]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/s390/kernel/smp.c
s390: Use generic idle thread allocation
[mirror_ubuntu-zesty-kernel.git] / arch / s390 / kernel / smp.c
1 /*
2 * SMP related functions
3 *
4 * Copyright IBM Corp. 1999,2012
5 * Author(s): Denis Joseph Barrow,
6 * Martin Schwidefsky <schwidefsky@de.ibm.com>,
7 * Heiko Carstens <heiko.carstens@de.ibm.com>,
8 *
9 * based on other smp stuff by
10 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net>
11 * (c) 1998 Ingo Molnar
12 *
13 * The code outside of smp.c uses logical cpu numbers, only smp.c does
14 * the translation of logical to physical cpu ids. All new code that
15 * operates on physical cpu numbers needs to go into smp.c.
16 */
17
18 #define KMSG_COMPONENT "cpu"
19 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
20
21 #include <linux/workqueue.h>
22 #include <linux/module.h>
23 #include <linux/init.h>
24 #include <linux/mm.h>
25 #include <linux/err.h>
26 #include <linux/spinlock.h>
27 #include <linux/kernel_stat.h>
28 #include <linux/delay.h>
29 #include <linux/interrupt.h>
30 #include <linux/irqflags.h>
31 #include <linux/cpu.h>
32 #include <linux/slab.h>
33 #include <linux/crash_dump.h>
34 #include <asm/asm-offsets.h>
35 #include <asm/switch_to.h>
36 #include <asm/facility.h>
37 #include <asm/ipl.h>
38 #include <asm/setup.h>
39 #include <asm/irq.h>
40 #include <asm/tlbflush.h>
41 #include <asm/timer.h>
42 #include <asm/lowcore.h>
43 #include <asm/sclp.h>
44 #include <asm/vdso.h>
45 #include <asm/debug.h>
46 #include <asm/os_info.h>
47 #include "entry.h"
48
49 enum {
50 sigp_sense = 1,
51 sigp_external_call = 2,
52 sigp_emergency_signal = 3,
53 sigp_start = 4,
54 sigp_stop = 5,
55 sigp_restart = 6,
56 sigp_stop_and_store_status = 9,
57 sigp_initial_cpu_reset = 11,
58 sigp_cpu_reset = 12,
59 sigp_set_prefix = 13,
60 sigp_store_status_at_address = 14,
61 sigp_store_extended_status_at_address = 15,
62 sigp_set_architecture = 18,
63 sigp_conditional_emergency_signal = 19,
64 sigp_sense_running = 21,
65 };
66
67 enum {
68 sigp_order_code_accepted = 0,
69 sigp_status_stored = 1,
70 sigp_busy = 2,
71 sigp_not_operational = 3,
72 };
73
74 enum {
75 ec_schedule = 0,
76 ec_call_function,
77 ec_call_function_single,
78 ec_stop_cpu,
79 };
80
81 enum {
82 CPU_STATE_STANDBY,
83 CPU_STATE_CONFIGURED,
84 };
85
86 struct pcpu {
87 struct cpu cpu;
88 struct _lowcore *lowcore; /* lowcore page(s) for the cpu */
89 unsigned long async_stack; /* async stack for the cpu */
90 unsigned long panic_stack; /* panic stack for the cpu */
91 unsigned long ec_mask; /* bit mask for ec_xxx functions */
92 int state; /* physical cpu state */
93 u32 status; /* last status received via sigp */
94 u16 address; /* physical cpu address */
95 };
96
97 static u8 boot_cpu_type;
98 static u16 boot_cpu_address;
99 static struct pcpu pcpu_devices[NR_CPUS];
100
101 DEFINE_MUTEX(smp_cpu_state_mutex);
102
103 /*
104 * Signal processor helper functions.
105 */
106 static inline int __pcpu_sigp(u16 addr, u8 order, u32 parm, u32 *status)
107 {
108 register unsigned int reg1 asm ("1") = parm;
109 int cc;
110
111 asm volatile(
112 " sigp %1,%2,0(%3)\n"
113 " ipm %0\n"
114 " srl %0,28\n"
115 : "=d" (cc), "+d" (reg1) : "d" (addr), "a" (order) : "cc");
116 if (status && cc == 1)
117 *status = reg1;
118 return cc;
119 }
120
121 static inline int __pcpu_sigp_relax(u16 addr, u8 order, u32 parm, u32 *status)
122 {
123 int cc;
124
125 while (1) {
126 cc = __pcpu_sigp(addr, order, parm, status);
127 if (cc != sigp_busy)
128 return cc;
129 cpu_relax();
130 }
131 }
132
133 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
134 {
135 int cc, retry;
136
137 for (retry = 0; ; retry++) {
138 cc = __pcpu_sigp(pcpu->address, order, parm, &pcpu->status);
139 if (cc != sigp_busy)
140 break;
141 if (retry >= 3)
142 udelay(10);
143 }
144 return cc;
145 }
146
147 static inline int pcpu_stopped(struct pcpu *pcpu)
148 {
149 if (__pcpu_sigp(pcpu->address, sigp_sense,
150 0, &pcpu->status) != sigp_status_stored)
151 return 0;
152 /* Check for stopped and check stop state */
153 return !!(pcpu->status & 0x50);
154 }
155
156 static inline int pcpu_running(struct pcpu *pcpu)
157 {
158 if (__pcpu_sigp(pcpu->address, sigp_sense_running,
159 0, &pcpu->status) != sigp_status_stored)
160 return 1;
161 /* Check for running status */
162 return !(pcpu->status & 0x400);
163 }
164
165 /*
166 * Find struct pcpu by cpu address.
167 */
168 static struct pcpu *pcpu_find_address(const struct cpumask *mask, int address)
169 {
170 int cpu;
171
172 for_each_cpu(cpu, mask)
173 if (pcpu_devices[cpu].address == address)
174 return pcpu_devices + cpu;
175 return NULL;
176 }
177
178 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
179 {
180 int order;
181
182 set_bit(ec_bit, &pcpu->ec_mask);
183 order = pcpu_running(pcpu) ?
184 sigp_external_call : sigp_emergency_signal;
185 pcpu_sigp_retry(pcpu, order, 0);
186 }
187
188 static int __cpuinit pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
189 {
190 struct _lowcore *lc;
191
192 if (pcpu != &pcpu_devices[0]) {
193 pcpu->lowcore = (struct _lowcore *)
194 __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
195 pcpu->async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
196 pcpu->panic_stack = __get_free_page(GFP_KERNEL);
197 if (!pcpu->lowcore || !pcpu->panic_stack || !pcpu->async_stack)
198 goto out;
199 }
200 lc = pcpu->lowcore;
201 memcpy(lc, &S390_lowcore, 512);
202 memset((char *) lc + 512, 0, sizeof(*lc) - 512);
203 lc->async_stack = pcpu->async_stack + ASYNC_SIZE;
204 lc->panic_stack = pcpu->panic_stack + PAGE_SIZE;
205 lc->cpu_nr = cpu;
206 #ifndef CONFIG_64BIT
207 if (MACHINE_HAS_IEEE) {
208 lc->extended_save_area_addr = get_zeroed_page(GFP_KERNEL);
209 if (!lc->extended_save_area_addr)
210 goto out;
211 }
212 #else
213 if (vdso_alloc_per_cpu(lc))
214 goto out;
215 #endif
216 lowcore_ptr[cpu] = lc;
217 pcpu_sigp_retry(pcpu, sigp_set_prefix, (u32)(unsigned long) lc);
218 return 0;
219 out:
220 if (pcpu != &pcpu_devices[0]) {
221 free_page(pcpu->panic_stack);
222 free_pages(pcpu->async_stack, ASYNC_ORDER);
223 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
224 }
225 return -ENOMEM;
226 }
227
228 static void pcpu_free_lowcore(struct pcpu *pcpu)
229 {
230 pcpu_sigp_retry(pcpu, sigp_set_prefix, 0);
231 lowcore_ptr[pcpu - pcpu_devices] = NULL;
232 #ifndef CONFIG_64BIT
233 if (MACHINE_HAS_IEEE) {
234 struct _lowcore *lc = pcpu->lowcore;
235
236 free_page((unsigned long) lc->extended_save_area_addr);
237 lc->extended_save_area_addr = 0;
238 }
239 #else
240 vdso_free_per_cpu(pcpu->lowcore);
241 #endif
242 if (pcpu != &pcpu_devices[0]) {
243 free_page(pcpu->panic_stack);
244 free_pages(pcpu->async_stack, ASYNC_ORDER);
245 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
246 }
247 }
248
249 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
250 {
251 struct _lowcore *lc = pcpu->lowcore;
252
253 atomic_inc(&init_mm.context.attach_count);
254 lc->cpu_nr = cpu;
255 lc->percpu_offset = __per_cpu_offset[cpu];
256 lc->kernel_asce = S390_lowcore.kernel_asce;
257 lc->machine_flags = S390_lowcore.machine_flags;
258 lc->ftrace_func = S390_lowcore.ftrace_func;
259 lc->user_timer = lc->system_timer = lc->steal_timer = 0;
260 __ctl_store(lc->cregs_save_area, 0, 15);
261 save_access_regs((unsigned int *) lc->access_regs_save_area);
262 memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
263 MAX_FACILITY_BIT/8);
264 }
265
266 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
267 {
268 struct _lowcore *lc = pcpu->lowcore;
269 struct thread_info *ti = task_thread_info(tsk);
270
271 lc->kernel_stack = (unsigned long) task_stack_page(tsk) + THREAD_SIZE;
272 lc->thread_info = (unsigned long) task_thread_info(tsk);
273 lc->current_task = (unsigned long) tsk;
274 lc->user_timer = ti->user_timer;
275 lc->system_timer = ti->system_timer;
276 lc->steal_timer = 0;
277 }
278
279 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
280 {
281 struct _lowcore *lc = pcpu->lowcore;
282
283 lc->restart_stack = lc->kernel_stack;
284 lc->restart_fn = (unsigned long) func;
285 lc->restart_data = (unsigned long) data;
286 lc->restart_source = -1UL;
287 pcpu_sigp_retry(pcpu, sigp_restart, 0);
288 }
289
290 /*
291 * Call function via PSW restart on pcpu and stop the current cpu.
292 */
293 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
294 void *data, unsigned long stack)
295 {
296 struct _lowcore *lc = pcpu->lowcore;
297 unsigned short this_cpu;
298
299 __load_psw_mask(psw_kernel_bits);
300 this_cpu = stap();
301 if (pcpu->address == this_cpu)
302 func(data); /* should not return */
303 /* Stop target cpu (if func returns this stops the current cpu). */
304 pcpu_sigp_retry(pcpu, sigp_stop, 0);
305 /* Restart func on the target cpu and stop the current cpu. */
306 lc->restart_stack = stack;
307 lc->restart_fn = (unsigned long) func;
308 lc->restart_data = (unsigned long) data;
309 lc->restart_source = (unsigned long) this_cpu;
310 asm volatile(
311 "0: sigp 0,%0,6 # sigp restart to target cpu\n"
312 " brc 2,0b # busy, try again\n"
313 "1: sigp 0,%1,5 # sigp stop to current cpu\n"
314 " brc 2,1b # busy, try again\n"
315 : : "d" (pcpu->address), "d" (this_cpu) : "0", "1", "cc");
316 for (;;) ;
317 }
318
319 /*
320 * Call function on an online CPU.
321 */
322 void smp_call_online_cpu(void (*func)(void *), void *data)
323 {
324 struct pcpu *pcpu;
325
326 /* Use the current cpu if it is online. */
327 pcpu = pcpu_find_address(cpu_online_mask, stap());
328 if (!pcpu)
329 /* Use the first online cpu. */
330 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
331 pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
332 }
333
334 /*
335 * Call function on the ipl CPU.
336 */
337 void smp_call_ipl_cpu(void (*func)(void *), void *data)
338 {
339 pcpu_delegate(&pcpu_devices[0], func, data,
340 pcpu_devices->panic_stack + PAGE_SIZE);
341 }
342
343 int smp_find_processor_id(u16 address)
344 {
345 int cpu;
346
347 for_each_present_cpu(cpu)
348 if (pcpu_devices[cpu].address == address)
349 return cpu;
350 return -1;
351 }
352
353 int smp_vcpu_scheduled(int cpu)
354 {
355 return pcpu_running(pcpu_devices + cpu);
356 }
357
358 void smp_yield(void)
359 {
360 if (MACHINE_HAS_DIAG44)
361 asm volatile("diag 0,0,0x44");
362 }
363
364 void smp_yield_cpu(int cpu)
365 {
366 if (MACHINE_HAS_DIAG9C)
367 asm volatile("diag %0,0,0x9c"
368 : : "d" (pcpu_devices[cpu].address));
369 else if (MACHINE_HAS_DIAG44)
370 asm volatile("diag 0,0,0x44");
371 }
372
373 /*
374 * Send cpus emergency shutdown signal. This gives the cpus the
375 * opportunity to complete outstanding interrupts.
376 */
377 void smp_emergency_stop(cpumask_t *cpumask)
378 {
379 u64 end;
380 int cpu;
381
382 end = get_clock() + (1000000UL << 12);
383 for_each_cpu(cpu, cpumask) {
384 struct pcpu *pcpu = pcpu_devices + cpu;
385 set_bit(ec_stop_cpu, &pcpu->ec_mask);
386 while (__pcpu_sigp(pcpu->address, sigp_emergency_signal,
387 0, NULL) == sigp_busy &&
388 get_clock() < end)
389 cpu_relax();
390 }
391 while (get_clock() < end) {
392 for_each_cpu(cpu, cpumask)
393 if (pcpu_stopped(pcpu_devices + cpu))
394 cpumask_clear_cpu(cpu, cpumask);
395 if (cpumask_empty(cpumask))
396 break;
397 cpu_relax();
398 }
399 }
400
401 /*
402 * Stop all cpus but the current one.
403 */
404 void smp_send_stop(void)
405 {
406 cpumask_t cpumask;
407 int cpu;
408
409 /* Disable all interrupts/machine checks */
410 __load_psw_mask(psw_kernel_bits | PSW_MASK_DAT);
411 trace_hardirqs_off();
412
413 debug_set_critical();
414 cpumask_copy(&cpumask, cpu_online_mask);
415 cpumask_clear_cpu(smp_processor_id(), &cpumask);
416
417 if (oops_in_progress)
418 smp_emergency_stop(&cpumask);
419
420 /* stop all processors */
421 for_each_cpu(cpu, &cpumask) {
422 struct pcpu *pcpu = pcpu_devices + cpu;
423 pcpu_sigp_retry(pcpu, sigp_stop, 0);
424 while (!pcpu_stopped(pcpu))
425 cpu_relax();
426 }
427 }
428
429 /*
430 * Stop the current cpu.
431 */
432 void smp_stop_cpu(void)
433 {
434 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), sigp_stop, 0);
435 for (;;) ;
436 }
437
438 /*
439 * This is the main routine where commands issued by other
440 * cpus are handled.
441 */
442 static void do_ext_call_interrupt(struct ext_code ext_code,
443 unsigned int param32, unsigned long param64)
444 {
445 unsigned long bits;
446 int cpu;
447
448 cpu = smp_processor_id();
449 if (ext_code.code == 0x1202)
450 kstat_cpu(cpu).irqs[EXTINT_EXC]++;
451 else
452 kstat_cpu(cpu).irqs[EXTINT_EMS]++;
453 /*
454 * handle bit signal external calls
455 */
456 bits = xchg(&pcpu_devices[cpu].ec_mask, 0);
457
458 if (test_bit(ec_stop_cpu, &bits))
459 smp_stop_cpu();
460
461 if (test_bit(ec_schedule, &bits))
462 scheduler_ipi();
463
464 if (test_bit(ec_call_function, &bits))
465 generic_smp_call_function_interrupt();
466
467 if (test_bit(ec_call_function_single, &bits))
468 generic_smp_call_function_single_interrupt();
469
470 }
471
472 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
473 {
474 int cpu;
475
476 for_each_cpu(cpu, mask)
477 pcpu_ec_call(pcpu_devices + cpu, ec_call_function);
478 }
479
480 void arch_send_call_function_single_ipi(int cpu)
481 {
482 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
483 }
484
485 #ifndef CONFIG_64BIT
486 /*
487 * this function sends a 'purge tlb' signal to another CPU.
488 */
489 static void smp_ptlb_callback(void *info)
490 {
491 __tlb_flush_local();
492 }
493
494 void smp_ptlb_all(void)
495 {
496 on_each_cpu(smp_ptlb_callback, NULL, 1);
497 }
498 EXPORT_SYMBOL(smp_ptlb_all);
499 #endif /* ! CONFIG_64BIT */
500
501 /*
502 * this function sends a 'reschedule' IPI to another CPU.
503 * it goes straight through and wastes no time serializing
504 * anything. Worst case is that we lose a reschedule ...
505 */
506 void smp_send_reschedule(int cpu)
507 {
508 pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
509 }
510
511 /*
512 * parameter area for the set/clear control bit callbacks
513 */
514 struct ec_creg_mask_parms {
515 unsigned long orval;
516 unsigned long andval;
517 int cr;
518 };
519
520 /*
521 * callback for setting/clearing control bits
522 */
523 static void smp_ctl_bit_callback(void *info)
524 {
525 struct ec_creg_mask_parms *pp = info;
526 unsigned long cregs[16];
527
528 __ctl_store(cregs, 0, 15);
529 cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
530 __ctl_load(cregs, 0, 15);
531 }
532
533 /*
534 * Set a bit in a control register of all cpus
535 */
536 void smp_ctl_set_bit(int cr, int bit)
537 {
538 struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
539
540 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
541 }
542 EXPORT_SYMBOL(smp_ctl_set_bit);
543
544 /*
545 * Clear a bit in a control register of all cpus
546 */
547 void smp_ctl_clear_bit(int cr, int bit)
548 {
549 struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
550
551 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
552 }
553 EXPORT_SYMBOL(smp_ctl_clear_bit);
554
555 #if defined(CONFIG_ZFCPDUMP) || defined(CONFIG_CRASH_DUMP)
556
557 struct save_area *zfcpdump_save_areas[NR_CPUS + 1];
558 EXPORT_SYMBOL_GPL(zfcpdump_save_areas);
559
560 static void __init smp_get_save_area(int cpu, u16 address)
561 {
562 void *lc = pcpu_devices[0].lowcore;
563 struct save_area *save_area;
564
565 if (is_kdump_kernel())
566 return;
567 if (!OLDMEM_BASE && (address == boot_cpu_address ||
568 ipl_info.type != IPL_TYPE_FCP_DUMP))
569 return;
570 if (cpu >= NR_CPUS) {
571 pr_warning("CPU %i exceeds the maximum %i and is excluded "
572 "from the dump\n", cpu, NR_CPUS - 1);
573 return;
574 }
575 save_area = kmalloc(sizeof(struct save_area), GFP_KERNEL);
576 if (!save_area)
577 panic("could not allocate memory for save area\n");
578 zfcpdump_save_areas[cpu] = save_area;
579 #ifdef CONFIG_CRASH_DUMP
580 if (address == boot_cpu_address) {
581 /* Copy the registers of the boot cpu. */
582 copy_oldmem_page(1, (void *) save_area, sizeof(*save_area),
583 SAVE_AREA_BASE - PAGE_SIZE, 0);
584 return;
585 }
586 #endif
587 /* Get the registers of a non-boot cpu. */
588 __pcpu_sigp_relax(address, sigp_stop_and_store_status, 0, NULL);
589 memcpy_real(save_area, lc + SAVE_AREA_BASE, sizeof(*save_area));
590 }
591
592 int smp_store_status(int cpu)
593 {
594 struct pcpu *pcpu;
595
596 pcpu = pcpu_devices + cpu;
597 if (__pcpu_sigp_relax(pcpu->address, sigp_stop_and_store_status,
598 0, NULL) != sigp_order_code_accepted)
599 return -EIO;
600 return 0;
601 }
602
603 #else /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */
604
605 static inline void smp_get_save_area(int cpu, u16 address) { }
606
607 #endif /* CONFIG_ZFCPDUMP || CONFIG_CRASH_DUMP */
608
609 static struct sclp_cpu_info *smp_get_cpu_info(void)
610 {
611 static int use_sigp_detection;
612 struct sclp_cpu_info *info;
613 int address;
614
615 info = kzalloc(sizeof(*info), GFP_KERNEL);
616 if (info && (use_sigp_detection || sclp_get_cpu_info(info))) {
617 use_sigp_detection = 1;
618 for (address = 0; address <= MAX_CPU_ADDRESS; address++) {
619 if (__pcpu_sigp_relax(address, sigp_sense, 0, NULL) ==
620 sigp_not_operational)
621 continue;
622 info->cpu[info->configured].address = address;
623 info->configured++;
624 }
625 info->combined = info->configured;
626 }
627 return info;
628 }
629
630 static int __devinit smp_add_present_cpu(int cpu);
631
632 static int __devinit __smp_rescan_cpus(struct sclp_cpu_info *info,
633 int sysfs_add)
634 {
635 struct pcpu *pcpu;
636 cpumask_t avail;
637 int cpu, nr, i;
638
639 nr = 0;
640 cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
641 cpu = cpumask_first(&avail);
642 for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
643 if (info->has_cpu_type && info->cpu[i].type != boot_cpu_type)
644 continue;
645 if (pcpu_find_address(cpu_present_mask, info->cpu[i].address))
646 continue;
647 pcpu = pcpu_devices + cpu;
648 pcpu->address = info->cpu[i].address;
649 pcpu->state = (cpu >= info->configured) ?
650 CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
651 cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
652 set_cpu_present(cpu, true);
653 if (sysfs_add && smp_add_present_cpu(cpu) != 0)
654 set_cpu_present(cpu, false);
655 else
656 nr++;
657 cpu = cpumask_next(cpu, &avail);
658 }
659 return nr;
660 }
661
662 static void __init smp_detect_cpus(void)
663 {
664 unsigned int cpu, c_cpus, s_cpus;
665 struct sclp_cpu_info *info;
666
667 info = smp_get_cpu_info();
668 if (!info)
669 panic("smp_detect_cpus failed to allocate memory\n");
670 if (info->has_cpu_type) {
671 for (cpu = 0; cpu < info->combined; cpu++) {
672 if (info->cpu[cpu].address != boot_cpu_address)
673 continue;
674 /* The boot cpu dictates the cpu type. */
675 boot_cpu_type = info->cpu[cpu].type;
676 break;
677 }
678 }
679 c_cpus = s_cpus = 0;
680 for (cpu = 0; cpu < info->combined; cpu++) {
681 if (info->has_cpu_type && info->cpu[cpu].type != boot_cpu_type)
682 continue;
683 if (cpu < info->configured) {
684 smp_get_save_area(c_cpus, info->cpu[cpu].address);
685 c_cpus++;
686 } else
687 s_cpus++;
688 }
689 pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
690 get_online_cpus();
691 __smp_rescan_cpus(info, 0);
692 put_online_cpus();
693 kfree(info);
694 }
695
696 /*
697 * Activate a secondary processor.
698 */
699 static void __cpuinit smp_start_secondary(void *cpuvoid)
700 {
701 S390_lowcore.last_update_clock = get_clock();
702 S390_lowcore.restart_stack = (unsigned long) restart_stack;
703 S390_lowcore.restart_fn = (unsigned long) do_restart;
704 S390_lowcore.restart_data = 0;
705 S390_lowcore.restart_source = -1UL;
706 restore_access_regs(S390_lowcore.access_regs_save_area);
707 __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
708 __load_psw_mask(psw_kernel_bits | PSW_MASK_DAT);
709 cpu_init();
710 preempt_disable();
711 init_cpu_timer();
712 init_cpu_vtimer();
713 pfault_init();
714 notify_cpu_starting(smp_processor_id());
715 ipi_call_lock();
716 set_cpu_online(smp_processor_id(), true);
717 ipi_call_unlock();
718 local_irq_enable();
719 /* cpu_idle will call schedule for us */
720 cpu_idle();
721 }
722
723 /* Upping and downing of CPUs */
724 int __cpuinit __cpu_up(unsigned int cpu, struct task_struct *tidle)
725 {
726 struct pcpu *pcpu;
727 int rc;
728
729 pcpu = pcpu_devices + cpu;
730 if (pcpu->state != CPU_STATE_CONFIGURED)
731 return -EIO;
732 if (pcpu_sigp_retry(pcpu, sigp_initial_cpu_reset, 0) !=
733 sigp_order_code_accepted)
734 return -EIO;
735
736 rc = pcpu_alloc_lowcore(pcpu, cpu);
737 if (rc)
738 return rc;
739 pcpu_prepare_secondary(pcpu, cpu);
740 pcpu_attach_task(pcpu, tidle);
741 pcpu_start_fn(pcpu, smp_start_secondary, NULL);
742 while (!cpu_online(cpu))
743 cpu_relax();
744 return 0;
745 }
746
747 static int __init setup_possible_cpus(char *s)
748 {
749 int max, cpu;
750
751 if (kstrtoint(s, 0, &max) < 0)
752 return 0;
753 init_cpu_possible(cpumask_of(0));
754 for (cpu = 1; cpu < max && cpu < nr_cpu_ids; cpu++)
755 set_cpu_possible(cpu, true);
756 return 0;
757 }
758 early_param("possible_cpus", setup_possible_cpus);
759
760 #ifdef CONFIG_HOTPLUG_CPU
761
762 int __cpu_disable(void)
763 {
764 unsigned long cregs[16];
765
766 set_cpu_online(smp_processor_id(), false);
767 /* Disable pseudo page faults on this cpu. */
768 pfault_fini();
769 /* Disable interrupt sources via control register. */
770 __ctl_store(cregs, 0, 15);
771 cregs[0] &= ~0x0000ee70UL; /* disable all external interrupts */
772 cregs[6] &= ~0xff000000UL; /* disable all I/O interrupts */
773 cregs[14] &= ~0x1f000000UL; /* disable most machine checks */
774 __ctl_load(cregs, 0, 15);
775 return 0;
776 }
777
778 void __cpu_die(unsigned int cpu)
779 {
780 struct pcpu *pcpu;
781
782 /* Wait until target cpu is down */
783 pcpu = pcpu_devices + cpu;
784 while (!pcpu_stopped(pcpu))
785 cpu_relax();
786 pcpu_free_lowcore(pcpu);
787 atomic_dec(&init_mm.context.attach_count);
788 }
789
790 void __noreturn cpu_die(void)
791 {
792 idle_task_exit();
793 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), sigp_stop, 0);
794 for (;;) ;
795 }
796
797 #endif /* CONFIG_HOTPLUG_CPU */
798
799 static void smp_call_os_info_init_fn(void)
800 {
801 int (*init_fn)(void);
802 unsigned long size;
803
804 init_fn = os_info_old_entry(OS_INFO_INIT_FN, &size);
805 if (!init_fn)
806 return;
807 init_fn();
808 }
809
810 void __init smp_prepare_cpus(unsigned int max_cpus)
811 {
812 /* request the 0x1201 emergency signal external interrupt */
813 if (register_external_interrupt(0x1201, do_ext_call_interrupt) != 0)
814 panic("Couldn't request external interrupt 0x1201");
815 /* request the 0x1202 external call external interrupt */
816 if (register_external_interrupt(0x1202, do_ext_call_interrupt) != 0)
817 panic("Couldn't request external interrupt 0x1202");
818 smp_call_os_info_init_fn();
819 smp_detect_cpus();
820 }
821
822 void __init smp_prepare_boot_cpu(void)
823 {
824 struct pcpu *pcpu = pcpu_devices;
825
826 boot_cpu_address = stap();
827 pcpu->state = CPU_STATE_CONFIGURED;
828 pcpu->address = boot_cpu_address;
829 pcpu->lowcore = (struct _lowcore *)(unsigned long) store_prefix();
830 pcpu->async_stack = S390_lowcore.async_stack - ASYNC_SIZE;
831 pcpu->panic_stack = S390_lowcore.panic_stack - PAGE_SIZE;
832 S390_lowcore.percpu_offset = __per_cpu_offset[0];
833 cpu_set_polarization(0, POLARIZATION_UNKNOWN);
834 set_cpu_present(0, true);
835 set_cpu_online(0, true);
836 }
837
838 void __init smp_cpus_done(unsigned int max_cpus)
839 {
840 }
841
842 void __init smp_setup_processor_id(void)
843 {
844 S390_lowcore.cpu_nr = 0;
845 }
846
847 /*
848 * the frequency of the profiling timer can be changed
849 * by writing a multiplier value into /proc/profile.
850 *
851 * usually you want to run this on all CPUs ;)
852 */
853 int setup_profiling_timer(unsigned int multiplier)
854 {
855 return 0;
856 }
857
858 #ifdef CONFIG_HOTPLUG_CPU
859 static ssize_t cpu_configure_show(struct device *dev,
860 struct device_attribute *attr, char *buf)
861 {
862 ssize_t count;
863
864 mutex_lock(&smp_cpu_state_mutex);
865 count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
866 mutex_unlock(&smp_cpu_state_mutex);
867 return count;
868 }
869
870 static ssize_t cpu_configure_store(struct device *dev,
871 struct device_attribute *attr,
872 const char *buf, size_t count)
873 {
874 struct pcpu *pcpu;
875 int cpu, val, rc;
876 char delim;
877
878 if (sscanf(buf, "%d %c", &val, &delim) != 1)
879 return -EINVAL;
880 if (val != 0 && val != 1)
881 return -EINVAL;
882 get_online_cpus();
883 mutex_lock(&smp_cpu_state_mutex);
884 rc = -EBUSY;
885 /* disallow configuration changes of online cpus and cpu 0 */
886 cpu = dev->id;
887 if (cpu_online(cpu) || cpu == 0)
888 goto out;
889 pcpu = pcpu_devices + cpu;
890 rc = 0;
891 switch (val) {
892 case 0:
893 if (pcpu->state != CPU_STATE_CONFIGURED)
894 break;
895 rc = sclp_cpu_deconfigure(pcpu->address);
896 if (rc)
897 break;
898 pcpu->state = CPU_STATE_STANDBY;
899 cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
900 topology_expect_change();
901 break;
902 case 1:
903 if (pcpu->state != CPU_STATE_STANDBY)
904 break;
905 rc = sclp_cpu_configure(pcpu->address);
906 if (rc)
907 break;
908 pcpu->state = CPU_STATE_CONFIGURED;
909 cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
910 topology_expect_change();
911 break;
912 default:
913 break;
914 }
915 out:
916 mutex_unlock(&smp_cpu_state_mutex);
917 put_online_cpus();
918 return rc ? rc : count;
919 }
920 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
921 #endif /* CONFIG_HOTPLUG_CPU */
922
923 static ssize_t show_cpu_address(struct device *dev,
924 struct device_attribute *attr, char *buf)
925 {
926 return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
927 }
928 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
929
930 static struct attribute *cpu_common_attrs[] = {
931 #ifdef CONFIG_HOTPLUG_CPU
932 &dev_attr_configure.attr,
933 #endif
934 &dev_attr_address.attr,
935 NULL,
936 };
937
938 static struct attribute_group cpu_common_attr_group = {
939 .attrs = cpu_common_attrs,
940 };
941
942 static ssize_t show_capability(struct device *dev,
943 struct device_attribute *attr, char *buf)
944 {
945 unsigned int capability;
946 int rc;
947
948 rc = get_cpu_capability(&capability);
949 if (rc)
950 return rc;
951 return sprintf(buf, "%u\n", capability);
952 }
953 static DEVICE_ATTR(capability, 0444, show_capability, NULL);
954
955 static ssize_t show_idle_count(struct device *dev,
956 struct device_attribute *attr, char *buf)
957 {
958 struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
959 unsigned long long idle_count;
960 unsigned int sequence;
961
962 do {
963 sequence = ACCESS_ONCE(idle->sequence);
964 idle_count = ACCESS_ONCE(idle->idle_count);
965 if (ACCESS_ONCE(idle->idle_enter))
966 idle_count++;
967 } while ((sequence & 1) || (idle->sequence != sequence));
968 return sprintf(buf, "%llu\n", idle_count);
969 }
970 static DEVICE_ATTR(idle_count, 0444, show_idle_count, NULL);
971
972 static ssize_t show_idle_time(struct device *dev,
973 struct device_attribute *attr, char *buf)
974 {
975 struct s390_idle_data *idle = &per_cpu(s390_idle, dev->id);
976 unsigned long long now, idle_time, idle_enter, idle_exit;
977 unsigned int sequence;
978
979 do {
980 now = get_clock();
981 sequence = ACCESS_ONCE(idle->sequence);
982 idle_time = ACCESS_ONCE(idle->idle_time);
983 idle_enter = ACCESS_ONCE(idle->idle_enter);
984 idle_exit = ACCESS_ONCE(idle->idle_exit);
985 } while ((sequence & 1) || (idle->sequence != sequence));
986 idle_time += idle_enter ? ((idle_exit ? : now) - idle_enter) : 0;
987 return sprintf(buf, "%llu\n", idle_time >> 12);
988 }
989 static DEVICE_ATTR(idle_time_us, 0444, show_idle_time, NULL);
990
991 static struct attribute *cpu_online_attrs[] = {
992 &dev_attr_capability.attr,
993 &dev_attr_idle_count.attr,
994 &dev_attr_idle_time_us.attr,
995 NULL,
996 };
997
998 static struct attribute_group cpu_online_attr_group = {
999 .attrs = cpu_online_attrs,
1000 };
1001
1002 static int __cpuinit smp_cpu_notify(struct notifier_block *self,
1003 unsigned long action, void *hcpu)
1004 {
1005 unsigned int cpu = (unsigned int)(long)hcpu;
1006 struct cpu *c = &pcpu_devices[cpu].cpu;
1007 struct device *s = &c->dev;
1008 struct s390_idle_data *idle;
1009 int err = 0;
1010
1011 switch (action) {
1012 case CPU_ONLINE:
1013 case CPU_ONLINE_FROZEN:
1014 idle = &per_cpu(s390_idle, cpu);
1015 memset(idle, 0, sizeof(struct s390_idle_data));
1016 err = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1017 break;
1018 case CPU_DEAD:
1019 case CPU_DEAD_FROZEN:
1020 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1021 break;
1022 }
1023 return notifier_from_errno(err);
1024 }
1025
1026 static struct notifier_block __cpuinitdata smp_cpu_nb = {
1027 .notifier_call = smp_cpu_notify,
1028 };
1029
1030 static int __devinit smp_add_present_cpu(int cpu)
1031 {
1032 struct cpu *c = &pcpu_devices[cpu].cpu;
1033 struct device *s = &c->dev;
1034 int rc;
1035
1036 c->hotpluggable = 1;
1037 rc = register_cpu(c, cpu);
1038 if (rc)
1039 goto out;
1040 rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1041 if (rc)
1042 goto out_cpu;
1043 if (cpu_online(cpu)) {
1044 rc = sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1045 if (rc)
1046 goto out_online;
1047 }
1048 rc = topology_cpu_init(c);
1049 if (rc)
1050 goto out_topology;
1051 return 0;
1052
1053 out_topology:
1054 if (cpu_online(cpu))
1055 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1056 out_online:
1057 sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1058 out_cpu:
1059 #ifdef CONFIG_HOTPLUG_CPU
1060 unregister_cpu(c);
1061 #endif
1062 out:
1063 return rc;
1064 }
1065
1066 #ifdef CONFIG_HOTPLUG_CPU
1067
1068 int __ref smp_rescan_cpus(void)
1069 {
1070 struct sclp_cpu_info *info;
1071 int nr;
1072
1073 info = smp_get_cpu_info();
1074 if (!info)
1075 return -ENOMEM;
1076 get_online_cpus();
1077 mutex_lock(&smp_cpu_state_mutex);
1078 nr = __smp_rescan_cpus(info, 1);
1079 mutex_unlock(&smp_cpu_state_mutex);
1080 put_online_cpus();
1081 kfree(info);
1082 if (nr)
1083 topology_schedule_update();
1084 return 0;
1085 }
1086
1087 static ssize_t __ref rescan_store(struct device *dev,
1088 struct device_attribute *attr,
1089 const char *buf,
1090 size_t count)
1091 {
1092 int rc;
1093
1094 rc = smp_rescan_cpus();
1095 return rc ? rc : count;
1096 }
1097 static DEVICE_ATTR(rescan, 0200, NULL, rescan_store);
1098 #endif /* CONFIG_HOTPLUG_CPU */
1099
1100 static int __init s390_smp_init(void)
1101 {
1102 int cpu, rc;
1103
1104 register_cpu_notifier(&smp_cpu_nb);
1105 #ifdef CONFIG_HOTPLUG_CPU
1106 rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1107 if (rc)
1108 return rc;
1109 #endif
1110 for_each_present_cpu(cpu) {
1111 rc = smp_add_present_cpu(cpu);
1112 if (rc)
1113 return rc;
1114 }
1115 return 0;
1116 }
1117 subsys_initcall(s390_smp_init);