]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/s390/kernel/smp.c
s390/smp,vdso: fix ASCE handling
[mirror_ubuntu-bionic-kernel.git] / arch / s390 / kernel / smp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * SMP related functions
4 *
5 * Copyright IBM Corp. 1999, 2012
6 * Author(s): Denis Joseph Barrow,
7 * Martin Schwidefsky <schwidefsky@de.ibm.com>,
8 * Heiko Carstens <heiko.carstens@de.ibm.com>,
9 *
10 * based on other smp stuff by
11 * (c) 1995 Alan Cox, CymruNET Ltd <alan@cymru.net>
12 * (c) 1998 Ingo Molnar
13 *
14 * The code outside of smp.c uses logical cpu numbers, only smp.c does
15 * the translation of logical to physical cpu ids. All new code that
16 * operates on physical cpu numbers needs to go into smp.c.
17 */
18
19 #define KMSG_COMPONENT "cpu"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21
22 #include <linux/workqueue.h>
23 #include <linux/bootmem.h>
24 #include <linux/export.h>
25 #include <linux/init.h>
26 #include <linux/mm.h>
27 #include <linux/err.h>
28 #include <linux/spinlock.h>
29 #include <linux/kernel_stat.h>
30 #include <linux/kmemleak.h>
31 #include <linux/delay.h>
32 #include <linux/interrupt.h>
33 #include <linux/irqflags.h>
34 #include <linux/cpu.h>
35 #include <linux/slab.h>
36 #include <linux/sched/hotplug.h>
37 #include <linux/sched/task_stack.h>
38 #include <linux/crash_dump.h>
39 #include <linux/memblock.h>
40 #include <linux/kprobes.h>
41 #include <asm/asm-offsets.h>
42 #include <asm/diag.h>
43 #include <asm/switch_to.h>
44 #include <asm/facility.h>
45 #include <asm/ipl.h>
46 #include <asm/setup.h>
47 #include <asm/irq.h>
48 #include <asm/tlbflush.h>
49 #include <asm/vtimer.h>
50 #include <asm/lowcore.h>
51 #include <asm/sclp.h>
52 #include <asm/vdso.h>
53 #include <asm/debug.h>
54 #include <asm/os_info.h>
55 #include <asm/sigp.h>
56 #include <asm/idle.h>
57 #include <asm/nmi.h>
58 #include <asm/topology.h>
59 #include "entry.h"
60
61 enum {
62 ec_schedule = 0,
63 ec_call_function_single,
64 ec_stop_cpu,
65 };
66
67 enum {
68 CPU_STATE_STANDBY,
69 CPU_STATE_CONFIGURED,
70 };
71
72 static DEFINE_PER_CPU(struct cpu *, cpu_device);
73
74 struct pcpu {
75 struct lowcore *lowcore; /* lowcore page(s) for the cpu */
76 unsigned long ec_mask; /* bit mask for ec_xxx functions */
77 unsigned long ec_clk; /* sigp timestamp for ec_xxx */
78 signed char state; /* physical cpu state */
79 signed char polarization; /* physical polarization */
80 u16 address; /* physical cpu address */
81 };
82
83 static u8 boot_core_type;
84 static struct pcpu pcpu_devices[NR_CPUS];
85
86 unsigned int smp_cpu_mt_shift;
87 EXPORT_SYMBOL(smp_cpu_mt_shift);
88
89 unsigned int smp_cpu_mtid;
90 EXPORT_SYMBOL(smp_cpu_mtid);
91
92 #ifdef CONFIG_CRASH_DUMP
93 __vector128 __initdata boot_cpu_vector_save_area[__NUM_VXRS];
94 #endif
95
96 static unsigned int smp_max_threads __initdata = -1U;
97
98 static int __init early_nosmt(char *s)
99 {
100 smp_max_threads = 1;
101 return 0;
102 }
103 early_param("nosmt", early_nosmt);
104
105 static int __init early_smt(char *s)
106 {
107 get_option(&s, &smp_max_threads);
108 return 0;
109 }
110 early_param("smt", early_smt);
111
112 /*
113 * The smp_cpu_state_mutex must be held when changing the state or polarization
114 * member of a pcpu data structure within the pcpu_devices arreay.
115 */
116 DEFINE_MUTEX(smp_cpu_state_mutex);
117
118 /*
119 * Signal processor helper functions.
120 */
121 static inline int __pcpu_sigp_relax(u16 addr, u8 order, unsigned long parm)
122 {
123 int cc;
124
125 while (1) {
126 cc = __pcpu_sigp(addr, order, parm, NULL);
127 if (cc != SIGP_CC_BUSY)
128 return cc;
129 cpu_relax();
130 }
131 }
132
133 static int pcpu_sigp_retry(struct pcpu *pcpu, u8 order, u32 parm)
134 {
135 int cc, retry;
136
137 for (retry = 0; ; retry++) {
138 cc = __pcpu_sigp(pcpu->address, order, parm, NULL);
139 if (cc != SIGP_CC_BUSY)
140 break;
141 if (retry >= 3)
142 udelay(10);
143 }
144 return cc;
145 }
146
147 static inline int pcpu_stopped(struct pcpu *pcpu)
148 {
149 u32 uninitialized_var(status);
150
151 if (__pcpu_sigp(pcpu->address, SIGP_SENSE,
152 0, &status) != SIGP_CC_STATUS_STORED)
153 return 0;
154 return !!(status & (SIGP_STATUS_CHECK_STOP|SIGP_STATUS_STOPPED));
155 }
156
157 static inline int pcpu_running(struct pcpu *pcpu)
158 {
159 if (__pcpu_sigp(pcpu->address, SIGP_SENSE_RUNNING,
160 0, NULL) != SIGP_CC_STATUS_STORED)
161 return 1;
162 /* Status stored condition code is equivalent to cpu not running. */
163 return 0;
164 }
165
166 /*
167 * Find struct pcpu by cpu address.
168 */
169 static struct pcpu *pcpu_find_address(const struct cpumask *mask, u16 address)
170 {
171 int cpu;
172
173 for_each_cpu(cpu, mask)
174 if (pcpu_devices[cpu].address == address)
175 return pcpu_devices + cpu;
176 return NULL;
177 }
178
179 static void pcpu_ec_call(struct pcpu *pcpu, int ec_bit)
180 {
181 int order;
182
183 if (test_and_set_bit(ec_bit, &pcpu->ec_mask))
184 return;
185 order = pcpu_running(pcpu) ? SIGP_EXTERNAL_CALL : SIGP_EMERGENCY_SIGNAL;
186 pcpu->ec_clk = get_tod_clock_fast();
187 pcpu_sigp_retry(pcpu, order, 0);
188 }
189
190 #define ASYNC_FRAME_OFFSET (ASYNC_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
191 #define PANIC_FRAME_OFFSET (PAGE_SIZE - STACK_FRAME_OVERHEAD - __PT_SIZE)
192
193 static int pcpu_alloc_lowcore(struct pcpu *pcpu, int cpu)
194 {
195 unsigned long async_stack, panic_stack;
196 struct lowcore *lc;
197
198 if (pcpu != &pcpu_devices[0]) {
199 pcpu->lowcore = (struct lowcore *)
200 __get_free_pages(GFP_KERNEL | GFP_DMA, LC_ORDER);
201 async_stack = __get_free_pages(GFP_KERNEL, ASYNC_ORDER);
202 panic_stack = __get_free_page(GFP_KERNEL);
203 if (!pcpu->lowcore || !panic_stack || !async_stack)
204 goto out;
205 } else {
206 async_stack = pcpu->lowcore->async_stack - ASYNC_FRAME_OFFSET;
207 panic_stack = pcpu->lowcore->panic_stack - PANIC_FRAME_OFFSET;
208 }
209 lc = pcpu->lowcore;
210 memcpy(lc, &S390_lowcore, 512);
211 memset((char *) lc + 512, 0, sizeof(*lc) - 512);
212 lc->async_stack = async_stack + ASYNC_FRAME_OFFSET;
213 lc->panic_stack = panic_stack + PANIC_FRAME_OFFSET;
214 lc->cpu_nr = cpu;
215 lc->spinlock_lockval = arch_spin_lockval(cpu);
216 lc->spinlock_index = 0;
217 lc->br_r1_trampoline = 0x07f1; /* br %r1 */
218 if (nmi_alloc_per_cpu(lc))
219 goto out;
220 if (vdso_alloc_per_cpu(lc))
221 goto out_mcesa;
222 lowcore_ptr[cpu] = lc;
223 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, (u32)(unsigned long) lc);
224 return 0;
225
226 out_mcesa:
227 nmi_free_per_cpu(lc);
228 out:
229 if (pcpu != &pcpu_devices[0]) {
230 free_page(panic_stack);
231 free_pages(async_stack, ASYNC_ORDER);
232 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
233 }
234 return -ENOMEM;
235 }
236
237 #ifdef CONFIG_HOTPLUG_CPU
238
239 static void pcpu_free_lowcore(struct pcpu *pcpu)
240 {
241 pcpu_sigp_retry(pcpu, SIGP_SET_PREFIX, 0);
242 lowcore_ptr[pcpu - pcpu_devices] = NULL;
243 vdso_free_per_cpu(pcpu->lowcore);
244 nmi_free_per_cpu(pcpu->lowcore);
245 if (pcpu == &pcpu_devices[0])
246 return;
247 free_page(pcpu->lowcore->panic_stack-PANIC_FRAME_OFFSET);
248 free_pages(pcpu->lowcore->async_stack-ASYNC_FRAME_OFFSET, ASYNC_ORDER);
249 free_pages((unsigned long) pcpu->lowcore, LC_ORDER);
250 }
251
252 #endif /* CONFIG_HOTPLUG_CPU */
253
254 static void pcpu_prepare_secondary(struct pcpu *pcpu, int cpu)
255 {
256 struct lowcore *lc = pcpu->lowcore;
257
258 cpumask_set_cpu(cpu, &init_mm.context.cpu_attach_mask);
259 cpumask_set_cpu(cpu, mm_cpumask(&init_mm));
260 lc->cpu_nr = cpu;
261 lc->spinlock_lockval = arch_spin_lockval(cpu);
262 lc->spinlock_index = 0;
263 lc->percpu_offset = __per_cpu_offset[cpu];
264 lc->kernel_asce = S390_lowcore.kernel_asce;
265 lc->user_asce = S390_lowcore.kernel_asce;
266 lc->machine_flags = S390_lowcore.machine_flags;
267 lc->user_timer = lc->system_timer = lc->steal_timer = 0;
268 __ctl_store(lc->cregs_save_area, 0, 15);
269 lc->cregs_save_area[1] = lc->kernel_asce;
270 lc->cregs_save_area[7] = lc->vdso_asce;
271 save_access_regs((unsigned int *) lc->access_regs_save_area);
272 memcpy(lc->stfle_fac_list, S390_lowcore.stfle_fac_list,
273 sizeof(lc->stfle_fac_list));
274 memcpy(lc->alt_stfle_fac_list, S390_lowcore.alt_stfle_fac_list,
275 sizeof(lc->alt_stfle_fac_list));
276 arch_spin_lock_setup(cpu);
277 }
278
279 static void pcpu_attach_task(struct pcpu *pcpu, struct task_struct *tsk)
280 {
281 struct lowcore *lc = pcpu->lowcore;
282
283 lc->kernel_stack = (unsigned long) task_stack_page(tsk)
284 + THREAD_SIZE - STACK_FRAME_OVERHEAD - sizeof(struct pt_regs);
285 lc->current_task = (unsigned long) tsk;
286 lc->lpp = LPP_MAGIC;
287 lc->current_pid = tsk->pid;
288 lc->user_timer = tsk->thread.user_timer;
289 lc->guest_timer = tsk->thread.guest_timer;
290 lc->system_timer = tsk->thread.system_timer;
291 lc->hardirq_timer = tsk->thread.hardirq_timer;
292 lc->softirq_timer = tsk->thread.softirq_timer;
293 lc->steal_timer = 0;
294 }
295
296 static void pcpu_start_fn(struct pcpu *pcpu, void (*func)(void *), void *data)
297 {
298 struct lowcore *lc = pcpu->lowcore;
299
300 lc->restart_stack = lc->kernel_stack;
301 lc->restart_fn = (unsigned long) func;
302 lc->restart_data = (unsigned long) data;
303 lc->restart_source = -1UL;
304 pcpu_sigp_retry(pcpu, SIGP_RESTART, 0);
305 }
306
307 /*
308 * Call function via PSW restart on pcpu and stop the current cpu.
309 */
310 static void pcpu_delegate(struct pcpu *pcpu, void (*func)(void *),
311 void *data, unsigned long stack)
312 {
313 struct lowcore *lc = lowcore_ptr[pcpu - pcpu_devices];
314 unsigned long source_cpu = stap();
315
316 __load_psw_mask(PSW_KERNEL_BITS);
317 if (pcpu->address == source_cpu)
318 func(data); /* should not return */
319 /* Stop target cpu (if func returns this stops the current cpu). */
320 pcpu_sigp_retry(pcpu, SIGP_STOP, 0);
321 /* Restart func on the target cpu and stop the current cpu. */
322 mem_assign_absolute(lc->restart_stack, stack);
323 mem_assign_absolute(lc->restart_fn, (unsigned long) func);
324 mem_assign_absolute(lc->restart_data, (unsigned long) data);
325 mem_assign_absolute(lc->restart_source, source_cpu);
326 __bpon();
327 asm volatile(
328 "0: sigp 0,%0,%2 # sigp restart to target cpu\n"
329 " brc 2,0b # busy, try again\n"
330 "1: sigp 0,%1,%3 # sigp stop to current cpu\n"
331 " brc 2,1b # busy, try again\n"
332 : : "d" (pcpu->address), "d" (source_cpu),
333 "K" (SIGP_RESTART), "K" (SIGP_STOP)
334 : "0", "1", "cc");
335 for (;;) ;
336 }
337
338 /*
339 * Enable additional logical cpus for multi-threading.
340 */
341 static int pcpu_set_smt(unsigned int mtid)
342 {
343 int cc;
344
345 if (smp_cpu_mtid == mtid)
346 return 0;
347 cc = __pcpu_sigp(0, SIGP_SET_MULTI_THREADING, mtid, NULL);
348 if (cc == 0) {
349 smp_cpu_mtid = mtid;
350 smp_cpu_mt_shift = 0;
351 while (smp_cpu_mtid >= (1U << smp_cpu_mt_shift))
352 smp_cpu_mt_shift++;
353 pcpu_devices[0].address = stap();
354 }
355 return cc;
356 }
357
358 /*
359 * Call function on an online CPU.
360 */
361 void smp_call_online_cpu(void (*func)(void *), void *data)
362 {
363 struct pcpu *pcpu;
364
365 /* Use the current cpu if it is online. */
366 pcpu = pcpu_find_address(cpu_online_mask, stap());
367 if (!pcpu)
368 /* Use the first online cpu. */
369 pcpu = pcpu_devices + cpumask_first(cpu_online_mask);
370 pcpu_delegate(pcpu, func, data, (unsigned long) restart_stack);
371 }
372
373 /*
374 * Call function on the ipl CPU.
375 */
376 void smp_call_ipl_cpu(void (*func)(void *), void *data)
377 {
378 struct lowcore *lc = pcpu_devices->lowcore;
379
380 if (pcpu_devices[0].address == stap())
381 lc = &S390_lowcore;
382
383 pcpu_delegate(&pcpu_devices[0], func, data,
384 lc->panic_stack - PANIC_FRAME_OFFSET + PAGE_SIZE);
385 }
386
387 int smp_find_processor_id(u16 address)
388 {
389 int cpu;
390
391 for_each_present_cpu(cpu)
392 if (pcpu_devices[cpu].address == address)
393 return cpu;
394 return -1;
395 }
396
397 bool arch_vcpu_is_preempted(int cpu)
398 {
399 if (test_cpu_flag_of(CIF_ENABLED_WAIT, cpu))
400 return false;
401 if (pcpu_running(pcpu_devices + cpu))
402 return false;
403 return true;
404 }
405 EXPORT_SYMBOL(arch_vcpu_is_preempted);
406
407 void smp_yield_cpu(int cpu)
408 {
409 if (MACHINE_HAS_DIAG9C) {
410 diag_stat_inc_norecursion(DIAG_STAT_X09C);
411 asm volatile("diag %0,0,0x9c"
412 : : "d" (pcpu_devices[cpu].address));
413 } else if (MACHINE_HAS_DIAG44) {
414 diag_stat_inc_norecursion(DIAG_STAT_X044);
415 asm volatile("diag 0,0,0x44");
416 }
417 }
418
419 /*
420 * Send cpus emergency shutdown signal. This gives the cpus the
421 * opportunity to complete outstanding interrupts.
422 */
423 void notrace smp_emergency_stop(void)
424 {
425 cpumask_t cpumask;
426 u64 end;
427 int cpu;
428
429 cpumask_copy(&cpumask, cpu_online_mask);
430 cpumask_clear_cpu(smp_processor_id(), &cpumask);
431
432 end = get_tod_clock() + (1000000UL << 12);
433 for_each_cpu(cpu, &cpumask) {
434 struct pcpu *pcpu = pcpu_devices + cpu;
435 set_bit(ec_stop_cpu, &pcpu->ec_mask);
436 while (__pcpu_sigp(pcpu->address, SIGP_EMERGENCY_SIGNAL,
437 0, NULL) == SIGP_CC_BUSY &&
438 get_tod_clock() < end)
439 cpu_relax();
440 }
441 while (get_tod_clock() < end) {
442 for_each_cpu(cpu, &cpumask)
443 if (pcpu_stopped(pcpu_devices + cpu))
444 cpumask_clear_cpu(cpu, &cpumask);
445 if (cpumask_empty(&cpumask))
446 break;
447 cpu_relax();
448 }
449 }
450 NOKPROBE_SYMBOL(smp_emergency_stop);
451
452 /*
453 * Stop all cpus but the current one.
454 */
455 void smp_send_stop(void)
456 {
457 int cpu;
458
459 /* Disable all interrupts/machine checks */
460 __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
461 trace_hardirqs_off();
462
463 debug_set_critical();
464
465 if (oops_in_progress)
466 smp_emergency_stop();
467
468 /* stop all processors */
469 for_each_online_cpu(cpu) {
470 if (cpu == smp_processor_id())
471 continue;
472 pcpu_sigp_retry(pcpu_devices + cpu, SIGP_STOP, 0);
473 while (!pcpu_stopped(pcpu_devices + cpu))
474 cpu_relax();
475 }
476 }
477
478 /*
479 * This is the main routine where commands issued by other
480 * cpus are handled.
481 */
482 static void smp_handle_ext_call(void)
483 {
484 unsigned long bits;
485
486 /* handle bit signal external calls */
487 bits = xchg(&pcpu_devices[smp_processor_id()].ec_mask, 0);
488 if (test_bit(ec_stop_cpu, &bits))
489 smp_stop_cpu();
490 if (test_bit(ec_schedule, &bits))
491 scheduler_ipi();
492 if (test_bit(ec_call_function_single, &bits))
493 generic_smp_call_function_single_interrupt();
494 }
495
496 static void do_ext_call_interrupt(struct ext_code ext_code,
497 unsigned int param32, unsigned long param64)
498 {
499 inc_irq_stat(ext_code.code == 0x1202 ? IRQEXT_EXC : IRQEXT_EMS);
500 smp_handle_ext_call();
501 }
502
503 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
504 {
505 int cpu;
506
507 for_each_cpu(cpu, mask)
508 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
509 }
510
511 void arch_send_call_function_single_ipi(int cpu)
512 {
513 pcpu_ec_call(pcpu_devices + cpu, ec_call_function_single);
514 }
515
516 /*
517 * this function sends a 'reschedule' IPI to another CPU.
518 * it goes straight through and wastes no time serializing
519 * anything. Worst case is that we lose a reschedule ...
520 */
521 void smp_send_reschedule(int cpu)
522 {
523 pcpu_ec_call(pcpu_devices + cpu, ec_schedule);
524 }
525
526 /*
527 * parameter area for the set/clear control bit callbacks
528 */
529 struct ec_creg_mask_parms {
530 unsigned long orval;
531 unsigned long andval;
532 int cr;
533 };
534
535 /*
536 * callback for setting/clearing control bits
537 */
538 static void smp_ctl_bit_callback(void *info)
539 {
540 struct ec_creg_mask_parms *pp = info;
541 unsigned long cregs[16];
542
543 __ctl_store(cregs, 0, 15);
544 cregs[pp->cr] = (cregs[pp->cr] & pp->andval) | pp->orval;
545 __ctl_load(cregs, 0, 15);
546 }
547
548 /*
549 * Set a bit in a control register of all cpus
550 */
551 void smp_ctl_set_bit(int cr, int bit)
552 {
553 struct ec_creg_mask_parms parms = { 1UL << bit, -1UL, cr };
554
555 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
556 }
557 EXPORT_SYMBOL(smp_ctl_set_bit);
558
559 /*
560 * Clear a bit in a control register of all cpus
561 */
562 void smp_ctl_clear_bit(int cr, int bit)
563 {
564 struct ec_creg_mask_parms parms = { 0, ~(1UL << bit), cr };
565
566 on_each_cpu(smp_ctl_bit_callback, &parms, 1);
567 }
568 EXPORT_SYMBOL(smp_ctl_clear_bit);
569
570 #ifdef CONFIG_CRASH_DUMP
571
572 int smp_store_status(int cpu)
573 {
574 struct pcpu *pcpu = pcpu_devices + cpu;
575 unsigned long pa;
576
577 pa = __pa(&pcpu->lowcore->floating_pt_save_area);
578 if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_STATUS_AT_ADDRESS,
579 pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
580 return -EIO;
581 if (!MACHINE_HAS_VX && !MACHINE_HAS_GS)
582 return 0;
583 pa = __pa(pcpu->lowcore->mcesad & MCESA_ORIGIN_MASK);
584 if (MACHINE_HAS_GS)
585 pa |= pcpu->lowcore->mcesad & MCESA_LC_MASK;
586 if (__pcpu_sigp_relax(pcpu->address, SIGP_STORE_ADDITIONAL_STATUS,
587 pa) != SIGP_CC_ORDER_CODE_ACCEPTED)
588 return -EIO;
589 return 0;
590 }
591
592 /*
593 * Collect CPU state of the previous, crashed system.
594 * There are four cases:
595 * 1) standard zfcp dump
596 * condition: OLDMEM_BASE == NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
597 * The state for all CPUs except the boot CPU needs to be collected
598 * with sigp stop-and-store-status. The boot CPU state is located in
599 * the absolute lowcore of the memory stored in the HSA. The zcore code
600 * will copy the boot CPU state from the HSA.
601 * 2) stand-alone kdump for SCSI (zfcp dump with swapped memory)
602 * condition: OLDMEM_BASE != NULL && ipl_info.type == IPL_TYPE_FCP_DUMP
603 * The state for all CPUs except the boot CPU needs to be collected
604 * with sigp stop-and-store-status. The firmware or the boot-loader
605 * stored the registers of the boot CPU in the absolute lowcore in the
606 * memory of the old system.
607 * 3) kdump and the old kernel did not store the CPU state,
608 * or stand-alone kdump for DASD
609 * condition: OLDMEM_BASE != NULL && !is_kdump_kernel()
610 * The state for all CPUs except the boot CPU needs to be collected
611 * with sigp stop-and-store-status. The kexec code or the boot-loader
612 * stored the registers of the boot CPU in the memory of the old system.
613 * 4) kdump and the old kernel stored the CPU state
614 * condition: OLDMEM_BASE != NULL && is_kdump_kernel()
615 * This case does not exist for s390 anymore, setup_arch explicitly
616 * deactivates the elfcorehdr= kernel parameter
617 */
618 static __init void smp_save_cpu_vxrs(struct save_area *sa, u16 addr,
619 bool is_boot_cpu, unsigned long page)
620 {
621 __vector128 *vxrs = (__vector128 *) page;
622
623 if (is_boot_cpu)
624 vxrs = boot_cpu_vector_save_area;
625 else
626 __pcpu_sigp_relax(addr, SIGP_STORE_ADDITIONAL_STATUS, page);
627 save_area_add_vxrs(sa, vxrs);
628 }
629
630 static __init void smp_save_cpu_regs(struct save_area *sa, u16 addr,
631 bool is_boot_cpu, unsigned long page)
632 {
633 void *regs = (void *) page;
634
635 if (is_boot_cpu)
636 copy_oldmem_kernel(regs, (void *) __LC_FPREGS_SAVE_AREA, 512);
637 else
638 __pcpu_sigp_relax(addr, SIGP_STORE_STATUS_AT_ADDRESS, page);
639 save_area_add_regs(sa, regs);
640 }
641
642 void __init smp_save_dump_cpus(void)
643 {
644 int addr, boot_cpu_addr, max_cpu_addr;
645 struct save_area *sa;
646 unsigned long page;
647 bool is_boot_cpu;
648
649 if (!(OLDMEM_BASE || ipl_info.type == IPL_TYPE_FCP_DUMP))
650 /* No previous system present, normal boot. */
651 return;
652 /* Allocate a page as dumping area for the store status sigps */
653 page = memblock_alloc_base(PAGE_SIZE, PAGE_SIZE, 1UL << 31);
654 /* Set multi-threading state to the previous system. */
655 pcpu_set_smt(sclp.mtid_prev);
656 boot_cpu_addr = stap();
657 max_cpu_addr = SCLP_MAX_CORES << sclp.mtid_prev;
658 for (addr = 0; addr <= max_cpu_addr; addr++) {
659 if (__pcpu_sigp_relax(addr, SIGP_SENSE, 0) ==
660 SIGP_CC_NOT_OPERATIONAL)
661 continue;
662 is_boot_cpu = (addr == boot_cpu_addr);
663 /* Allocate save area */
664 sa = save_area_alloc(is_boot_cpu);
665 if (!sa)
666 panic("could not allocate memory for save area\n");
667 if (MACHINE_HAS_VX)
668 /* Get the vector registers */
669 smp_save_cpu_vxrs(sa, addr, is_boot_cpu, page);
670 /*
671 * For a zfcp dump OLDMEM_BASE == NULL and the registers
672 * of the boot CPU are stored in the HSA. To retrieve
673 * these registers an SCLP request is required which is
674 * done by drivers/s390/char/zcore.c:init_cpu_info()
675 */
676 if (!is_boot_cpu || OLDMEM_BASE)
677 /* Get the CPU registers */
678 smp_save_cpu_regs(sa, addr, is_boot_cpu, page);
679 }
680 memblock_free(page, PAGE_SIZE);
681 diag308_reset();
682 pcpu_set_smt(0);
683 }
684 #endif /* CONFIG_CRASH_DUMP */
685
686 void smp_cpu_set_polarization(int cpu, int val)
687 {
688 pcpu_devices[cpu].polarization = val;
689 }
690
691 int smp_cpu_get_polarization(int cpu)
692 {
693 return pcpu_devices[cpu].polarization;
694 }
695
696 static void __ref smp_get_core_info(struct sclp_core_info *info, int early)
697 {
698 static int use_sigp_detection;
699 int address;
700
701 if (use_sigp_detection || sclp_get_core_info(info, early)) {
702 use_sigp_detection = 1;
703 for (address = 0;
704 address < (SCLP_MAX_CORES << smp_cpu_mt_shift);
705 address += (1U << smp_cpu_mt_shift)) {
706 if (__pcpu_sigp_relax(address, SIGP_SENSE, 0) ==
707 SIGP_CC_NOT_OPERATIONAL)
708 continue;
709 info->core[info->configured].core_id =
710 address >> smp_cpu_mt_shift;
711 info->configured++;
712 }
713 info->combined = info->configured;
714 }
715 }
716
717 static int smp_add_present_cpu(int cpu);
718
719 static int __smp_rescan_cpus(struct sclp_core_info *info, int sysfs_add)
720 {
721 struct pcpu *pcpu;
722 cpumask_t avail;
723 int cpu, nr, i, j;
724 u16 address;
725
726 nr = 0;
727 cpumask_xor(&avail, cpu_possible_mask, cpu_present_mask);
728 cpu = cpumask_first(&avail);
729 for (i = 0; (i < info->combined) && (cpu < nr_cpu_ids); i++) {
730 if (sclp.has_core_type && info->core[i].type != boot_core_type)
731 continue;
732 address = info->core[i].core_id << smp_cpu_mt_shift;
733 for (j = 0; j <= smp_cpu_mtid; j++) {
734 if (pcpu_find_address(cpu_present_mask, address + j))
735 continue;
736 pcpu = pcpu_devices + cpu;
737 pcpu->address = address + j;
738 pcpu->state =
739 (cpu >= info->configured*(smp_cpu_mtid + 1)) ?
740 CPU_STATE_STANDBY : CPU_STATE_CONFIGURED;
741 smp_cpu_set_polarization(cpu, POLARIZATION_UNKNOWN);
742 set_cpu_present(cpu, true);
743 if (sysfs_add && smp_add_present_cpu(cpu) != 0)
744 set_cpu_present(cpu, false);
745 else
746 nr++;
747 cpu = cpumask_next(cpu, &avail);
748 if (cpu >= nr_cpu_ids)
749 break;
750 }
751 }
752 return nr;
753 }
754
755 void __init smp_detect_cpus(void)
756 {
757 unsigned int cpu, mtid, c_cpus, s_cpus;
758 struct sclp_core_info *info;
759 u16 address;
760
761 /* Get CPU information */
762 info = memblock_virt_alloc(sizeof(*info), 8);
763 smp_get_core_info(info, 1);
764 /* Find boot CPU type */
765 if (sclp.has_core_type) {
766 address = stap();
767 for (cpu = 0; cpu < info->combined; cpu++)
768 if (info->core[cpu].core_id == address) {
769 /* The boot cpu dictates the cpu type. */
770 boot_core_type = info->core[cpu].type;
771 break;
772 }
773 if (cpu >= info->combined)
774 panic("Could not find boot CPU type");
775 }
776
777 /* Set multi-threading state for the current system */
778 mtid = boot_core_type ? sclp.mtid : sclp.mtid_cp;
779 mtid = (mtid < smp_max_threads) ? mtid : smp_max_threads - 1;
780 pcpu_set_smt(mtid);
781
782 /* Print number of CPUs */
783 c_cpus = s_cpus = 0;
784 for (cpu = 0; cpu < info->combined; cpu++) {
785 if (sclp.has_core_type &&
786 info->core[cpu].type != boot_core_type)
787 continue;
788 if (cpu < info->configured)
789 c_cpus += smp_cpu_mtid + 1;
790 else
791 s_cpus += smp_cpu_mtid + 1;
792 }
793 pr_info("%d configured CPUs, %d standby CPUs\n", c_cpus, s_cpus);
794
795 /* Add CPUs present at boot */
796 get_online_cpus();
797 __smp_rescan_cpus(info, 0);
798 put_online_cpus();
799 memblock_free_early((unsigned long)info, sizeof(*info));
800 }
801
802 /*
803 * Activate a secondary processor.
804 */
805 static void smp_start_secondary(void *cpuvoid)
806 {
807 int cpu = smp_processor_id();
808
809 S390_lowcore.last_update_clock = get_tod_clock();
810 S390_lowcore.restart_stack = (unsigned long) restart_stack;
811 S390_lowcore.restart_fn = (unsigned long) do_restart;
812 S390_lowcore.restart_data = 0;
813 S390_lowcore.restart_source = -1UL;
814 restore_access_regs(S390_lowcore.access_regs_save_area);
815 __ctl_load(S390_lowcore.cregs_save_area, 0, 15);
816 __load_psw_mask(PSW_KERNEL_BITS | PSW_MASK_DAT);
817 set_cpu_flag(CIF_ASCE_PRIMARY);
818 set_cpu_flag(CIF_ASCE_SECONDARY);
819 cpu_init();
820 preempt_disable();
821 init_cpu_timer();
822 vtime_init();
823 pfault_init();
824 notify_cpu_starting(cpu);
825 if (topology_cpu_dedicated(cpu))
826 set_cpu_flag(CIF_DEDICATED_CPU);
827 else
828 clear_cpu_flag(CIF_DEDICATED_CPU);
829 set_cpu_online(cpu, true);
830 inc_irq_stat(CPU_RST);
831 local_irq_enable();
832 cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
833 }
834
835 /* Upping and downing of CPUs */
836 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
837 {
838 struct pcpu *pcpu;
839 int base, i, rc;
840
841 pcpu = pcpu_devices + cpu;
842 if (pcpu->state != CPU_STATE_CONFIGURED)
843 return -EIO;
844 base = smp_get_base_cpu(cpu);
845 for (i = 0; i <= smp_cpu_mtid; i++) {
846 if (base + i < nr_cpu_ids)
847 if (cpu_online(base + i))
848 break;
849 }
850 /*
851 * If this is the first CPU of the core to get online
852 * do an initial CPU reset.
853 */
854 if (i > smp_cpu_mtid &&
855 pcpu_sigp_retry(pcpu_devices + base, SIGP_INITIAL_CPU_RESET, 0) !=
856 SIGP_CC_ORDER_CODE_ACCEPTED)
857 return -EIO;
858
859 rc = pcpu_alloc_lowcore(pcpu, cpu);
860 if (rc)
861 return rc;
862 pcpu_prepare_secondary(pcpu, cpu);
863 pcpu_attach_task(pcpu, tidle);
864 pcpu_start_fn(pcpu, smp_start_secondary, NULL);
865 /* Wait until cpu puts itself in the online & active maps */
866 while (!cpu_online(cpu))
867 cpu_relax();
868 return 0;
869 }
870
871 static unsigned int setup_possible_cpus __initdata;
872
873 static int __init _setup_possible_cpus(char *s)
874 {
875 get_option(&s, &setup_possible_cpus);
876 return 0;
877 }
878 early_param("possible_cpus", _setup_possible_cpus);
879
880 #ifdef CONFIG_HOTPLUG_CPU
881
882 int __cpu_disable(void)
883 {
884 unsigned long cregs[16];
885
886 /* Handle possible pending IPIs */
887 smp_handle_ext_call();
888 set_cpu_online(smp_processor_id(), false);
889 /* Disable pseudo page faults on this cpu. */
890 pfault_fini();
891 /* Disable interrupt sources via control register. */
892 __ctl_store(cregs, 0, 15);
893 cregs[0] &= ~0x0000ee70UL; /* disable all external interrupts */
894 cregs[6] &= ~0xff000000UL; /* disable all I/O interrupts */
895 cregs[14] &= ~0x1f000000UL; /* disable most machine checks */
896 __ctl_load(cregs, 0, 15);
897 clear_cpu_flag(CIF_NOHZ_DELAY);
898 return 0;
899 }
900
901 void __cpu_die(unsigned int cpu)
902 {
903 struct pcpu *pcpu;
904
905 /* Wait until target cpu is down */
906 pcpu = pcpu_devices + cpu;
907 while (!pcpu_stopped(pcpu))
908 cpu_relax();
909 pcpu_free_lowcore(pcpu);
910 cpumask_clear_cpu(cpu, mm_cpumask(&init_mm));
911 cpumask_clear_cpu(cpu, &init_mm.context.cpu_attach_mask);
912 }
913
914 void __noreturn cpu_die(void)
915 {
916 idle_task_exit();
917 __bpon();
918 pcpu_sigp_retry(pcpu_devices + smp_processor_id(), SIGP_STOP, 0);
919 for (;;) ;
920 }
921
922 #endif /* CONFIG_HOTPLUG_CPU */
923
924 void __init smp_fill_possible_mask(void)
925 {
926 unsigned int possible, sclp_max, cpu;
927
928 sclp_max = max(sclp.mtid, sclp.mtid_cp) + 1;
929 sclp_max = min(smp_max_threads, sclp_max);
930 sclp_max = (sclp.max_cores * sclp_max) ?: nr_cpu_ids;
931 possible = setup_possible_cpus ?: nr_cpu_ids;
932 possible = min(possible, sclp_max);
933 for (cpu = 0; cpu < possible && cpu < nr_cpu_ids; cpu++)
934 set_cpu_possible(cpu, true);
935 }
936
937 void __init smp_prepare_cpus(unsigned int max_cpus)
938 {
939 /* request the 0x1201 emergency signal external interrupt */
940 if (register_external_irq(EXT_IRQ_EMERGENCY_SIG, do_ext_call_interrupt))
941 panic("Couldn't request external interrupt 0x1201");
942 /* request the 0x1202 external call external interrupt */
943 if (register_external_irq(EXT_IRQ_EXTERNAL_CALL, do_ext_call_interrupt))
944 panic("Couldn't request external interrupt 0x1202");
945 }
946
947 void __init smp_prepare_boot_cpu(void)
948 {
949 struct pcpu *pcpu = pcpu_devices;
950
951 WARN_ON(!cpu_present(0) || !cpu_online(0));
952 pcpu->state = CPU_STATE_CONFIGURED;
953 pcpu->lowcore = (struct lowcore *)(unsigned long) store_prefix();
954 S390_lowcore.percpu_offset = __per_cpu_offset[0];
955 smp_cpu_set_polarization(0, POLARIZATION_UNKNOWN);
956 }
957
958 void __init smp_cpus_done(unsigned int max_cpus)
959 {
960 }
961
962 void __init smp_setup_processor_id(void)
963 {
964 pcpu_devices[0].address = stap();
965 S390_lowcore.cpu_nr = 0;
966 S390_lowcore.spinlock_lockval = arch_spin_lockval(0);
967 S390_lowcore.spinlock_index = 0;
968 }
969
970 /*
971 * the frequency of the profiling timer can be changed
972 * by writing a multiplier value into /proc/profile.
973 *
974 * usually you want to run this on all CPUs ;)
975 */
976 int setup_profiling_timer(unsigned int multiplier)
977 {
978 return 0;
979 }
980
981 #ifdef CONFIG_HOTPLUG_CPU
982 static ssize_t cpu_configure_show(struct device *dev,
983 struct device_attribute *attr, char *buf)
984 {
985 ssize_t count;
986
987 mutex_lock(&smp_cpu_state_mutex);
988 count = sprintf(buf, "%d\n", pcpu_devices[dev->id].state);
989 mutex_unlock(&smp_cpu_state_mutex);
990 return count;
991 }
992
993 static ssize_t cpu_configure_store(struct device *dev,
994 struct device_attribute *attr,
995 const char *buf, size_t count)
996 {
997 struct pcpu *pcpu;
998 int cpu, val, rc, i;
999 char delim;
1000
1001 if (sscanf(buf, "%d %c", &val, &delim) != 1)
1002 return -EINVAL;
1003 if (val != 0 && val != 1)
1004 return -EINVAL;
1005 get_online_cpus();
1006 mutex_lock(&smp_cpu_state_mutex);
1007 rc = -EBUSY;
1008 /* disallow configuration changes of online cpus and cpu 0 */
1009 cpu = dev->id;
1010 cpu = smp_get_base_cpu(cpu);
1011 if (cpu == 0)
1012 goto out;
1013 for (i = 0; i <= smp_cpu_mtid; i++)
1014 if (cpu_online(cpu + i))
1015 goto out;
1016 pcpu = pcpu_devices + cpu;
1017 rc = 0;
1018 switch (val) {
1019 case 0:
1020 if (pcpu->state != CPU_STATE_CONFIGURED)
1021 break;
1022 rc = sclp_core_deconfigure(pcpu->address >> smp_cpu_mt_shift);
1023 if (rc)
1024 break;
1025 for (i = 0; i <= smp_cpu_mtid; i++) {
1026 if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1027 continue;
1028 pcpu[i].state = CPU_STATE_STANDBY;
1029 smp_cpu_set_polarization(cpu + i,
1030 POLARIZATION_UNKNOWN);
1031 }
1032 topology_expect_change();
1033 break;
1034 case 1:
1035 if (pcpu->state != CPU_STATE_STANDBY)
1036 break;
1037 rc = sclp_core_configure(pcpu->address >> smp_cpu_mt_shift);
1038 if (rc)
1039 break;
1040 for (i = 0; i <= smp_cpu_mtid; i++) {
1041 if (cpu + i >= nr_cpu_ids || !cpu_present(cpu + i))
1042 continue;
1043 pcpu[i].state = CPU_STATE_CONFIGURED;
1044 smp_cpu_set_polarization(cpu + i,
1045 POLARIZATION_UNKNOWN);
1046 }
1047 topology_expect_change();
1048 break;
1049 default:
1050 break;
1051 }
1052 out:
1053 mutex_unlock(&smp_cpu_state_mutex);
1054 put_online_cpus();
1055 return rc ? rc : count;
1056 }
1057 static DEVICE_ATTR(configure, 0644, cpu_configure_show, cpu_configure_store);
1058 #endif /* CONFIG_HOTPLUG_CPU */
1059
1060 static ssize_t show_cpu_address(struct device *dev,
1061 struct device_attribute *attr, char *buf)
1062 {
1063 return sprintf(buf, "%d\n", pcpu_devices[dev->id].address);
1064 }
1065 static DEVICE_ATTR(address, 0444, show_cpu_address, NULL);
1066
1067 static struct attribute *cpu_common_attrs[] = {
1068 #ifdef CONFIG_HOTPLUG_CPU
1069 &dev_attr_configure.attr,
1070 #endif
1071 &dev_attr_address.attr,
1072 NULL,
1073 };
1074
1075 static struct attribute_group cpu_common_attr_group = {
1076 .attrs = cpu_common_attrs,
1077 };
1078
1079 static struct attribute *cpu_online_attrs[] = {
1080 &dev_attr_idle_count.attr,
1081 &dev_attr_idle_time_us.attr,
1082 NULL,
1083 };
1084
1085 static struct attribute_group cpu_online_attr_group = {
1086 .attrs = cpu_online_attrs,
1087 };
1088
1089 static int smp_cpu_online(unsigned int cpu)
1090 {
1091 struct device *s = &per_cpu(cpu_device, cpu)->dev;
1092
1093 return sysfs_create_group(&s->kobj, &cpu_online_attr_group);
1094 }
1095 static int smp_cpu_pre_down(unsigned int cpu)
1096 {
1097 struct device *s = &per_cpu(cpu_device, cpu)->dev;
1098
1099 sysfs_remove_group(&s->kobj, &cpu_online_attr_group);
1100 return 0;
1101 }
1102
1103 static int smp_add_present_cpu(int cpu)
1104 {
1105 struct device *s;
1106 struct cpu *c;
1107 int rc;
1108
1109 c = kzalloc(sizeof(*c), GFP_KERNEL);
1110 if (!c)
1111 return -ENOMEM;
1112 per_cpu(cpu_device, cpu) = c;
1113 s = &c->dev;
1114 c->hotpluggable = 1;
1115 rc = register_cpu(c, cpu);
1116 if (rc)
1117 goto out;
1118 rc = sysfs_create_group(&s->kobj, &cpu_common_attr_group);
1119 if (rc)
1120 goto out_cpu;
1121 rc = topology_cpu_init(c);
1122 if (rc)
1123 goto out_topology;
1124 return 0;
1125
1126 out_topology:
1127 sysfs_remove_group(&s->kobj, &cpu_common_attr_group);
1128 out_cpu:
1129 #ifdef CONFIG_HOTPLUG_CPU
1130 unregister_cpu(c);
1131 #endif
1132 out:
1133 return rc;
1134 }
1135
1136 #ifdef CONFIG_HOTPLUG_CPU
1137
1138 int __ref smp_rescan_cpus(void)
1139 {
1140 struct sclp_core_info *info;
1141 int nr;
1142
1143 info = kzalloc(sizeof(*info), GFP_KERNEL);
1144 if (!info)
1145 return -ENOMEM;
1146 smp_get_core_info(info, 0);
1147 get_online_cpus();
1148 mutex_lock(&smp_cpu_state_mutex);
1149 nr = __smp_rescan_cpus(info, 1);
1150 mutex_unlock(&smp_cpu_state_mutex);
1151 put_online_cpus();
1152 kfree(info);
1153 if (nr)
1154 topology_schedule_update();
1155 return 0;
1156 }
1157
1158 static ssize_t __ref rescan_store(struct device *dev,
1159 struct device_attribute *attr,
1160 const char *buf,
1161 size_t count)
1162 {
1163 int rc;
1164
1165 rc = lock_device_hotplug_sysfs();
1166 if (rc)
1167 return rc;
1168 rc = smp_rescan_cpus();
1169 unlock_device_hotplug();
1170 return rc ? rc : count;
1171 }
1172 static DEVICE_ATTR_WO(rescan);
1173 #endif /* CONFIG_HOTPLUG_CPU */
1174
1175 static int __init s390_smp_init(void)
1176 {
1177 int cpu, rc = 0;
1178
1179 #ifdef CONFIG_HOTPLUG_CPU
1180 rc = device_create_file(cpu_subsys.dev_root, &dev_attr_rescan);
1181 if (rc)
1182 return rc;
1183 #endif
1184 for_each_present_cpu(cpu) {
1185 rc = smp_add_present_cpu(cpu);
1186 if (rc)
1187 goto out;
1188 }
1189
1190 rc = cpuhp_setup_state(CPUHP_AP_ONLINE_DYN, "s390/smp:online",
1191 smp_cpu_online, smp_cpu_pre_down);
1192 rc = rc <= 0 ? rc : 0;
1193 out:
1194 return rc;
1195 }
1196 subsys_initcall(s390_smp_init);