]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/s390/kernel/setup.c
s390/uaccess: always run the kernel in home space
[mirror_ubuntu-artful-kernel.git] / arch / s390 / kernel / setup.c
1 /*
2 * S390 version
3 * Copyright IBM Corp. 1999, 2012
4 * Author(s): Hartmut Penner (hp@de.ibm.com),
5 * Martin Schwidefsky (schwidefsky@de.ibm.com)
6 *
7 * Derived from "arch/i386/kernel/setup.c"
8 * Copyright (C) 1995, Linus Torvalds
9 */
10
11 /*
12 * This file handles the architecture-dependent parts of initialization
13 */
14
15 #define KMSG_COMPONENT "setup"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #include <linux/errno.h>
19 #include <linux/export.h>
20 #include <linux/sched.h>
21 #include <linux/kernel.h>
22 #include <linux/memblock.h>
23 #include <linux/mm.h>
24 #include <linux/stddef.h>
25 #include <linux/unistd.h>
26 #include <linux/ptrace.h>
27 #include <linux/user.h>
28 #include <linux/tty.h>
29 #include <linux/ioport.h>
30 #include <linux/delay.h>
31 #include <linux/init.h>
32 #include <linux/initrd.h>
33 #include <linux/bootmem.h>
34 #include <linux/root_dev.h>
35 #include <linux/console.h>
36 #include <linux/kernel_stat.h>
37 #include <linux/device.h>
38 #include <linux/notifier.h>
39 #include <linux/pfn.h>
40 #include <linux/ctype.h>
41 #include <linux/reboot.h>
42 #include <linux/topology.h>
43 #include <linux/ftrace.h>
44 #include <linux/kexec.h>
45 #include <linux/crash_dump.h>
46 #include <linux/memory.h>
47 #include <linux/compat.h>
48
49 #include <asm/ipl.h>
50 #include <asm/uaccess.h>
51 #include <asm/facility.h>
52 #include <asm/smp.h>
53 #include <asm/mmu_context.h>
54 #include <asm/cpcmd.h>
55 #include <asm/lowcore.h>
56 #include <asm/irq.h>
57 #include <asm/page.h>
58 #include <asm/ptrace.h>
59 #include <asm/sections.h>
60 #include <asm/ebcdic.h>
61 #include <asm/kvm_virtio.h>
62 #include <asm/diag.h>
63 #include <asm/os_info.h>
64 #include <asm/sclp.h>
65 #include "entry.h"
66
67 /*
68 * User copy operations.
69 */
70 struct uaccess_ops uaccess;
71 EXPORT_SYMBOL(uaccess);
72
73 /*
74 * Machine setup..
75 */
76 unsigned int console_mode = 0;
77 EXPORT_SYMBOL(console_mode);
78
79 unsigned int console_devno = -1;
80 EXPORT_SYMBOL(console_devno);
81
82 unsigned int console_irq = -1;
83 EXPORT_SYMBOL(console_irq);
84
85 unsigned long elf_hwcap = 0;
86 char elf_platform[ELF_PLATFORM_SIZE];
87
88 struct mem_chunk __initdata memory_chunk[MEMORY_CHUNKS];
89
90 int __initdata memory_end_set;
91 unsigned long __initdata memory_end;
92
93 unsigned long VMALLOC_START;
94 EXPORT_SYMBOL(VMALLOC_START);
95
96 unsigned long VMALLOC_END;
97 EXPORT_SYMBOL(VMALLOC_END);
98
99 struct page *vmemmap;
100 EXPORT_SYMBOL(vmemmap);
101
102 #ifdef CONFIG_64BIT
103 unsigned long MODULES_VADDR;
104 unsigned long MODULES_END;
105 #endif
106
107 /* An array with a pointer to the lowcore of every CPU. */
108 struct _lowcore *lowcore_ptr[NR_CPUS];
109 EXPORT_SYMBOL(lowcore_ptr);
110
111 /*
112 * This is set up by the setup-routine at boot-time
113 * for S390 need to find out, what we have to setup
114 * using address 0x10400 ...
115 */
116
117 #include <asm/setup.h>
118
119 /*
120 * condev= and conmode= setup parameter.
121 */
122
123 static int __init condev_setup(char *str)
124 {
125 int vdev;
126
127 vdev = simple_strtoul(str, &str, 0);
128 if (vdev >= 0 && vdev < 65536) {
129 console_devno = vdev;
130 console_irq = -1;
131 }
132 return 1;
133 }
134
135 __setup("condev=", condev_setup);
136
137 static void __init set_preferred_console(void)
138 {
139 if (MACHINE_IS_KVM) {
140 if (sclp_has_vt220())
141 add_preferred_console("ttyS", 1, NULL);
142 else if (sclp_has_linemode())
143 add_preferred_console("ttyS", 0, NULL);
144 else
145 add_preferred_console("hvc", 0, NULL);
146 } else if (CONSOLE_IS_3215 || CONSOLE_IS_SCLP)
147 add_preferred_console("ttyS", 0, NULL);
148 else if (CONSOLE_IS_3270)
149 add_preferred_console("tty3270", 0, NULL);
150 }
151
152 static int __init conmode_setup(char *str)
153 {
154 #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
155 if (strncmp(str, "hwc", 4) == 0 || strncmp(str, "sclp", 5) == 0)
156 SET_CONSOLE_SCLP;
157 #endif
158 #if defined(CONFIG_TN3215_CONSOLE)
159 if (strncmp(str, "3215", 5) == 0)
160 SET_CONSOLE_3215;
161 #endif
162 #if defined(CONFIG_TN3270_CONSOLE)
163 if (strncmp(str, "3270", 5) == 0)
164 SET_CONSOLE_3270;
165 #endif
166 set_preferred_console();
167 return 1;
168 }
169
170 __setup("conmode=", conmode_setup);
171
172 static void __init conmode_default(void)
173 {
174 char query_buffer[1024];
175 char *ptr;
176
177 if (MACHINE_IS_VM) {
178 cpcmd("QUERY CONSOLE", query_buffer, 1024, NULL);
179 console_devno = simple_strtoul(query_buffer + 5, NULL, 16);
180 ptr = strstr(query_buffer, "SUBCHANNEL =");
181 console_irq = simple_strtoul(ptr + 13, NULL, 16);
182 cpcmd("QUERY TERM", query_buffer, 1024, NULL);
183 ptr = strstr(query_buffer, "CONMODE");
184 /*
185 * Set the conmode to 3215 so that the device recognition
186 * will set the cu_type of the console to 3215. If the
187 * conmode is 3270 and we don't set it back then both
188 * 3215 and the 3270 driver will try to access the console
189 * device (3215 as console and 3270 as normal tty).
190 */
191 cpcmd("TERM CONMODE 3215", NULL, 0, NULL);
192 if (ptr == NULL) {
193 #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
194 SET_CONSOLE_SCLP;
195 #endif
196 return;
197 }
198 if (strncmp(ptr + 8, "3270", 4) == 0) {
199 #if defined(CONFIG_TN3270_CONSOLE)
200 SET_CONSOLE_3270;
201 #elif defined(CONFIG_TN3215_CONSOLE)
202 SET_CONSOLE_3215;
203 #elif defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
204 SET_CONSOLE_SCLP;
205 #endif
206 } else if (strncmp(ptr + 8, "3215", 4) == 0) {
207 #if defined(CONFIG_TN3215_CONSOLE)
208 SET_CONSOLE_3215;
209 #elif defined(CONFIG_TN3270_CONSOLE)
210 SET_CONSOLE_3270;
211 #elif defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
212 SET_CONSOLE_SCLP;
213 #endif
214 }
215 } else {
216 #if defined(CONFIG_SCLP_CONSOLE) || defined(CONFIG_SCLP_VT220_CONSOLE)
217 SET_CONSOLE_SCLP;
218 #endif
219 }
220 }
221
222 #ifdef CONFIG_ZFCPDUMP
223 static void __init setup_zfcpdump(void)
224 {
225 if (ipl_info.type != IPL_TYPE_FCP_DUMP)
226 return;
227 if (OLDMEM_BASE)
228 return;
229 strcat(boot_command_line, " cio_ignore=all,!ipldev,!condev");
230 console_loglevel = 2;
231 }
232 #else
233 static inline void setup_zfcpdump(void) {}
234 #endif /* CONFIG_ZFCPDUMP */
235
236 /*
237 * Reboot, halt and power_off stubs. They just call _machine_restart,
238 * _machine_halt or _machine_power_off.
239 */
240
241 void machine_restart(char *command)
242 {
243 if ((!in_interrupt() && !in_atomic()) || oops_in_progress)
244 /*
245 * Only unblank the console if we are called in enabled
246 * context or a bust_spinlocks cleared the way for us.
247 */
248 console_unblank();
249 _machine_restart(command);
250 }
251
252 void machine_halt(void)
253 {
254 if (!in_interrupt() || oops_in_progress)
255 /*
256 * Only unblank the console if we are called in enabled
257 * context or a bust_spinlocks cleared the way for us.
258 */
259 console_unblank();
260 _machine_halt();
261 }
262
263 void machine_power_off(void)
264 {
265 if (!in_interrupt() || oops_in_progress)
266 /*
267 * Only unblank the console if we are called in enabled
268 * context or a bust_spinlocks cleared the way for us.
269 */
270 console_unblank();
271 _machine_power_off();
272 }
273
274 /*
275 * Dummy power off function.
276 */
277 void (*pm_power_off)(void) = machine_power_off;
278 EXPORT_SYMBOL_GPL(pm_power_off);
279
280 static int __init early_parse_mem(char *p)
281 {
282 memory_end = memparse(p, &p);
283 memory_end_set = 1;
284 return 0;
285 }
286 early_param("mem", early_parse_mem);
287
288 static int __init parse_vmalloc(char *arg)
289 {
290 if (!arg)
291 return -EINVAL;
292 VMALLOC_END = (memparse(arg, &arg) + PAGE_SIZE - 1) & PAGE_MASK;
293 return 0;
294 }
295 early_param("vmalloc", parse_vmalloc);
296
297 static int __init early_parse_user_mode(char *p)
298 {
299 if (!p || strcmp(p, "primary") == 0)
300 return 0;
301 return 1;
302 }
303 early_param("user_mode", early_parse_user_mode);
304
305 void *restart_stack __attribute__((__section__(".data")));
306
307 static void __init setup_lowcore(void)
308 {
309 struct _lowcore *lc;
310
311 /*
312 * Setup lowcore for boot cpu
313 */
314 BUILD_BUG_ON(sizeof(struct _lowcore) != LC_PAGES * 4096);
315 lc = __alloc_bootmem_low(LC_PAGES * PAGE_SIZE, LC_PAGES * PAGE_SIZE, 0);
316 lc->restart_psw.mask = PSW_KERNEL_BITS;
317 lc->restart_psw.addr =
318 PSW_ADDR_AMODE | (unsigned long) restart_int_handler;
319 lc->external_new_psw.mask = PSW_KERNEL_BITS |
320 PSW_MASK_DAT | PSW_MASK_MCHECK;
321 lc->external_new_psw.addr =
322 PSW_ADDR_AMODE | (unsigned long) ext_int_handler;
323 lc->svc_new_psw.mask = PSW_KERNEL_BITS |
324 PSW_MASK_DAT | PSW_MASK_IO | PSW_MASK_EXT | PSW_MASK_MCHECK;
325 lc->svc_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) system_call;
326 lc->program_new_psw.mask = PSW_KERNEL_BITS |
327 PSW_MASK_DAT | PSW_MASK_MCHECK;
328 lc->program_new_psw.addr =
329 PSW_ADDR_AMODE | (unsigned long) pgm_check_handler;
330 lc->mcck_new_psw.mask = PSW_KERNEL_BITS;
331 lc->mcck_new_psw.addr =
332 PSW_ADDR_AMODE | (unsigned long) mcck_int_handler;
333 lc->io_new_psw.mask = PSW_KERNEL_BITS |
334 PSW_MASK_DAT | PSW_MASK_MCHECK;
335 lc->io_new_psw.addr = PSW_ADDR_AMODE | (unsigned long) io_int_handler;
336 lc->clock_comparator = -1ULL;
337 lc->kernel_stack = ((unsigned long) &init_thread_union)
338 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
339 lc->async_stack = (unsigned long)
340 __alloc_bootmem(ASYNC_SIZE, ASYNC_SIZE, 0)
341 + ASYNC_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
342 lc->panic_stack = (unsigned long)
343 __alloc_bootmem(PAGE_SIZE, PAGE_SIZE, 0)
344 + PAGE_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
345 lc->current_task = (unsigned long) init_thread_union.thread_info.task;
346 lc->thread_info = (unsigned long) &init_thread_union;
347 lc->machine_flags = S390_lowcore.machine_flags;
348 lc->stfl_fac_list = S390_lowcore.stfl_fac_list;
349 memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
350 MAX_FACILITY_BIT/8);
351 #ifndef CONFIG_64BIT
352 if (MACHINE_HAS_IEEE) {
353 lc->extended_save_area_addr = (__u32)
354 __alloc_bootmem_low(PAGE_SIZE, PAGE_SIZE, 0);
355 /* enable extended save area */
356 __ctl_set_bit(14, 29);
357 }
358 #else
359 lc->vdso_per_cpu_data = (unsigned long) &lc->paste[0];
360 #endif
361 lc->sync_enter_timer = S390_lowcore.sync_enter_timer;
362 lc->async_enter_timer = S390_lowcore.async_enter_timer;
363 lc->exit_timer = S390_lowcore.exit_timer;
364 lc->user_timer = S390_lowcore.user_timer;
365 lc->system_timer = S390_lowcore.system_timer;
366 lc->steal_timer = S390_lowcore.steal_timer;
367 lc->last_update_timer = S390_lowcore.last_update_timer;
368 lc->last_update_clock = S390_lowcore.last_update_clock;
369 lc->ftrace_func = S390_lowcore.ftrace_func;
370
371 restart_stack = __alloc_bootmem(ASYNC_SIZE, ASYNC_SIZE, 0);
372 restart_stack += ASYNC_SIZE;
373
374 /*
375 * Set up PSW restart to call ipl.c:do_restart(). Copy the relevant
376 * restart data to the absolute zero lowcore. This is necesary if
377 * PSW restart is done on an offline CPU that has lowcore zero.
378 */
379 lc->restart_stack = (unsigned long) restart_stack;
380 lc->restart_fn = (unsigned long) do_restart;
381 lc->restart_data = 0;
382 lc->restart_source = -1UL;
383
384 /* Setup absolute zero lowcore */
385 mem_assign_absolute(S390_lowcore.restart_stack, lc->restart_stack);
386 mem_assign_absolute(S390_lowcore.restart_fn, lc->restart_fn);
387 mem_assign_absolute(S390_lowcore.restart_data, lc->restart_data);
388 mem_assign_absolute(S390_lowcore.restart_source, lc->restart_source);
389 mem_assign_absolute(S390_lowcore.restart_psw, lc->restart_psw);
390
391 set_prefix((u32)(unsigned long) lc);
392 lowcore_ptr[0] = lc;
393 }
394
395 static struct resource code_resource = {
396 .name = "Kernel code",
397 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
398 };
399
400 static struct resource data_resource = {
401 .name = "Kernel data",
402 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
403 };
404
405 static struct resource bss_resource = {
406 .name = "Kernel bss",
407 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
408 };
409
410 static struct resource __initdata *standard_resources[] = {
411 &code_resource,
412 &data_resource,
413 &bss_resource,
414 };
415
416 static void __init setup_resources(void)
417 {
418 struct resource *res, *std_res, *sub_res;
419 int i, j;
420
421 code_resource.start = (unsigned long) &_text;
422 code_resource.end = (unsigned long) &_etext - 1;
423 data_resource.start = (unsigned long) &_etext;
424 data_resource.end = (unsigned long) &_edata - 1;
425 bss_resource.start = (unsigned long) &__bss_start;
426 bss_resource.end = (unsigned long) &__bss_stop - 1;
427
428 for (i = 0; i < MEMORY_CHUNKS; i++) {
429 if (!memory_chunk[i].size)
430 continue;
431 res = alloc_bootmem_low(sizeof(*res));
432 res->flags = IORESOURCE_BUSY | IORESOURCE_MEM;
433 switch (memory_chunk[i].type) {
434 case CHUNK_READ_WRITE:
435 res->name = "System RAM";
436 break;
437 case CHUNK_READ_ONLY:
438 res->name = "System ROM";
439 res->flags |= IORESOURCE_READONLY;
440 break;
441 default:
442 res->name = "reserved";
443 }
444 res->start = memory_chunk[i].addr;
445 res->end = res->start + memory_chunk[i].size - 1;
446 request_resource(&iomem_resource, res);
447
448 for (j = 0; j < ARRAY_SIZE(standard_resources); j++) {
449 std_res = standard_resources[j];
450 if (std_res->start < res->start ||
451 std_res->start > res->end)
452 continue;
453 if (std_res->end > res->end) {
454 sub_res = alloc_bootmem_low(sizeof(*sub_res));
455 *sub_res = *std_res;
456 sub_res->end = res->end;
457 std_res->start = res->end + 1;
458 request_resource(res, sub_res);
459 } else {
460 request_resource(res, std_res);
461 }
462 }
463 }
464 }
465
466 static void __init setup_memory_end(void)
467 {
468 unsigned long vmax, vmalloc_size, tmp;
469 unsigned long real_memory_size = 0;
470 int i;
471
472
473 #ifdef CONFIG_ZFCPDUMP
474 if (ipl_info.type == IPL_TYPE_FCP_DUMP && !OLDMEM_BASE) {
475 memory_end = ZFCPDUMP_HSA_SIZE;
476 memory_end_set = 1;
477 }
478 #endif
479 memory_end &= PAGE_MASK;
480
481 /*
482 * Make sure all chunks are MAX_ORDER aligned so we don't need the
483 * extra checks that HOLES_IN_ZONE would require.
484 */
485 for (i = 0; i < MEMORY_CHUNKS; i++) {
486 unsigned long start, end;
487 struct mem_chunk *chunk;
488 unsigned long align;
489
490 chunk = &memory_chunk[i];
491 if (!chunk->size)
492 continue;
493 align = 1UL << (MAX_ORDER + PAGE_SHIFT - 1);
494 start = (chunk->addr + align - 1) & ~(align - 1);
495 end = (chunk->addr + chunk->size) & ~(align - 1);
496 if (start >= end)
497 memset(chunk, 0, sizeof(*chunk));
498 else {
499 chunk->addr = start;
500 chunk->size = end - start;
501 }
502 real_memory_size = max(real_memory_size,
503 chunk->addr + chunk->size);
504 }
505
506 /* Choose kernel address space layout: 2, 3, or 4 levels. */
507 #ifdef CONFIG_64BIT
508 vmalloc_size = VMALLOC_END ?: (128UL << 30) - MODULES_LEN;
509 tmp = (memory_end ?: real_memory_size) / PAGE_SIZE;
510 tmp = tmp * (sizeof(struct page) + PAGE_SIZE) + vmalloc_size;
511 if (tmp <= (1UL << 42))
512 vmax = 1UL << 42; /* 3-level kernel page table */
513 else
514 vmax = 1UL << 53; /* 4-level kernel page table */
515 /* module area is at the end of the kernel address space. */
516 MODULES_END = vmax;
517 MODULES_VADDR = MODULES_END - MODULES_LEN;
518 VMALLOC_END = MODULES_VADDR;
519 #else
520 vmalloc_size = VMALLOC_END ?: 96UL << 20;
521 vmax = 1UL << 31; /* 2-level kernel page table */
522 /* vmalloc area is at the end of the kernel address space. */
523 VMALLOC_END = vmax;
524 #endif
525 VMALLOC_START = vmax - vmalloc_size;
526
527 /* Split remaining virtual space between 1:1 mapping & vmemmap array */
528 tmp = VMALLOC_START / (PAGE_SIZE + sizeof(struct page));
529 /* vmemmap contains a multiple of PAGES_PER_SECTION struct pages */
530 tmp = SECTION_ALIGN_UP(tmp);
531 tmp = VMALLOC_START - tmp * sizeof(struct page);
532 tmp &= ~((vmax >> 11) - 1); /* align to page table level */
533 tmp = min(tmp, 1UL << MAX_PHYSMEM_BITS);
534 vmemmap = (struct page *) tmp;
535
536 /* Take care that memory_end is set and <= vmemmap */
537 memory_end = min(memory_end ?: real_memory_size, tmp);
538
539 /* Fixup memory chunk array to fit into 0..memory_end */
540 for (i = 0; i < MEMORY_CHUNKS; i++) {
541 struct mem_chunk *chunk = &memory_chunk[i];
542
543 if (!chunk->size)
544 continue;
545 if (chunk->addr >= memory_end) {
546 memset(chunk, 0, sizeof(*chunk));
547 continue;
548 }
549 if (chunk->addr + chunk->size > memory_end)
550 chunk->size = memory_end - chunk->addr;
551 }
552 }
553
554 static void __init setup_vmcoreinfo(void)
555 {
556 mem_assign_absolute(S390_lowcore.vmcore_info, paddr_vmcoreinfo_note());
557 }
558
559 #ifdef CONFIG_CRASH_DUMP
560
561 /*
562 * Find suitable location for crashkernel memory
563 */
564 static unsigned long __init find_crash_base(unsigned long crash_size,
565 char **msg)
566 {
567 unsigned long crash_base;
568 struct mem_chunk *chunk;
569 int i;
570
571 if (memory_chunk[0].size < crash_size) {
572 *msg = "first memory chunk must be at least crashkernel size";
573 return 0;
574 }
575 if (OLDMEM_BASE && crash_size == OLDMEM_SIZE)
576 return OLDMEM_BASE;
577
578 for (i = MEMORY_CHUNKS - 1; i >= 0; i--) {
579 chunk = &memory_chunk[i];
580 if (chunk->size == 0)
581 continue;
582 if (chunk->type != CHUNK_READ_WRITE)
583 continue;
584 if (chunk->size < crash_size)
585 continue;
586 crash_base = (chunk->addr + chunk->size) - crash_size;
587 if (crash_base < crash_size)
588 continue;
589 if (crash_base < ZFCPDUMP_HSA_SIZE_MAX)
590 continue;
591 if (crash_base < (unsigned long) INITRD_START + INITRD_SIZE)
592 continue;
593 return crash_base;
594 }
595 *msg = "no suitable area found";
596 return 0;
597 }
598
599 /*
600 * Check if crash_base and crash_size is valid
601 */
602 static int __init verify_crash_base(unsigned long crash_base,
603 unsigned long crash_size,
604 char **msg)
605 {
606 struct mem_chunk *chunk;
607 int i;
608
609 /*
610 * Because we do the swap to zero, we must have at least 'crash_size'
611 * bytes free space before crash_base
612 */
613 if (crash_size > crash_base) {
614 *msg = "crashkernel offset must be greater than size";
615 return -EINVAL;
616 }
617
618 /* First memory chunk must be at least crash_size */
619 if (memory_chunk[0].size < crash_size) {
620 *msg = "first memory chunk must be at least crashkernel size";
621 return -EINVAL;
622 }
623 /* Check if we fit into the respective memory chunk */
624 for (i = 0; i < MEMORY_CHUNKS; i++) {
625 chunk = &memory_chunk[i];
626 if (chunk->size == 0)
627 continue;
628 if (crash_base < chunk->addr)
629 continue;
630 if (crash_base >= chunk->addr + chunk->size)
631 continue;
632 /* we have found the memory chunk */
633 if (crash_base + crash_size > chunk->addr + chunk->size) {
634 *msg = "selected memory chunk is too small for "
635 "crashkernel memory";
636 return -EINVAL;
637 }
638 return 0;
639 }
640 *msg = "invalid memory range specified";
641 return -EINVAL;
642 }
643
644 /*
645 * When kdump is enabled, we have to ensure that no memory from
646 * the area [0 - crashkernel memory size] and
647 * [crashk_res.start - crashk_res.end] is set offline.
648 */
649 static int kdump_mem_notifier(struct notifier_block *nb,
650 unsigned long action, void *data)
651 {
652 struct memory_notify *arg = data;
653
654 if (arg->start_pfn < PFN_DOWN(resource_size(&crashk_res)))
655 return NOTIFY_BAD;
656 if (arg->start_pfn > PFN_DOWN(crashk_res.end))
657 return NOTIFY_OK;
658 if (arg->start_pfn + arg->nr_pages - 1 < PFN_DOWN(crashk_res.start))
659 return NOTIFY_OK;
660 return NOTIFY_BAD;
661 }
662
663 static struct notifier_block kdump_mem_nb = {
664 .notifier_call = kdump_mem_notifier,
665 };
666
667 #endif
668
669 /*
670 * Make sure that oldmem, where the dump is stored, is protected
671 */
672 static void reserve_oldmem(void)
673 {
674 #ifdef CONFIG_CRASH_DUMP
675 unsigned long real_size = 0;
676 int i;
677
678 if (!OLDMEM_BASE)
679 return;
680 for (i = 0; i < MEMORY_CHUNKS; i++) {
681 struct mem_chunk *chunk = &memory_chunk[i];
682
683 real_size = max(real_size, chunk->addr + chunk->size);
684 }
685 create_mem_hole(memory_chunk, OLDMEM_BASE, OLDMEM_SIZE);
686 create_mem_hole(memory_chunk, OLDMEM_SIZE, real_size - OLDMEM_SIZE);
687 #endif
688 }
689
690 /*
691 * Reserve memory for kdump kernel to be loaded with kexec
692 */
693 static void __init reserve_crashkernel(void)
694 {
695 #ifdef CONFIG_CRASH_DUMP
696 unsigned long long crash_base, crash_size;
697 char *msg = NULL;
698 int rc;
699
700 rc = parse_crashkernel(boot_command_line, memory_end, &crash_size,
701 &crash_base);
702 if (rc || crash_size == 0)
703 return;
704 crash_base = ALIGN(crash_base, KEXEC_CRASH_MEM_ALIGN);
705 crash_size = ALIGN(crash_size, KEXEC_CRASH_MEM_ALIGN);
706 if (register_memory_notifier(&kdump_mem_nb))
707 return;
708 if (!crash_base)
709 crash_base = find_crash_base(crash_size, &msg);
710 if (!crash_base) {
711 pr_info("crashkernel reservation failed: %s\n", msg);
712 unregister_memory_notifier(&kdump_mem_nb);
713 return;
714 }
715 if (verify_crash_base(crash_base, crash_size, &msg)) {
716 pr_info("crashkernel reservation failed: %s\n", msg);
717 unregister_memory_notifier(&kdump_mem_nb);
718 return;
719 }
720 if (!OLDMEM_BASE && MACHINE_IS_VM)
721 diag10_range(PFN_DOWN(crash_base), PFN_DOWN(crash_size));
722 crashk_res.start = crash_base;
723 crashk_res.end = crash_base + crash_size - 1;
724 insert_resource(&iomem_resource, &crashk_res);
725 create_mem_hole(memory_chunk, crash_base, crash_size);
726 pr_info("Reserving %lluMB of memory at %lluMB "
727 "for crashkernel (System RAM: %luMB)\n",
728 crash_size >> 20, crash_base >> 20, memory_end >> 20);
729 os_info_crashkernel_add(crash_base, crash_size);
730 #endif
731 }
732
733 static void __init setup_memory(void)
734 {
735 unsigned long bootmap_size;
736 unsigned long start_pfn, end_pfn;
737 int i;
738
739 /*
740 * partially used pages are not usable - thus
741 * we are rounding upwards:
742 */
743 start_pfn = PFN_UP(__pa(&_end));
744 end_pfn = max_pfn = PFN_DOWN(memory_end);
745
746 #ifdef CONFIG_BLK_DEV_INITRD
747 /*
748 * Move the initrd in case the bitmap of the bootmem allocater
749 * would overwrite it.
750 */
751
752 if (INITRD_START && INITRD_SIZE) {
753 unsigned long bmap_size;
754 unsigned long start;
755
756 bmap_size = bootmem_bootmap_pages(end_pfn - start_pfn + 1);
757 bmap_size = PFN_PHYS(bmap_size);
758
759 if (PFN_PHYS(start_pfn) + bmap_size > INITRD_START) {
760 start = PFN_PHYS(start_pfn) + bmap_size + PAGE_SIZE;
761
762 #ifdef CONFIG_CRASH_DUMP
763 if (OLDMEM_BASE) {
764 /* Move initrd behind kdump oldmem */
765 if (start + INITRD_SIZE > OLDMEM_BASE &&
766 start < OLDMEM_BASE + OLDMEM_SIZE)
767 start = OLDMEM_BASE + OLDMEM_SIZE;
768 }
769 #endif
770 if (start + INITRD_SIZE > memory_end) {
771 pr_err("initrd extends beyond end of "
772 "memory (0x%08lx > 0x%08lx) "
773 "disabling initrd\n",
774 start + INITRD_SIZE, memory_end);
775 INITRD_START = INITRD_SIZE = 0;
776 } else {
777 pr_info("Moving initrd (0x%08lx -> "
778 "0x%08lx, size: %ld)\n",
779 INITRD_START, start, INITRD_SIZE);
780 memmove((void *) start, (void *) INITRD_START,
781 INITRD_SIZE);
782 INITRD_START = start;
783 }
784 }
785 }
786 #endif
787
788 /*
789 * Initialize the boot-time allocator
790 */
791 bootmap_size = init_bootmem(start_pfn, end_pfn);
792
793 /*
794 * Register RAM areas with the bootmem allocator.
795 */
796
797 for (i = 0; i < MEMORY_CHUNKS; i++) {
798 unsigned long start_chunk, end_chunk, pfn;
799
800 if (!memory_chunk[i].size)
801 continue;
802 start_chunk = PFN_DOWN(memory_chunk[i].addr);
803 end_chunk = start_chunk + PFN_DOWN(memory_chunk[i].size);
804 end_chunk = min(end_chunk, end_pfn);
805 if (start_chunk >= end_chunk)
806 continue;
807 memblock_add_node(PFN_PHYS(start_chunk),
808 PFN_PHYS(end_chunk - start_chunk), 0);
809 pfn = max(start_chunk, start_pfn);
810 storage_key_init_range(PFN_PHYS(pfn), PFN_PHYS(end_chunk));
811 }
812
813 psw_set_key(PAGE_DEFAULT_KEY);
814
815 free_bootmem_with_active_regions(0, max_pfn);
816
817 /*
818 * Reserve memory used for lowcore/command line/kernel image.
819 */
820 reserve_bootmem(0, (unsigned long)_ehead, BOOTMEM_DEFAULT);
821 reserve_bootmem((unsigned long)_stext,
822 PFN_PHYS(start_pfn) - (unsigned long)_stext,
823 BOOTMEM_DEFAULT);
824 /*
825 * Reserve the bootmem bitmap itself as well. We do this in two
826 * steps (first step was init_bootmem()) because this catches
827 * the (very unlikely) case of us accidentally initializing the
828 * bootmem allocator with an invalid RAM area.
829 */
830 reserve_bootmem(start_pfn << PAGE_SHIFT, bootmap_size,
831 BOOTMEM_DEFAULT);
832
833 #ifdef CONFIG_CRASH_DUMP
834 if (crashk_res.start)
835 reserve_bootmem(crashk_res.start,
836 crashk_res.end - crashk_res.start + 1,
837 BOOTMEM_DEFAULT);
838 if (is_kdump_kernel())
839 reserve_bootmem(elfcorehdr_addr - OLDMEM_BASE,
840 PAGE_ALIGN(elfcorehdr_size), BOOTMEM_DEFAULT);
841 #endif
842 #ifdef CONFIG_BLK_DEV_INITRD
843 if (INITRD_START && INITRD_SIZE) {
844 if (INITRD_START + INITRD_SIZE <= memory_end) {
845 reserve_bootmem(INITRD_START, INITRD_SIZE,
846 BOOTMEM_DEFAULT);
847 initrd_start = INITRD_START;
848 initrd_end = initrd_start + INITRD_SIZE;
849 } else {
850 pr_err("initrd extends beyond end of "
851 "memory (0x%08lx > 0x%08lx) "
852 "disabling initrd\n",
853 initrd_start + INITRD_SIZE, memory_end);
854 initrd_start = initrd_end = 0;
855 }
856 }
857 #endif
858 }
859
860 /*
861 * Setup hardware capabilities.
862 */
863 static void __init setup_hwcaps(void)
864 {
865 static const int stfl_bits[6] = { 0, 2, 7, 17, 19, 21 };
866 struct cpuid cpu_id;
867 int i;
868
869 /*
870 * The store facility list bits numbers as found in the principles
871 * of operation are numbered with bit 1UL<<31 as number 0 to
872 * bit 1UL<<0 as number 31.
873 * Bit 0: instructions named N3, "backported" to esa-mode
874 * Bit 2: z/Architecture mode is active
875 * Bit 7: the store-facility-list-extended facility is installed
876 * Bit 17: the message-security assist is installed
877 * Bit 19: the long-displacement facility is installed
878 * Bit 21: the extended-immediate facility is installed
879 * Bit 22: extended-translation facility 3 is installed
880 * Bit 30: extended-translation facility 3 enhancement facility
881 * These get translated to:
882 * HWCAP_S390_ESAN3 bit 0, HWCAP_S390_ZARCH bit 1,
883 * HWCAP_S390_STFLE bit 2, HWCAP_S390_MSA bit 3,
884 * HWCAP_S390_LDISP bit 4, HWCAP_S390_EIMM bit 5 and
885 * HWCAP_S390_ETF3EH bit 8 (22 && 30).
886 */
887 for (i = 0; i < 6; i++)
888 if (test_facility(stfl_bits[i]))
889 elf_hwcap |= 1UL << i;
890
891 if (test_facility(22) && test_facility(30))
892 elf_hwcap |= HWCAP_S390_ETF3EH;
893
894 /*
895 * Check for additional facilities with store-facility-list-extended.
896 * stfle stores doublewords (8 byte) with bit 1ULL<<63 as bit 0
897 * and 1ULL<<0 as bit 63. Bits 0-31 contain the same information
898 * as stored by stfl, bits 32-xxx contain additional facilities.
899 * How many facility words are stored depends on the number of
900 * doublewords passed to the instruction. The additional facilities
901 * are:
902 * Bit 42: decimal floating point facility is installed
903 * Bit 44: perform floating point operation facility is installed
904 * translated to:
905 * HWCAP_S390_DFP bit 6 (42 && 44).
906 */
907 if ((elf_hwcap & (1UL << 2)) && test_facility(42) && test_facility(44))
908 elf_hwcap |= HWCAP_S390_DFP;
909
910 /*
911 * Huge page support HWCAP_S390_HPAGE is bit 7.
912 */
913 if (MACHINE_HAS_HPAGE)
914 elf_hwcap |= HWCAP_S390_HPAGE;
915
916 #if defined(CONFIG_64BIT)
917 /*
918 * 64-bit register support for 31-bit processes
919 * HWCAP_S390_HIGH_GPRS is bit 9.
920 */
921 elf_hwcap |= HWCAP_S390_HIGH_GPRS;
922
923 /*
924 * Transactional execution support HWCAP_S390_TE is bit 10.
925 */
926 if (test_facility(50) && test_facility(73))
927 elf_hwcap |= HWCAP_S390_TE;
928 #endif
929
930 get_cpu_id(&cpu_id);
931 switch (cpu_id.machine) {
932 case 0x9672:
933 #if !defined(CONFIG_64BIT)
934 default: /* Use "g5" as default for 31 bit kernels. */
935 #endif
936 strcpy(elf_platform, "g5");
937 break;
938 case 0x2064:
939 case 0x2066:
940 #if defined(CONFIG_64BIT)
941 default: /* Use "z900" as default for 64 bit kernels. */
942 #endif
943 strcpy(elf_platform, "z900");
944 break;
945 case 0x2084:
946 case 0x2086:
947 strcpy(elf_platform, "z990");
948 break;
949 case 0x2094:
950 case 0x2096:
951 strcpy(elf_platform, "z9-109");
952 break;
953 case 0x2097:
954 case 0x2098:
955 strcpy(elf_platform, "z10");
956 break;
957 case 0x2817:
958 case 0x2818:
959 strcpy(elf_platform, "z196");
960 break;
961 case 0x2827:
962 case 0x2828:
963 strcpy(elf_platform, "zEC12");
964 break;
965 }
966 }
967
968 /*
969 * Setup function called from init/main.c just after the banner
970 * was printed.
971 */
972
973 void __init setup_arch(char **cmdline_p)
974 {
975 /*
976 * print what head.S has found out about the machine
977 */
978 #ifndef CONFIG_64BIT
979 if (MACHINE_IS_VM)
980 pr_info("Linux is running as a z/VM "
981 "guest operating system in 31-bit mode\n");
982 else if (MACHINE_IS_LPAR)
983 pr_info("Linux is running natively in 31-bit mode\n");
984 if (MACHINE_HAS_IEEE)
985 pr_info("The hardware system has IEEE compatible "
986 "floating point units\n");
987 else
988 pr_info("The hardware system has no IEEE compatible "
989 "floating point units\n");
990 #else /* CONFIG_64BIT */
991 if (MACHINE_IS_VM)
992 pr_info("Linux is running as a z/VM "
993 "guest operating system in 64-bit mode\n");
994 else if (MACHINE_IS_KVM)
995 pr_info("Linux is running under KVM in 64-bit mode\n");
996 else if (MACHINE_IS_LPAR)
997 pr_info("Linux is running natively in 64-bit mode\n");
998 #endif /* CONFIG_64BIT */
999
1000 /* Have one command line that is parsed and saved in /proc/cmdline */
1001 /* boot_command_line has been already set up in early.c */
1002 *cmdline_p = boot_command_line;
1003
1004 ROOT_DEV = Root_RAM0;
1005
1006 init_mm.start_code = PAGE_OFFSET;
1007 init_mm.end_code = (unsigned long) &_etext;
1008 init_mm.end_data = (unsigned long) &_edata;
1009 init_mm.brk = (unsigned long) &_end;
1010
1011 uaccess = MACHINE_HAS_MVCOS ? uaccess_mvcos : uaccess_pt;
1012
1013 parse_early_param();
1014 detect_memory_layout(memory_chunk, memory_end);
1015 os_info_init();
1016 setup_ipl();
1017 reserve_oldmem();
1018 setup_memory_end();
1019 reserve_crashkernel();
1020 setup_memory();
1021 setup_resources();
1022 setup_vmcoreinfo();
1023 setup_lowcore();
1024
1025 cpu_init();
1026 s390_init_cpu_topology();
1027
1028 /*
1029 * Setup capabilities (ELF_HWCAP & ELF_PLATFORM).
1030 */
1031 setup_hwcaps();
1032
1033 /*
1034 * Create kernel page tables and switch to virtual addressing.
1035 */
1036 paging_init();
1037
1038 /* Setup default console */
1039 conmode_default();
1040 set_preferred_console();
1041
1042 /* Setup zfcpdump support */
1043 setup_zfcpdump();
1044 }