]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/s390/kernel/smp.c
drm/radeon: set fb aperture sizes for framebuffer handoff.
[mirror_ubuntu-zesty-kernel.git] / arch / s390 / kernel / smp.c
1 /*
2 * arch/s390/kernel/smp.c
3 *
4 * Copyright IBM Corp. 1999, 2009
5 * Author(s): Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com),
6 * Martin Schwidefsky (schwidefsky@de.ibm.com)
7 * Heiko Carstens (heiko.carstens@de.ibm.com)
8 *
9 * based on other smp stuff by
10 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net>
11 * (c) 1998 Ingo Molnar
12 *
13 * We work with logical cpu numbering everywhere we can. The only
14 * functions using the real cpu address (got from STAP) are the sigp
15 * functions. For all other functions we use the identity mapping.
16 * That means that cpu_number_map[i] == i for every cpu. cpu_number_map is
17 * used e.g. to find the idle task belonging to a logical cpu. Every array
18 * in the kernel is sorted by the logical cpu number and not by the physical
19 * one which is causing all the confusion with __cpu_logical_map and
20 * cpu_number_map in other architectures.
21 */
22
23 #define KMSG_COMPONENT "cpu"
24 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
25
26 #include <linux/module.h>
27 #include <linux/init.h>
28 #include <linux/mm.h>
29 #include <linux/err.h>
30 #include <linux/spinlock.h>
31 #include <linux/kernel_stat.h>
32 #include <linux/delay.h>
33 #include <linux/cache.h>
34 #include <linux/interrupt.h>
35 #include <linux/irqflags.h>
36 #include <linux/cpu.h>
37 #include <linux/timex.h>
38 #include <linux/bootmem.h>
39 #include <asm/ipl.h>
40 #include <asm/setup.h>
41 #include <asm/sigp.h>
42 #include <asm/pgalloc.h>
43 #include <asm/irq.h>
44 #include <asm/s390_ext.h>
45 #include <asm/cpcmd.h>
46 #include <asm/tlbflush.h>
47 #include <asm/timer.h>
48 #include <asm/lowcore.h>
49 #include <asm/sclp.h>
50 #include <asm/cputime.h>
51 #include <asm/vdso.h>
52 #include "entry.h"
53
54 static struct task_struct *current_set[NR_CPUS];
55
56 static u8 smp_cpu_type;
57 static int smp_use_sigp_detection;
58
59 enum s390_cpu_state {
60 CPU_STATE_STANDBY,
61 CPU_STATE_CONFIGURED,
62 };
63
64 DEFINE_MUTEX(smp_cpu_state_mutex);
65 int smp_cpu_polarization[NR_CPUS];
66 static int smp_cpu_state[NR_CPUS];
67 static int cpu_management;
68
69 static DEFINE_PER_CPU(struct cpu, cpu_devices);
70
71 static void smp_ext_bitcall(int, ec_bit_sig);
72
73 void smp_send_stop(void)
74 {
75 int cpu, rc;
76
77 /* Disable all interrupts/machine checks */
78 __load_psw_mask(psw_kernel_bits & ~PSW_MASK_MCHECK);
79 trace_hardirqs_off();
80
81 /* stop all processors */
82 for_each_online_cpu(cpu) {
83 if (cpu == smp_processor_id())
84 continue;
85 do {
86 rc = signal_processor(cpu, sigp_stop);
87 } while (rc == sigp_busy);
88
89 while (!smp_cpu_not_running(cpu))
90 cpu_relax();
91 }
92 }
93
94 /*
95 * This is the main routine where commands issued by other
96 * cpus are handled.
97 */
98
99 static void do_ext_call_interrupt(__u16 code)
100 {
101 unsigned long bits;
102
103 /*
104 * handle bit signal external calls
105 *
106 * For the ec_schedule signal we have to do nothing. All the work
107 * is done automatically when we return from the interrupt.
108 */
109 bits = xchg(&S390_lowcore.ext_call_fast, 0);
110
111 if (test_bit(ec_call_function, &bits))
112 generic_smp_call_function_interrupt();
113
114 if (test_bit(ec_call_function_single, &bits))
115 generic_smp_call_function_single_interrupt();
116 }
117
118 /*
119 * Send an external call sigp to another cpu and return without waiting
120 * for its completion.
121 */
122 static void smp_ext_bitcall(int cpu, ec_bit_sig sig)
123 {
124 /*
125 * Set signaling bit in lowcore of target cpu and kick it
126 */
127 set_bit(sig, (unsigned long *) &lowcore_ptr[cpu]->ext_call_fast);
128 while (signal_processor(cpu, sigp_emergency_signal) == sigp_busy)
129 udelay(10);
130 }
131
132 void arch_send_call_function_ipi(cpumask_t mask)
133 {
134 int cpu;
135
136 for_each_cpu_mask(cpu, mask)
137 smp_ext_bitcall(cpu, ec_call_function);
138 }
139
140 void arch_send_call_function_single_ipi(int cpu)
141 {
142 smp_ext_bitcall(cpu, ec_call_function_single);
143 }
144
145 #ifndef CONFIG_64BIT
146 /*
147 * this function sends a 'purge tlb' signal to another CPU.
148 */
149 static void smp_ptlb_callback(void *info)
150 {
151 __tlb_flush_local();
152 }
153
154 void smp_ptlb_all(void)
155 {
156 on_each_cpu(smp_ptlb_callback, NULL, 1);
157 }
158 EXPORT_SYMBOL(smp_ptlb_all);
159 #endif /* ! CONFIG_64BIT */
160
161 /*
162 * this function sends a 'reschedule' IPI to another CPU.
163 * it goes straight through and wastes no time serializing
164 * anything. Worst case is that we lose a reschedule ...
165 */
166 void smp_send_reschedule(int cpu)
167 {
168 smp_ext_bitcall(cpu, ec_schedule);
169 }
170
171 /*
172 * parameter area for the set/clear control bit callbacks
173 */
174 struct ec_creg_mask_parms {
175 unsigned long orvals[16];
176 unsigned long andvals[16];
177 };
178
179 /*
180 * callback for setting/clearing control bits
181 */
182 static void smp_ctl_bit_callback(void *info)
183 {
184 struct ec_creg_mask_parms *pp = info;
185 unsigned long cregs[16];
186 int i;
187
188 __ctl_store(cregs, 0, 15);
189 for (i = 0; i <= 15; i++)
190 cregs[i] = (cregs[i] & pp->andvals[i]) | pp->orvals[i];
191 __ctl_load(cregs, 0, 15);
192 }
193
194 /*
195 * Set a bit in a control register of all cpus
196 */
197 void smp_ctl_set_bit(int cr, int bit)
198 {
199 struct ec_creg_mask_parms parms;
200
201 memset(&parms.orvals, 0, sizeof(parms.orvals));
202 memset(&parms.andvals, 0xff, sizeof(parms.andvals));
203 parms.orvals[cr] = 1 << bit;
204 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
205 }
206 EXPORT_SYMBOL(smp_ctl_set_bit);
207
208 /*
209 * Clear a bit in a control register of all cpus
210 */
211 void smp_ctl_clear_bit(int cr, int bit)
212 {
213 struct ec_creg_mask_parms parms;
214
215 memset(&parms.orvals, 0, sizeof(parms.orvals));
216 memset(&parms.andvals, 0xff, sizeof(parms.andvals));
217 parms.andvals[cr] = ~(1L << bit);
218 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
219 }
220 EXPORT_SYMBOL(smp_ctl_clear_bit);
221
222 /*
223 * In early ipl state a temp. logically cpu number is needed, so the sigp
224 * functions can be used to sense other cpus. Since NR_CPUS is >= 2 on
225 * CONFIG_SMP and the ipl cpu is logical cpu 0, it must be 1.
226 */
227 #define CPU_INIT_NO 1
228
229 #ifdef CONFIG_ZFCPDUMP
230
231 /*
232 * zfcpdump_prefix_array holds prefix registers for the following scenario:
233 * 64 bit zfcpdump kernel and 31 bit kernel which is to be dumped. We have to
234 * save its prefix registers, since they get lost, when switching from 31 bit
235 * to 64 bit.
236 */
237 unsigned int zfcpdump_prefix_array[NR_CPUS + 1] \
238 __attribute__((__section__(".data")));
239
240 static void __init smp_get_save_area(unsigned int cpu, unsigned int phy_cpu)
241 {
242 if (ipl_info.type != IPL_TYPE_FCP_DUMP)
243 return;
244 if (cpu >= NR_CPUS) {
245 pr_warning("CPU %i exceeds the maximum %i and is excluded from "
246 "the dump\n", cpu, NR_CPUS - 1);
247 return;
248 }
249 zfcpdump_save_areas[cpu] = kmalloc(sizeof(union save_area), GFP_KERNEL);
250 __cpu_logical_map[CPU_INIT_NO] = (__u16) phy_cpu;
251 while (signal_processor(CPU_INIT_NO, sigp_stop_and_store_status) ==
252 sigp_busy)
253 cpu_relax();
254 memcpy(zfcpdump_save_areas[cpu],
255 (void *)(unsigned long) store_prefix() + SAVE_AREA_BASE,
256 SAVE_AREA_SIZE);
257 #ifdef CONFIG_64BIT
258 /* copy original prefix register */
259 zfcpdump_save_areas[cpu]->s390x.pref_reg = zfcpdump_prefix_array[cpu];
260 #endif
261 }
262
263 union save_area *zfcpdump_save_areas[NR_CPUS + 1];
264 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
265
266 #else
267
268 static inline void smp_get_save_area(unsigned int cpu, unsigned int phy_cpu) { }
269
270 #endif /* CONFIG_ZFCPDUMP */
271
272 static int cpu_stopped(int cpu)
273 {
274 __u32 status;
275
276 /* Check for stopped state */
277 if (signal_processor_ps(&status, 0, cpu, sigp_sense) ==
278 sigp_status_stored) {
279 if (status & 0x40)
280 return 1;
281 }
282 return 0;
283 }
284
285 static int cpu_known(int cpu_id)
286 {
287 int cpu;
288
289 for_each_present_cpu(cpu) {
290 if (__cpu_logical_map[cpu] == cpu_id)
291 return 1;
292 }
293 return 0;
294 }
295
296 static int smp_rescan_cpus_sigp(cpumask_t avail)
297 {
298 int cpu_id, logical_cpu;
299
300 logical_cpu = cpumask_first(&avail);
301 if (logical_cpu >= nr_cpu_ids)
302 return 0;
303 for (cpu_id = 0; cpu_id <= 65535; cpu_id++) {
304 if (cpu_known(cpu_id))
305 continue;
306 __cpu_logical_map[logical_cpu] = cpu_id;
307 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
308 if (!cpu_stopped(logical_cpu))
309 continue;
310 cpu_set(logical_cpu, cpu_present_map);
311 smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
312 logical_cpu = cpumask_next(logical_cpu, &avail);
313 if (logical_cpu >= nr_cpu_ids)
314 break;
315 }
316 return 0;
317 }
318
319 static int smp_rescan_cpus_sclp(cpumask_t avail)
320 {
321 struct sclp_cpu_info *info;
322 int cpu_id, logical_cpu, cpu;
323 int rc;
324
325 logical_cpu = cpumask_first(&avail);
326 if (logical_cpu >= nr_cpu_ids)
327 return 0;
328 info = kmalloc(sizeof(*info), GFP_KERNEL);
329 if (!info)
330 return -ENOMEM;
331 rc = sclp_get_cpu_info(info);
332 if (rc)
333 goto out;
334 for (cpu = 0; cpu < info->combined; cpu++) {
335 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
336 continue;
337 cpu_id = info->cpu[cpu].address;
338 if (cpu_known(cpu_id))
339 continue;
340 __cpu_logical_map[logical_cpu] = cpu_id;
341 smp_cpu_polarization[logical_cpu] = POLARIZATION_UNKNWN;
342 cpu_set(logical_cpu, cpu_present_map);
343 if (cpu >= info->configured)
344 smp_cpu_state[logical_cpu] = CPU_STATE_STANDBY;
345 else
346 smp_cpu_state[logical_cpu] = CPU_STATE_CONFIGURED;
347 logical_cpu = cpumask_next(logical_cpu, &avail);
348 if (logical_cpu >= nr_cpu_ids)
349 break;
350 }
351 out:
352 kfree(info);
353 return rc;
354 }
355
356 static int __smp_rescan_cpus(void)
357 {
358 cpumask_t avail;
359
360 cpus_xor(avail, cpu_possible_map, cpu_present_map);
361 if (smp_use_sigp_detection)
362 return smp_rescan_cpus_sigp(avail);
363 else
364 return smp_rescan_cpus_sclp(avail);
365 }
366
367 static void __init smp_detect_cpus(void)
368 {
369 unsigned int cpu, c_cpus, s_cpus;
370 struct sclp_cpu_info *info;
371 u16 boot_cpu_addr, cpu_addr;
372
373 c_cpus = 1;
374 s_cpus = 0;
375 boot_cpu_addr = __cpu_logical_map[0];
376 info = kmalloc(sizeof(*info), GFP_KERNEL);
377 if (!info)
378 panic("smp_detect_cpus failed to allocate memory\n");
379 /* Use sigp detection algorithm if sclp doesn't work. */
380 if (sclp_get_cpu_info(info)) {
381 smp_use_sigp_detection = 1;
382 for (cpu = 0; cpu <= 65535; cpu++) {
383 if (cpu == boot_cpu_addr)
384 continue;
385 __cpu_logical_map[CPU_INIT_NO] = cpu;
386 if (!cpu_stopped(CPU_INIT_NO))
387 continue;
388 smp_get_save_area(c_cpus, cpu);
389 c_cpus++;
390 }
391 goto out;
392 }
393
394 if (info->has_cpu_type) {
395 for (cpu = 0; cpu < info->combined; cpu++) {
396 if (info->cpu[cpu].address == boot_cpu_addr) {
397 smp_cpu_type = info->cpu[cpu].type;
398 break;
399 }
400 }
401 }
402
403 for (cpu = 0; cpu < info->combined; cpu++) {
404 if (info->has_cpu_type && info->cpu[cpu].type != smp_cpu_type)
405 continue;
406 cpu_addr = info->cpu[cpu].address;
407 if (cpu_addr == boot_cpu_addr)
408 continue;
409 __cpu_logical_map[CPU_INIT_NO] = cpu_addr;
410 if (!cpu_stopped(CPU_INIT_NO)) {
411 s_cpus++;
412 continue;
413 }
414 smp_get_save_area(c_cpus, cpu_addr);
415 c_cpus++;
416 }
417 out:
418 kfree(info);
419 pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
420 get_online_cpus();
421 __smp_rescan_cpus();
422 put_online_cpus();
423 }
424
425 /*
426 * Activate a secondary processor.
427 */
428 int __cpuinit start_secondary(void *cpuvoid)
429 {
430 /* Setup the cpu */
431 cpu_init();
432 preempt_disable();
433 /* Enable TOD clock interrupts on the secondary cpu. */
434 init_cpu_timer();
435 /* Enable cpu timer interrupts on the secondary cpu. */
436 init_cpu_vtimer();
437 /* Enable pfault pseudo page faults on this cpu. */
438 pfault_init();
439
440 /* call cpu notifiers */
441 notify_cpu_starting(smp_processor_id());
442 /* Mark this cpu as online */
443 ipi_call_lock();
444 cpu_set(smp_processor_id(), cpu_online_map);
445 ipi_call_unlock();
446 /* Switch on interrupts */
447 local_irq_enable();
448 /* Print info about this processor */
449 print_cpu_info();
450 /* cpu_idle will call schedule for us */
451 cpu_idle();
452 return 0;
453 }
454
455 static void __init smp_create_idle(unsigned int cpu)
456 {
457 struct task_struct *p;
458
459 /*
460 * don't care about the psw and regs settings since we'll never
461 * reschedule the forked task.
462 */
463 p = fork_idle(cpu);
464 if (IS_ERR(p))
465 panic("failed fork for CPU %u: %li", cpu, PTR_ERR(p));
466 current_set[cpu] = p;
467 }
468
469 static int __cpuinit smp_alloc_lowcore(int cpu)
470 {
471 unsigned long async_stack, panic_stack;
472 struct _lowcore *lowcore;
473 int lc_order;
474
475 lc_order = sizeof(long) == 8 ? 1 : 0;
476 lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, lc_order);
477 if (!lowcore)
478 return -ENOMEM;
479 async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
480 panic_stack = __get_free_page(GFP_KERNEL);
481 if (!panic_stack || !async_stack)
482 goto out;
483 memcpy(lowcore, &S390_lowcore, 512);
484 memset((char *)lowcore + 512, 0, sizeof(*lowcore) - 512);
485 lowcore->async_stack = async_stack + ASYNC_SIZE;
486 lowcore->panic_stack = panic_stack + PAGE_SIZE;
487
488 #ifndef CONFIG_64BIT
489 if (MACHINE_HAS_IEEE) {
490 unsigned long save_area;
491
492 save_area = get_zeroed_page(GFP_KERNEL);
493 if (!save_area)
494 goto out;
495 lowcore->extended_save_area_addr = (u32) save_area;
496 }
497 #else
498 if (vdso_alloc_per_cpu(cpu, lowcore))
499 goto out;
500 #endif
501 lowcore_ptr[cpu] = lowcore;
502 return 0;
503
504 out:
505 free_page(panic_stack);
506 free_pages(async_stack, ASYNC_ORDER);
507 free_pages((unsigned long) lowcore, lc_order);
508 return -ENOMEM;
509 }
510
511 static void smp_free_lowcore(int cpu)
512 {
513 struct _lowcore *lowcore;
514 int lc_order;
515
516 lc_order = sizeof(long) == 8 ? 1 : 0;
517 lowcore = lowcore_ptr[cpu];
518 #ifndef CONFIG_64BIT
519 if (MACHINE_HAS_IEEE)
520 free_page((unsigned long) lowcore->extended_save_area_addr);
521 #else
522 vdso_free_per_cpu(cpu, lowcore);
523 #endif
524 free_page(lowcore->panic_stack - PAGE_SIZE);
525 free_pages(lowcore->async_stack - ASYNC_SIZE, ASYNC_ORDER);
526 free_pages((unsigned long) lowcore, lc_order);
527 lowcore_ptr[cpu] = NULL;
528 }
529
530 /* Upping and downing of CPUs */
531 int __cpuinit __cpu_up(unsigned int cpu)
532 {
533 struct task_struct *idle;
534 struct _lowcore *cpu_lowcore;
535 struct stack_frame *sf;
536 sigp_ccode ccode;
537 u32 lowcore;
538
539 if (smp_cpu_state[cpu] != CPU_STATE_CONFIGURED)
540 return -EIO;
541 if (smp_alloc_lowcore(cpu))
542 return -ENOMEM;
543 do {
544 ccode = signal_processor(cpu, sigp_initial_cpu_reset);
545 if (ccode == sigp_busy)
546 udelay(10);
547 if (ccode == sigp_not_operational)
548 goto err_out;
549 } while (ccode == sigp_busy);
550
551 lowcore = (u32)(unsigned long)lowcore_ptr[cpu];
552 while (signal_processor_p(lowcore, cpu, sigp_set_prefix) == sigp_busy)
553 udelay(10);
554
555 idle = current_set[cpu];
556 cpu_lowcore = lowcore_ptr[cpu];
557 cpu_lowcore->kernel_stack = (unsigned long)
558 task_stack_page(idle) + THREAD_SIZE;
559 cpu_lowcore->thread_info = (unsigned long) task_thread_info(idle);
560 sf = (struct stack_frame *) (cpu_lowcore->kernel_stack
561 - sizeof(struct pt_regs)
562 - sizeof(struct stack_frame));
563 memset(sf, 0, sizeof(struct stack_frame));
564 sf->gprs[9] = (unsigned long) sf;
565 cpu_lowcore->save_area[15] = (unsigned long) sf;
566 __ctl_store(cpu_lowcore->cregs_save_area, 0, 15);
567 asm volatile(
568 " stam 0,15,0(%0)"
569 : : "a" (&cpu_lowcore->access_regs_save_area) : "memory");
570 cpu_lowcore->percpu_offset = __per_cpu_offset[cpu];
571 cpu_lowcore->current_task = (unsigned long) idle;
572 cpu_lowcore->cpu_nr = cpu;
573 cpu_lowcore->kernel_asce = S390_lowcore.kernel_asce;
574 cpu_lowcore->machine_flags = S390_lowcore.machine_flags;
575 cpu_lowcore->ftrace_func = S390_lowcore.ftrace_func;
576 eieio();
577
578 while (signal_processor(cpu, sigp_restart) == sigp_busy)
579 udelay(10);
580
581 while (!cpu_online(cpu))
582 cpu_relax();
583 return 0;
584
585 err_out:
586 smp_free_lowcore(cpu);
587 return -EIO;
588 }
589
590 static int __init setup_possible_cpus(char *s)
591 {
592 int pcpus, cpu;
593
594 pcpus = simple_strtoul(s, NULL, 0);
595 init_cpu_possible(cpumask_of(0));
596 for (cpu = 1; cpu < pcpus && cpu < nr_cpu_ids; cpu++)
597 set_cpu_possible(cpu, true);
598 return 0;
599 }
600 early_param("possible_cpus", setup_possible_cpus);
601
602 #ifdef CONFIG_HOTPLUG_CPU
603
604 int __cpu_disable(void)
605 {
606 struct ec_creg_mask_parms cr_parms;
607 int cpu = smp_processor_id();
608
609 cpu_clear(cpu, cpu_online_map);
610
611 /* Disable pfault pseudo page faults on this cpu. */
612 pfault_fini();
613
614 memset(&cr_parms.orvals, 0, sizeof(cr_parms.orvals));
615 memset(&cr_parms.andvals, 0xff, sizeof(cr_parms.andvals));
616
617 /* disable all external interrupts */
618 cr_parms.orvals[0] = 0;
619 cr_parms.andvals[0] = ~(1 << 15 | 1 << 14 | 1 << 13 | 1 << 12 |
620 1 << 11 | 1 << 10 | 1 << 6 | 1 << 4);
621 /* disable all I/O interrupts */
622 cr_parms.orvals[6] = 0;
623 cr_parms.andvals[6] = ~(1 << 31 | 1 << 30 | 1 << 29 | 1 << 28 |
624 1 << 27 | 1 << 26 | 1 << 25 | 1 << 24);
625 /* disable most machine checks */
626 cr_parms.orvals[14] = 0;
627 cr_parms.andvals[14] = ~(1 << 28 | 1 << 27 | 1 << 26 |
628 1 << 25 | 1 << 24);
629
630 smp_ctl_bit_callback(&cr_parms);
631
632 return 0;
633 }
634
635 void __cpu_die(unsigned int cpu)
636 {
637 /* Wait until target cpu is down */
638 while (!smp_cpu_not_running(cpu))
639 cpu_relax();
640 smp_free_lowcore(cpu);
641 pr_info("Processor %d stopped\n", cpu);
642 }
643
644 void cpu_die(void)
645 {
646 idle_task_exit();
647 signal_processor(smp_processor_id(), sigp_stop);
648 BUG();
649 for (;;);
650 }
651
652 #endif /* CONFIG_HOTPLUG_CPU */
653
654 void __init smp_prepare_cpus(unsigned int max_cpus)
655 {
656 #ifndef CONFIG_64BIT
657 unsigned long save_area = 0;
658 #endif
659 unsigned long async_stack, panic_stack;
660 struct _lowcore *lowcore;
661 unsigned int cpu;
662 int lc_order;
663
664 smp_detect_cpus();
665
666 /* request the 0x1201 emergency signal external interrupt */
667 if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
668 panic("Couldn't request external interrupt 0x1201");
669 print_cpu_info();
670
671 /* Reallocate current lowcore, but keep its contents. */
672 lc_order = sizeof(long) == 8 ? 1 : 0;
673 lowcore = (void *) __get_free_pages(GFP_KERNEL | GFP_DMA, lc_order);
674 panic_stack = __get_free_page(GFP_KERNEL);
675 async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
676 BUG_ON(!lowcore || !panic_stack || !async_stack);
677 #ifndef CONFIG_64BIT
678 if (MACHINE_HAS_IEEE)
679 save_area = get_zeroed_page(GFP_KERNEL);
680 #endif
681 local_irq_disable();
682 local_mcck_disable();
683 lowcore_ptr[smp_processor_id()] = lowcore;
684 *lowcore = S390_lowcore;
685 lowcore->panic_stack = panic_stack + PAGE_SIZE;
686 lowcore->async_stack = async_stack + ASYNC_SIZE;
687 #ifndef CONFIG_64BIT
688 if (MACHINE_HAS_IEEE)
689 lowcore->extended_save_area_addr = (u32) save_area;
690 #else
691 if (vdso_alloc_per_cpu(smp_processor_id(), lowcore))
692 BUG();
693 #endif
694 set_prefix((u32)(unsigned long) lowcore);
695 local_mcck_enable();
696 local_irq_enable();
697 for_each_possible_cpu(cpu)
698 if (cpu != smp_processor_id())
699 smp_create_idle(cpu);
700 }
701
702 void __init smp_prepare_boot_cpu(void)
703 {
704 BUG_ON(smp_processor_id() != 0);
705
706 current_thread_info()->cpu = 0;
707 cpu_set(0, cpu_present_map);
708 cpu_set(0, cpu_online_map);
709 S390_lowcore.percpu_offset = __per_cpu_offset[0];
710 current_set[0] = current;
711 smp_cpu_state[0] = CPU_STATE_CONFIGURED;
712 smp_cpu_polarization[0] = POLARIZATION_UNKNWN;
713 }
714
715 void __init smp_cpus_done(unsigned int max_cpus)
716 {
717 }
718
719 /*
720 * the frequency of the profiling timer can be changed
721 * by writing a multiplier value into /proc/profile.
722 *
723 * usually you want to run this on all CPUs ;)
724 */
725 int setup_profiling_timer(unsigned int multiplier)
726 {
727 return 0;
728 }
729
730 #ifdef CONFIG_HOTPLUG_CPU
731 static ssize_t cpu_configure_show(struct sys_device *dev,
732 struct sysdev_attribute *attr, char *buf)
733 {
734 ssize_t count;
735
736 mutex_lock(&smp_cpu_state_mutex);
737 count = sprintf(buf, "%d\n", smp_cpu_state[dev->id]);
738 mutex_unlock(&smp_cpu_state_mutex);
739 return count;
740 }
741
742 static ssize_t cpu_configure_store(struct sys_device *dev,
743 struct sysdev_attribute *attr,
744 const char *buf, size_t count)
745 {
746 int cpu = dev->id;
747 int val, rc;
748 char delim;
749
750 if (sscanf(buf, "%d %c", &val, &delim) != 1)
751 return -EINVAL;
752 if (val != 0 && val != 1)
753 return -EINVAL;
754
755 get_online_cpus();
756 mutex_lock(&smp_cpu_state_mutex);
757 rc = -EBUSY;
758 if (cpu_online(cpu))
759 goto out;
760 rc = 0;
761 switch (val) {
762 case 0:
763 if (smp_cpu_state[cpu] == CPU_STATE_CONFIGURED) {
764 rc = sclp_cpu_deconfigure(__cpu_logical_map[cpu]);
765 if (!rc) {
766 smp_cpu_state[cpu] = CPU_STATE_STANDBY;
767 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
768 }
769 }
770 break;
771 case 1:
772 if (smp_cpu_state[cpu] == CPU_STATE_STANDBY) {
773 rc = sclp_cpu_configure(__cpu_logical_map[cpu]);
774 if (!rc) {
775 smp_cpu_state[cpu] = CPU_STATE_CONFIGURED;
776 smp_cpu_polarization[cpu] = POLARIZATION_UNKNWN;
777 }
778 }
779 break;
780 default:
781 break;
782 }
783 out:
784 mutex_unlock(&smp_cpu_state_mutex);
785 put_online_cpus();
786 return rc ? rc : count;
787 }
788 static SYSDEV_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
789 #endif /* CONFIG_HOTPLUG_CPU */
790
791 static ssize_t cpu_polarization_show(struct sys_device *dev,
792 struct sysdev_attribute *attr, char *buf)
793 {
794 int cpu = dev->id;
795 ssize_t count;
796
797 mutex_lock(&smp_cpu_state_mutex);
798 switch (smp_cpu_polarization[cpu]) {
799 case POLARIZATION_HRZ:
800 count = sprintf(buf, "horizontal\n");
801 break;
802 case POLARIZATION_VL:
803 count = sprintf(buf, "vertical:low\n");
804 break;
805 case POLARIZATION_VM:
806 count = sprintf(buf, "vertical:medium\n");
807 break;
808 case POLARIZATION_VH:
809 count = sprintf(buf, "vertical:high\n");
810 break;
811 default:
812 count = sprintf(buf, "unknown\n");
813 break;
814 }
815 mutex_unlock(&smp_cpu_state_mutex);
816 return count;
817 }
818 static SYSDEV_ATTR(polarization, 0444, cpu_polarization_show, NULL);
819
820 static ssize_t show_cpu_address(struct sys_device *dev,
821 struct sysdev_attribute *attr, char *buf)
822 {
823 return sprintf(buf, "%d\n", __cpu_logical_map[dev->id]);
824 }
825 static SYSDEV_ATTR(address, 0444, show_cpu_address, NULL);
826
827
828 static struct attribute *cpu_common_attrs[] = {
829 #ifdef CONFIG_HOTPLUG_CPU
830 &attr_configure.attr,
831 #endif
832 &attr_address.attr,
833 &attr_polarization.attr,
834 NULL,
835 };
836
837 static struct attribute_group cpu_common_attr_group = {
838 .attrs = cpu_common_attrs,
839 };
840
841 static ssize_t show_capability(struct sys_device *dev,
842 struct sysdev_attribute *attr, char *buf)
843 {
844 unsigned int capability;
845 int rc;
846
847 rc = get_cpu_capability(&capability);
848 if (rc)
849 return rc;
850 return sprintf(buf, "%u\n", capability);
851 }
852 static SYSDEV_ATTR(capability, 0444, show_capability, NULL);
853
854 static ssize_t show_idle_count(struct sys_device *dev,
855 struct sysdev_attribute *attr, char *buf)
856 {
857 struct s390_idle_data *idle;
858 unsigned long long idle_count;
859 unsigned int sequence;
860
861 idle = &per_cpu(s390_idle, dev->id);
862 repeat:
863 sequence = idle->sequence;
864 smp_rmb();
865 if (sequence & 1)
866 goto repeat;
867 idle_count = idle->idle_count;
868 if (idle->idle_enter)
869 idle_count++;
870 smp_rmb();
871 if (idle->sequence != sequence)
872 goto repeat;
873 return sprintf(buf, "%llu\n", idle_count);
874 }
875 static SYSDEV_ATTR(idle_count, 0444, show_idle_count, NULL);
876
877 static ssize_t show_idle_time(struct sys_device *dev,
878 struct sysdev_attribute *attr, char *buf)
879 {
880 struct s390_idle_data *idle;
881 unsigned long long now, idle_time, idle_enter;
882 unsigned int sequence;
883
884 idle = &per_cpu(s390_idle, dev->id);
885 now = get_clock();
886 repeat:
887 sequence = idle->sequence;
888 smp_rmb();
889 if (sequence & 1)
890 goto repeat;
891 idle_time = idle->idle_time;
892 idle_enter = idle->idle_enter;
893 if (idle_enter != 0ULL && idle_enter < now)
894 idle_time += now - idle_enter;
895 smp_rmb();
896 if (idle->sequence != sequence)
897 goto repeat;
898 return sprintf(buf, "%llu\n", idle_time >> 12);
899 }
900 static SYSDEV_ATTR(idle_time_us, 0444, show_idle_time, NULL);
901
902 static struct attribute *cpu_online_attrs[] = {
903 &attr_capability.attr,
904 &attr_idle_count.attr,
905 &attr_idle_time_us.attr,
906 NULL,
907 };
908
909 static struct attribute_group cpu_online_attr_group = {
910 .attrs = cpu_online_attrs,
911 };
912
913 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
914 unsigned long action, void *hcpu)
915 {
916 unsigned int cpu = (unsigned int)(long)hcpu;
917 struct cpu *c = &per_cpu(cpu_devices, cpu);
918 struct sys_device *s = &c->sysdev;
919 struct s390_idle_data *idle;
920
921 switch (action) {
922 case CPU_ONLINE:
923 case CPU_ONLINE_FROZEN:
924 idle = &per_cpu(s390_idle, cpu);
925 memset(idle, 0, sizeof(struct s390_idle_data));
926 if (sysfs_create_group(&s->kobj, &cpu_online_attr_group))
927 return NOTIFY_BAD;
928 break;
929 case CPU_DEAD:
930 case CPU_DEAD_FROZEN:
931 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
932 break;
933 }
934 return NOTIFY_OK;
935 }
936
937 static struct notifier_block __cpuinitdata smp_cpu_nb = {
938 .notifier_call = smp_cpu_notify,
939 };
940
941 static int __devinit smp_add_present_cpu(int cpu)
942 {
943 struct cpu *c = &per_cpu(cpu_devices, cpu);
944 struct sys_device *s = &c->sysdev;
945 int rc;
946
947 c->hotpluggable = 1;
948 rc = register_cpu(c, cpu);
949 if (rc)
950 goto out;
951 rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
952 if (rc)
953 goto out_cpu;
954 if (!cpu_online(cpu))
955 goto out;
956 rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
957 if (!rc)
958 return 0;
959 sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
960 out_cpu:
961 #ifdef CONFIG_HOTPLUG_CPU
962 unregister_cpu(c);
963 #endif
964 out:
965 return rc;
966 }
967
968 #ifdef CONFIG_HOTPLUG_CPU
969
970 int __ref smp_rescan_cpus(void)
971 {
972 cpumask_t newcpus;
973 int cpu;
974 int rc;
975
976 get_online_cpus();
977 mutex_lock(&smp_cpu_state_mutex);
978 newcpus = cpu_present_map;
979 rc = __smp_rescan_cpus();
980 if (rc)
981 goto out;
982 cpus_andnot(newcpus, cpu_present_map, newcpus);
983 for_each_cpu_mask(cpu, newcpus) {
984 rc = smp_add_present_cpu(cpu);
985 if (rc)
986 cpu_clear(cpu, cpu_present_map);
987 }
988 rc = 0;
989 out:
990 mutex_unlock(&smp_cpu_state_mutex);
991 put_online_cpus();
992 if (!cpus_empty(newcpus))
993 topology_schedule_update();
994 return rc;
995 }
996
997 static ssize_t __ref rescan_store(struct sysdev_class *class, const char *buf,
998 size_t count)
999 {
1000 int rc;
1001
1002 rc = smp_rescan_cpus();
1003 return rc ? rc : count;
1004 }
1005 static SYSDEV_CLASS_ATTR(rescan, 0200, NULL, rescan_store);
1006 #endif /* CONFIG_HOTPLUG_CPU */
1007
1008 static ssize_t dispatching_show(struct sysdev_class *class, char *buf)
1009 {
1010 ssize_t count;
1011
1012 mutex_lock(&smp_cpu_state_mutex);
1013 count = sprintf(buf, "%d\n", cpu_management);
1014 mutex_unlock(&smp_cpu_state_mutex);
1015 return count;
1016 }
1017
1018 static ssize_t dispatching_store(struct sysdev_class *dev, const char *buf,
1019 size_t count)
1020 {
1021 int val, rc;
1022 char delim;
1023
1024 if (sscanf(buf, "%d %c", &val, &delim) != 1)
1025 return -EINVAL;
1026 if (val != 0 && val != 1)
1027 return -EINVAL;
1028 rc = 0;
1029 get_online_cpus();
1030 mutex_lock(&smp_cpu_state_mutex);
1031 if (cpu_management == val)
1032 goto out;
1033 rc = topology_set_cpu_management(val);
1034 if (!rc)
1035 cpu_management = val;
1036 out:
1037 mutex_unlock(&smp_cpu_state_mutex);
1038 put_online_cpus();
1039 return rc ? rc : count;
1040 }
1041 static SYSDEV_CLASS_ATTR(dispatching, 0644, dispatching_show,
1042 dispatching_store);
1043
1044 /*
1045 * If the resume kernel runs on another cpu than the suspended kernel,
1046 * we have to switch the cpu IDs in the logical map.
1047 */
1048 void smp_switch_boot_cpu_in_resume(u32 resume_phys_cpu_id,
1049 struct _lowcore *suspend_lowcore)
1050 {
1051 int cpu, suspend_cpu_id, resume_cpu_id;
1052 u32 suspend_phys_cpu_id;
1053
1054 suspend_phys_cpu_id = __cpu_logical_map[suspend_lowcore->cpu_nr];
1055 suspend_cpu_id = suspend_lowcore->cpu_nr;
1056
1057 for_each_present_cpu(cpu) {
1058 if (__cpu_logical_map[cpu] == resume_phys_cpu_id) {
1059 resume_cpu_id = cpu;
1060 goto found;
1061 }
1062 }
1063 panic("Could not find resume cpu in logical map.\n");
1064
1065 found:
1066 printk("Resume cpu ID: %i/%i\n", resume_phys_cpu_id, resume_cpu_id);
1067 printk("Suspend cpu ID: %i/%i\n", suspend_phys_cpu_id, suspend_cpu_id);
1068
1069 __cpu_logical_map[resume_cpu_id] = suspend_phys_cpu_id;
1070 __cpu_logical_map[suspend_cpu_id] = resume_phys_cpu_id;
1071
1072 lowcore_ptr[suspend_cpu_id]->cpu_addr = resume_phys_cpu_id;
1073 }
1074
1075 u32 smp_get_phys_cpu_id(void)
1076 {
1077 return __cpu_logical_map[smp_processor_id()];
1078 }
1079
1080 static int __init topology_init(void)
1081 {
1082 int cpu;
1083 int rc;
1084
1085 register_cpu_notifier(&smp_cpu_nb);
1086
1087 #ifdef CONFIG_HOTPLUG_CPU
1088 rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_rescan);
1089 if (rc)
1090 return rc;
1091 #endif
1092 rc = sysdev_class_create_file(&cpu_sysdev_class, &attr_dispatching);
1093 if (rc)
1094 return rc;
1095 for_each_present_cpu(cpu) {
1096 rc = smp_add_present_cpu(cpu);
1097 if (rc)
1098 return rc;
1099 }
1100 return 0;
1101 }
1102 subsys_initcall(topology_init);