
542
543 } else
544 tmp = 0;
545
546 return tmp;
547 }
548
549 static int peek_user_compat(struct task_struct *child,
550 addr_t addr, addr_t data)
551 {
552 __u32 tmp;
553
554 if (!is_compat_task() || (addr & 3) || addr > sizeof(struct user) - 3)
555 return -EIO;
556
557 tmp = __peek_user_compat(child, addr);
558 return put_user(tmp, (__u32 __user *) data);
559 }
560
561 /*
562 * Same as poke_user_per but for a 31 bit program.
563 */
564 static inline void __poke_user_per_compat(struct task_struct *child,
565 addr_t addr, __u32 data)
566 {
567 struct compat_per_struct_kernel *dummy32 = NULL;
568
569 if (addr == (addr_t) &dummy32->cr9)
570 /* PER event mask of the user specified per set. */
571 child->thread.per_user.control =
572 data & (PER_EVENT_MASK | PER_CONTROL_MASK);
573 else if (addr == (addr_t) &dummy32->starting_addr)
574 /* Starting address of the user specified per set. */
575 child->thread.per_user.start = data;
576 else if (addr == (addr_t) &dummy32->ending_addr)
577 /* Ending address of the user specified per set. */
578 child->thread.per_user.end = data;
579 }
580
581 /*
582 * Same as poke_user but for a 31 bit program.
583 */
584 static int __poke_user_compat(struct task_struct *child,
585 addr_t addr, addr_t data)
586 {
587 struct compat_user *dummy32 = NULL;
588 __u32 tmp = (__u32) data;
589 addr_t offset;
590
591 if (addr < (addr_t) &dummy32->regs.acrs) {
592 struct pt_regs *regs = task_pt_regs(child);
593 /*
594 * psw, gprs, acrs and orig_gpr2 are stored on the stack
595 */
596 if (addr == (addr_t) &dummy32->regs.psw.mask) {
597 /* Build a 64 bit psw mask from 31 bit mask. */
598 if ((tmp & ~PSW32_MASK_USER) != psw32_user_bits)
599 /* Invalid psw mask. */
600 return -EINVAL;
601 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_USER) |
602 (regs->psw.mask & PSW_MASK_BA) |
603 (__u64)(tmp & PSW32_MASK_USER) << 32;
604 } else if (addr == (addr_t) &dummy32->regs.psw.addr) {
605 /* Build a 64 bit psw address from 31 bit address. */
606 regs->psw.addr = (__u64) tmp & PSW32_ADDR_INSN;
607 /* Transfer 31 bit amode bit to psw mask. */
608 regs->psw.mask = (regs->psw.mask & ~PSW_MASK_BA) |
609 (__u64)(tmp & PSW32_ADDR_AMODE);
610 } else {
611 /* gpr 0-15 */
612 *(__u32*)((addr_t) &regs->psw + addr*2 + 4) = tmp;
613 }
614 } else if (addr < (addr_t) (&dummy32->regs.orig_gpr2)) {
615 /*
616 * access registers are stored in the thread structure
617 */
618 offset = addr - (addr_t) &dummy32->regs.acrs;
619 *(__u32*)((addr_t) &child->thread.acrs + offset) = tmp;
620
621 } else if (addr == (addr_t) (&dummy32->regs.orig_gpr2)) {
622 /*
623 * orig_gpr2 is stored on the kernel stack
624 */
625 *(__u32*)((addr_t) &task_pt_regs(child)->orig_gpr2 + 4) = tmp;
626
627 } else if (addr < (addr_t) &dummy32->regs.fp_regs) {
628 /*
629 * prevent writess of padding hole between
630 * orig_gpr2 and fp_regs on s390.
631 */
632 return 0;
633
634 } else if (addr < (addr_t) (&dummy32->regs.fp_regs + 1)) {
635 /*
636 * floating point regs. are stored in the thread structure
637 */
638 if (addr == (addr_t) &dummy32->regs.fp_regs.fpc &&
639 (tmp & ~FPC_VALID_MASK) != 0)
640 /* Invalid floating point control. */
641 return -EINVAL;
642 offset = addr - (addr_t) &dummy32->regs.fp_regs;
643 *(__u32 *)((addr_t) &child->thread.fp_regs + offset) = tmp;
644
645 } else if (addr < (addr_t) (&dummy32->regs.per_info + 1)) {
646 /*
647 * Handle access to the per_info structure.
648 */
649 addr -= (addr_t) &dummy32->regs.per_info;
650 __poke_user_per_compat(child, addr, data);
651 }
652
653 return 0;
654 }
655
656 static int poke_user_compat(struct task_struct *child,
657 addr_t addr, addr_t data)
658 {
659 if (!is_compat_task() || (addr & 3) ||
660 addr > sizeof(struct compat_user) - 3)
661 return -EIO;
662
663 return __poke_user_compat(child, addr, data);
664 }
665
666 long compat_arch_ptrace(struct task_struct *child, compat_long_t request,
667 compat_ulong_t caddr, compat_ulong_t cdata)
668 {
669 unsigned long addr = caddr;
670 unsigned long data = cdata;
671 compat_ptrace_area parea;
672 int copied, ret;
673
674 switch (request) {
675 case PTRACE_PEEKUSR:
676 /* read the word at location addr in the USER area. */
677 return peek_user_compat(child, addr, data);
678
679 case PTRACE_POKEUSR:
680 /* write the word at location addr in the USER area */
681 return poke_user_compat(child, addr, data);
682
683 case PTRACE_PEEKUSR_AREA:
684 case PTRACE_POKEUSR_AREA:
685 if (copy_from_user(&parea, (void __force __user *) addr,
686 sizeof(parea)))
687 return -EFAULT;
688 addr = parea.kernel_addr;
689 data = parea.process_addr;
690 copied = 0;
691 while (copied < parea.len) {
692 if (request == PTRACE_PEEKUSR_AREA)
693 ret = peek_user_compat(child, addr, data);
694 else {
695 __u32 utmp;
696 if (get_user(utmp,
697 (__u32 __force __user *) data))
698 return -EFAULT;
699 ret = poke_user_compat(child, addr, utmp);
700 }
701 if (ret)
702 return ret;
703 addr += sizeof(unsigned int);
704 data += sizeof(unsigned int);
705 copied += sizeof(unsigned int);
706 }
707 return 0;
708 case PTRACE_GET_LAST_BREAK:
709 put_user(task_thread_info(child)->last_break,
710 (unsigned int __user *) data);
711 return 0;
712 }
713 return compat_ptrace_request(child, request, addr, data);
714 }
715 #endif
716
717 asmlinkage long do_syscall_trace_enter(struct pt_regs *regs)
718 {
719 long ret = 0;
720
721 /* Do the secure computing check first. */
722 if (secure_computing(regs->gprs[2])) {
723 /* seccomp failures shouldn't expose any additional code. */
724 ret = -1;
725 goto out;
726 }
727
728 /*
729 * The sysc_tracesys code in entry.S stored the system
730 * call number to gprs[2].
731 */
732 if (test_thread_flag(TIF_SYSCALL_TRACE) &&
733 (tracehook_report_syscall_entry(regs) ||
734 regs->gprs[2] >= NR_syscalls)) {
735 /*
736 * Tracing decided this syscall should not happen or the
737 * debugger stored an invalid system call number. Skip
738 * the system call and the system call restart handling.
739 */
740 clear_thread_flag(TIF_SYSCALL);
741 ret = -1;
742 }
743
744 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
745 trace_sys_enter(regs, regs->gprs[2]);
746
747 audit_syscall_entry(is_compat_task() ?
748 AUDIT_ARCH_S390 : AUDIT_ARCH_S390X,
749 regs->gprs[2], regs->orig_gpr2,
750 regs->gprs[3], regs->gprs[4],
751 regs->gprs[5]);
752 out:
753 return ret ?: regs->gprs[2];
754 }
755
756 asmlinkage void do_syscall_trace_exit(struct pt_regs *regs)
757 {
758 audit_syscall_exit(regs);
759
760 if (unlikely(test_thread_flag(TIF_SYSCALL_TRACEPOINT)))
761 trace_sys_exit(regs, regs->gprs[2]);
762
763 if (test_thread_flag(TIF_SYSCALL_TRACE))
764 tracehook_report_syscall_exit(regs, 0);
765 }
766
767 /*
768 * user_regset definitions.
769 */
770
771 static int s390_regs_get(struct task_struct *target,
772 const struct user_regset *regset,
773 unsigned int pos, unsigned int count,
774 void *kbuf, void __user *ubuf)
775 {
776 if (target == current)
777 save_access_regs(target->thread.acrs);
778
779 if (kbuf) {
780 unsigned long *k = kbuf;
781 while (count > 0) {
782 *k++ = __peek_user(target, pos);
783 count -= sizeof(*k);
784 pos += sizeof(*k);
785 }
786 } else {
787 unsigned long __user *u = ubuf;
788 while (count > 0) {
789 if (__put_user(__peek_user(target, pos), u++))
790 return -EFAULT;
791 count -= sizeof(*u);
792 pos += sizeof(*u);
793 }
794 }
795 return 0;
796 }
797
798 static int s390_regs_set(struct task_struct *target,
799 const struct user_regset *regset,
800 unsigned int pos, unsigned int count,
801 const void *kbuf, const void __user *ubuf)
802 {
803 int rc = 0;
804
805 if (target == current)
806 save_access_regs(target->thread.acrs);
807
808 if (kbuf) {
809 const unsigned long *k = kbuf;
810 while (count > 0 && !rc) {
811 rc = __poke_user(target, pos, *k++);
812 count -= sizeof(*k);
813 pos += sizeof(*k);
814 }
815 } else {
816 const unsigned long __user *u = ubuf;
817 while (count > 0 && !rc) {
818 unsigned long word;
819 rc = __get_user(word, u++);
820 if (rc)
821 break;
822 rc = __poke_user(target, pos, word);
823 count -= sizeof(*u);
824 pos += sizeof(*u);
825 }
826 }
827
828 if (rc == 0 && target == current)
829 restore_access_regs(target->thread.acrs);
830
831 return rc;
832 }
833
834 static int s390_fpregs_get(struct task_struct *target,
835 const struct user_regset *regset, unsigned int pos,
836 unsigned int count, void *kbuf, void __user *ubuf)
837 {
838 if (target == current)
839 save_fp_regs(&target->thread.fp_regs);
840
841 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
842 &target->thread.fp_regs, 0, -1);
843 }
844
845 static int s390_fpregs_set(struct task_struct *target,
846 const struct user_regset *regset, unsigned int pos,
847 unsigned int count, const void *kbuf,
848 const void __user *ubuf)
849 {
850 int rc = 0;
851
852 if (target == current)
853 save_fp_regs(&target->thread.fp_regs);
854
855 /* If setting FPC, must validate it first. */
856 if (count > 0 && pos < offsetof(s390_fp_regs, fprs)) {
857 u32 fpc[2] = { target->thread.fp_regs.fpc, 0 };
858 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf, &fpc,
859 0, offsetof(s390_fp_regs, fprs));
860 if (rc)
861 return rc;
862 if ((fpc[0] & ~FPC_VALID_MASK) != 0 || fpc[1] != 0)
863 return -EINVAL;
864 target->thread.fp_regs.fpc = fpc[0];
865 }
866
867 if (rc == 0 && count > 0)
868 rc = user_regset_copyin(&pos, &count, &kbuf, &ubuf,
869 target->thread.fp_regs.fprs,
870 offsetof(s390_fp_regs, fprs), -1);
871
872 if (rc == 0 && target == current)
873 restore_fp_regs(&target->thread.fp_regs);
874
875 return rc;
876 }
877
878 #ifdef CONFIG_64BIT
879
880 static int s390_last_break_get(struct task_struct *target,
881 const struct user_regset *regset,
882 unsigned int pos, unsigned int count,
883 void *kbuf, void __user *ubuf)
884 {
885 if (count > 0) {
886 if (kbuf) {
887 unsigned long *k = kbuf;
888 *k = task_thread_info(target)->last_break;
889 } else {
890 unsigned long __user *u = ubuf;
891 if (__put_user(task_thread_info(target)->last_break, u))
892 return -EFAULT;
893 }
894 }
895 return 0;
896 }
897
898 static int s390_last_break_set(struct task_struct *target,
899 const struct user_regset *regset,
900 unsigned int pos, unsigned int count,
901 const void *kbuf, const void __user *ubuf)
902 {
903 return 0;
904 }
905
906 #endif
907
908 static int s390_system_call_get(struct task_struct *target,
909 const struct user_regset *regset,
910 unsigned int pos, unsigned int count,
911 void *kbuf, void __user *ubuf)
912 {
913 unsigned int *data = &task_thread_info(target)->system_call;
914 return user_regset_copyout(&pos, &count, &kbuf, &ubuf,
915 data, 0, sizeof(unsigned int));
916 }
917
918 static int s390_system_call_set(struct task_struct *target,
919 const struct user_regset *regset,
920 unsigned int pos, unsigned int count,
921 const void *kbuf, const void __user *ubuf)
922 {
923 unsigned int *data = &task_thread_info(target)->system_call;
924 return user_regset_copyin(&pos, &count, &kbuf, &ubuf,
925 data, 0, sizeof(unsigned int));
926 }
927
928 static const struct user_regset s390_regsets[] = {
929 [REGSET_GENERAL] = {
930 .core_note_type = NT_PRSTATUS,
931 .n = sizeof(s390_regs) / sizeof(long),
932 .size = sizeof(long),
933 .align = sizeof(long),
934 .get = s390_regs_get,
935 .set = s390_regs_set,
936 },
937 [REGSET_FP] = {
938 .core_note_type = NT_PRFPREG,
939 .n = sizeof(s390_fp_regs) / sizeof(long),
940 .size = sizeof(long),
941 .align = sizeof(long),
942 .get = s390_fpregs_get,
943 .set = s390_fpregs_set,
944 },
945 #ifdef CONFIG_64BIT
946 [REGSET_LAST_BREAK] = {
947 .core_note_type = NT_S390_LAST_BREAK,
948 .n = 1,
949 .size = sizeof(long),
950 .align = sizeof(long),
951 .get = s390_last_break_get,
952 .set = s390_last_break_set,
953 },
954 #endif
955 [REGSET_SYSTEM_CALL] = {
956 .core_note_type = NT_S390_SYSTEM_CALL,
957 .n = 1,
958 .size = sizeof(unsigned int),
959 .align = sizeof(unsigned int),
960 .get = s390_system_call_get,
961 .set = s390_system_call_set,
962 },
963 };
964
965 static const struct user_regset_view user_s390_view = {
966 .name = UTS_MACHINE,
967 .e_machine = EM_S390,
968 .regsets = s390_regsets,
969 .n = ARRAY_SIZE(s390_regsets)
970 };
971
972 #ifdef CONFIG_COMPAT
973 static int s390_compat_regs_get(struct task_struct *target,
974 const struct user_regset *regset,
975 unsigned int pos, unsigned int count,
976 void *kbuf, void __user *ubuf)
977 {
978 if (target == current)
979 save_access_regs(target->thread.acrs);
980
981 if (kbuf) {
982 compat_ulong_t *k = kbuf;
983 while (count > 0) {
984 *k++ = __peek_user_compat(target, pos);
985 count -= sizeof(*k);
986 pos += sizeof(*k);
987 }
988 } else {
989 compat_ulong_t __user *u = ubuf;
990 while (count > 0) {
991 if (__put_user(__peek_user_compat(target, pos), u++))
992 return -EFAULT;
993 count -= sizeof(*u);
994 pos += sizeof(*u);
995 }
996 }
997 return 0;
998 }
999
1000 static int s390_compat_regs_set(struct task_struct *target,
1001 const struct user_regset *regset,
1002 unsigned int pos, unsigned int count,
1003 const void *kbuf, const void __user *ubuf)
1004 {
1005 int rc = 0;
1006
1007 if (target == current)
1008 save_access_regs(target->thread.acrs);
1009
1010 if (kbuf) {
1011 const compat_ulong_t *k = kbuf;
1012 while (count > 0 && !rc) {
1013 rc = __poke_user_compat(target, pos, *k++);
1014 count -= sizeof(*k);
1015 pos += sizeof(*k);
1016 }
1017 } else {
1018 const compat_ulong_t __user *u = ubuf;
1019 while (count > 0 && !rc) {
1020 compat_ulong_t word;
1021 rc = __get_user(word, u++);
1022 if (rc)
1023 break;
1024 rc = __poke_user_compat(target, pos, word);
1025 count -= sizeof(*u);
1026 pos += sizeof(*u);
1027 }
1028 }
1029
1030 if (rc == 0 && target == current)
1031 restore_access_regs(target->thread.acrs);
1032
1033 return rc;
1034 }
1035
1036 static int s390_compat_regs_high_get(struct task_struct *target,
1037 const struct user_regset *regset,
1038 unsigned int pos, unsigned int count,
1039 void *kbuf, void __user *ubuf)
1040 {
1041 compat_ulong_t *gprs_high;
1042
1043 gprs_high = (compat_ulong_t *)
1044 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1045 if (kbuf) {
1046 compat_ulong_t *k = kbuf;
1047 while (count > 0) {
1048 *k++ = *gprs_high;
1049 gprs_high += 2;
1050 count -= sizeof(*k);
1051 }
1052 } else {
1053 compat_ulong_t __user *u = ubuf;
1054 while (count > 0) {
1055 if (__put_user(*gprs_high, u++))
1056 return -EFAULT;
1057 gprs_high += 2;
1058 count -= sizeof(*u);
1059 }
1060 }
1061 return 0;
1062 }
1063
1064 static int s390_compat_regs_high_set(struct task_struct *target,
1065 const struct user_regset *regset,
1066 unsigned int pos, unsigned int count,
1067 const void *kbuf, const void __user *ubuf)
1068 {
1069 compat_ulong_t *gprs_high;
1070 int rc = 0;
1071
1072 gprs_high = (compat_ulong_t *)
1073 &task_pt_regs(target)->gprs[pos / sizeof(compat_ulong_t)];
1074 if (kbuf) {
1075 const compat_ulong_t *k = kbuf;
1076 while (count > 0) {
1077 *gprs_high = *k++;
1078 *gprs_high += 2;
1079 count -= sizeof(*k);
1080 }
1081 } else {
1082 const compat_ulong_t __user *u = ubuf;
1083 while (count > 0 && !rc) {
1084 unsigned long word;
1085 rc = __get_user(word, u++);
1086 if (rc)
1087 break;
1088 *gprs_high = word;
1089 *gprs_high += 2;
1090 count -= sizeof(*u);
1091 }
1092 }
1093
1094 return rc;
1095 }
1096
1097 static int s390_compat_last_break_get(struct task_struct *target,
1098 const struct user_regset *regset,
1099 unsigned int pos, unsigned int count,
1100 void *kbuf, void __user *ubuf)
1101 {
1102 compat_ulong_t last_break;
1103
1104 if (count > 0) {
1105 last_break = task_thread_info(target)->last_break;
1106 if (kbuf) {
1107 unsigned long *k = kbuf;
1108 *k = last_break;
1109 } else {
1110 unsigned long __user *u = ubuf;
1111 if (__put_user(last_break, u))
1112 return -EFAULT;
1113 }
1114 }
1115 return 0;
1116 }
1117
1118 static int s390_compat_last_break_set(struct task_struct *target,
1119 const struct user_regset *regset,
1120 unsigned int pos, unsigned int count,
1121 const void *kbuf, const void __user *ubuf)
1122 {
1123 return 0;
1124 }
1125
1126 static const struct user_regset s390_compat_regsets[] = {
1127 [REGSET_GENERAL] = {
1128 .core_note_type = NT_PRSTATUS,
1129 .n = sizeof(s390_compat_regs) / sizeof(compat_long_t),
1130 .size = sizeof(compat_long_t),
1131 .align = sizeof(compat_long_t),
1132 .get = s390_compat_regs_get,
1133 .set = s390_compat_regs_set,
1134 },
1135 [REGSET_FP] = {
1136 .core_note_type = NT_PRFPREG,
1137 .n = sizeof(s390_fp_regs) / sizeof(compat_long_t),
1138 .size = sizeof(compat_long_t),
1139 .align = sizeof(compat_long_t),
1140 .get = s390_fpregs_get,
1141 .set = s390_fpregs_set,
1142 },
1143 [REGSET_LAST_BREAK] = {
1144 .core_note_type = NT_S390_LAST_BREAK,
1145 .n = 1,
1146 .size = sizeof(long),
1147 .align = sizeof(long),
1148 .get = s390_compat_last_break_get,
1149 .set = s390_compat_last_break_set,
1150 },
1151 [REGSET_SYSTEM_CALL] = {
1152 .core_note_type = NT_S390_SYSTEM_CALL,
1153 .n = 1,
1154 .size = sizeof(compat_uint_t),
1155 .align = sizeof(compat_uint_t),
1156 .get = s390_system_call_get,
1157 .set = s390_system_call_set,
1158 },
1159 [REGSET_GENERAL_EXTENDED] = {
1160 .core_note_type = NT_S390_HIGH_GPRS,
1161 .n = sizeof(s390_compat_regs_high) / sizeof(compat_long_t),
1162 .size = sizeof(compat_long_t),
1163 .align = sizeof(compat_long_t),
1164 .get = s390_compat_regs_high_get,
1165 .set = s390_compat_regs_high_set,
1166 },
1167 };
1168
1169 static const struct user_regset_view user_s390_compat_view = {
1170 .name = "s390",
1171 .e_machine = EM_S390,
1172 .regsets = s390_compat_regsets,
1173 .n = ARRAY_SIZE(s390_compat_regsets)
1174 };
1175 #endif
1176
1177 const struct user_regset_view *task_user_regset_view(struct task_struct *task)
1178 {
1179 #ifdef CONFIG_COMPAT
1180 if (test_tsk_thread_flag(task, TIF_31BIT))
1181 return &user_s390_compat_view;
1182 #endif
1183 return &user_s390_view;
1184 }
1185
1186 static const char *gpr_names[NUM_GPRS] = {
1187 "r0", "r1", "r2", "r3", "r4", "r5", "r6", "r7",
1188 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
1189 };
1190
1191 unsigned long regs_get_register(struct pt_regs *regs, unsigned int offset)
1192 {
1193 if (offset >= NUM_GPRS)
1194 return 0;
1195 return regs->gprs[offset];
1196 }
1197
1198 int regs_query_register_offset(const char *name)
1199 {
1200 unsigned long offset;
1201
1202 if (!name || *name != 'r')
1203 return -EINVAL;
1204 if (strict_strtoul(name + 1, 10, &offset))
1205 return -EINVAL;
1206 if (offset >= NUM_GPRS)
1207 return -EINVAL;
1208 return offset;
1209 }
1210
1211 const char *regs_query_register_name(unsigned int offset)
1212 {
1213 if (offset >= NUM_GPRS)
1214 return NULL;
1215 return gpr_names[offset];
1216 }
1217
1218 static int regs_within_kernel_stack(struct pt_regs *regs, unsigned long addr)
1219 {
1220 unsigned long ksp = kernel_stack_pointer(regs);
1221
1222 return (addr & ~(THREAD_SIZE - 1)) == (ksp & ~(THREAD_SIZE - 1));
1223 }
1224
1225 /**
1226 * regs_get_kernel_stack_nth() - get Nth entry of the stack
1227 * @regs:pt_regs which contains kernel stack pointer.
1228 * @n:stack entry number.
1229 *
1230 * regs_get_kernel_stack_nth() returns @n th entry of the kernel stack which
1231 * is specifined by @regs. If the @n th entry is NOT in the kernel stack,
1232 * this returns 0.
1233 */
1234 unsigned long regs_get_kernel_stack_nth(struct pt_regs *regs, unsigned int n)
1235 {
1236 unsigned long addr;
1237
1238 addr = kernel_stack_pointer(regs) + n * sizeof(long);
1239 if (!regs_within_kernel_stack(regs, addr))
1240 return 0;
1241 return *(unsigned long *)addr;
1242 }