]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/s390/kernel/time.c
Merge remote-tracking branches 'asoc/topic/tas6424', 'asoc/topic/tfa9879', 'asoc...
[mirror_ubuntu-focal-kernel.git] / arch / s390 / kernel / time.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Time of day based timer functions.
4 *
5 * S390 version
6 * Copyright IBM Corp. 1999, 2008
7 * Author(s): Hartmut Penner (hp@de.ibm.com),
8 * Martin Schwidefsky (schwidefsky@de.ibm.com),
9 * Denis Joseph Barrow (djbarrow@de.ibm.com,barrow_dj@yahoo.com)
10 *
11 * Derived from "arch/i386/kernel/time.c"
12 * Copyright (C) 1991, 1992, 1995 Linus Torvalds
13 */
14
15 #define KMSG_COMPONENT "time"
16 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
18 #include <linux/kernel_stat.h>
19 #include <linux/errno.h>
20 #include <linux/export.h>
21 #include <linux/sched.h>
22 #include <linux/sched/clock.h>
23 #include <linux/kernel.h>
24 #include <linux/param.h>
25 #include <linux/string.h>
26 #include <linux/mm.h>
27 #include <linux/interrupt.h>
28 #include <linux/cpu.h>
29 #include <linux/stop_machine.h>
30 #include <linux/time.h>
31 #include <linux/device.h>
32 #include <linux/delay.h>
33 #include <linux/init.h>
34 #include <linux/smp.h>
35 #include <linux/types.h>
36 #include <linux/profile.h>
37 #include <linux/timex.h>
38 #include <linux/notifier.h>
39 #include <linux/timekeeper_internal.h>
40 #include <linux/clockchips.h>
41 #include <linux/gfp.h>
42 #include <linux/kprobes.h>
43 #include <linux/uaccess.h>
44 #include <asm/facility.h>
45 #include <asm/delay.h>
46 #include <asm/div64.h>
47 #include <asm/vdso.h>
48 #include <asm/irq.h>
49 #include <asm/irq_regs.h>
50 #include <asm/vtimer.h>
51 #include <asm/stp.h>
52 #include <asm/cio.h>
53 #include "entry.h"
54
55 unsigned char tod_clock_base[16] __aligned(8) = {
56 /* Force to data section. */
57 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
58 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff
59 };
60 EXPORT_SYMBOL_GPL(tod_clock_base);
61
62 u64 clock_comparator_max = -1ULL;
63 EXPORT_SYMBOL_GPL(clock_comparator_max);
64
65 static DEFINE_PER_CPU(struct clock_event_device, comparators);
66
67 ATOMIC_NOTIFIER_HEAD(s390_epoch_delta_notifier);
68 EXPORT_SYMBOL(s390_epoch_delta_notifier);
69
70 unsigned char ptff_function_mask[16];
71
72 static unsigned long long lpar_offset;
73 static unsigned long long initial_leap_seconds;
74 static unsigned long long tod_steering_end;
75 static long long tod_steering_delta;
76
77 /*
78 * Get time offsets with PTFF
79 */
80 void __init time_early_init(void)
81 {
82 struct ptff_qto qto;
83 struct ptff_qui qui;
84
85 /* Initialize TOD steering parameters */
86 tod_steering_end = *(unsigned long long *) &tod_clock_base[1];
87 vdso_data->ts_end = tod_steering_end;
88
89 if (!test_facility(28))
90 return;
91
92 ptff(&ptff_function_mask, sizeof(ptff_function_mask), PTFF_QAF);
93
94 /* get LPAR offset */
95 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
96 lpar_offset = qto.tod_epoch_difference;
97
98 /* get initial leap seconds */
99 if (ptff_query(PTFF_QUI) && ptff(&qui, sizeof(qui), PTFF_QUI) == 0)
100 initial_leap_seconds = (unsigned long long)
101 ((long) qui.old_leap * 4096000000L);
102 }
103
104 /*
105 * Scheduler clock - returns current time in nanosec units.
106 */
107 unsigned long long notrace sched_clock(void)
108 {
109 return tod_to_ns(get_tod_clock_monotonic());
110 }
111 NOKPROBE_SYMBOL(sched_clock);
112
113 /*
114 * Monotonic_clock - returns # of nanoseconds passed since time_init()
115 */
116 unsigned long long monotonic_clock(void)
117 {
118 return sched_clock();
119 }
120 EXPORT_SYMBOL(monotonic_clock);
121
122 static void ext_to_timespec64(unsigned char *clk, struct timespec64 *xt)
123 {
124 unsigned long long high, low, rem, sec, nsec;
125
126 /* Split extendnd TOD clock to micro-seconds and sub-micro-seconds */
127 high = (*(unsigned long long *) clk) >> 4;
128 low = (*(unsigned long long *)&clk[7]) << 4;
129 /* Calculate seconds and nano-seconds */
130 sec = high;
131 rem = do_div(sec, 1000000);
132 nsec = (((low >> 32) + (rem << 32)) * 1000) >> 32;
133
134 xt->tv_sec = sec;
135 xt->tv_nsec = nsec;
136 }
137
138 void clock_comparator_work(void)
139 {
140 struct clock_event_device *cd;
141
142 S390_lowcore.clock_comparator = clock_comparator_max;
143 cd = this_cpu_ptr(&comparators);
144 cd->event_handler(cd);
145 }
146
147 static int s390_next_event(unsigned long delta,
148 struct clock_event_device *evt)
149 {
150 S390_lowcore.clock_comparator = get_tod_clock() + delta;
151 set_clock_comparator(S390_lowcore.clock_comparator);
152 return 0;
153 }
154
155 /*
156 * Set up lowcore and control register of the current cpu to
157 * enable TOD clock and clock comparator interrupts.
158 */
159 void init_cpu_timer(void)
160 {
161 struct clock_event_device *cd;
162 int cpu;
163
164 S390_lowcore.clock_comparator = clock_comparator_max;
165 set_clock_comparator(S390_lowcore.clock_comparator);
166
167 cpu = smp_processor_id();
168 cd = &per_cpu(comparators, cpu);
169 cd->name = "comparator";
170 cd->features = CLOCK_EVT_FEAT_ONESHOT;
171 cd->mult = 16777;
172 cd->shift = 12;
173 cd->min_delta_ns = 1;
174 cd->min_delta_ticks = 1;
175 cd->max_delta_ns = LONG_MAX;
176 cd->max_delta_ticks = ULONG_MAX;
177 cd->rating = 400;
178 cd->cpumask = cpumask_of(cpu);
179 cd->set_next_event = s390_next_event;
180
181 clockevents_register_device(cd);
182
183 /* Enable clock comparator timer interrupt. */
184 __ctl_set_bit(0,11);
185
186 /* Always allow the timing alert external interrupt. */
187 __ctl_set_bit(0, 4);
188 }
189
190 static void clock_comparator_interrupt(struct ext_code ext_code,
191 unsigned int param32,
192 unsigned long param64)
193 {
194 inc_irq_stat(IRQEXT_CLK);
195 if (S390_lowcore.clock_comparator == clock_comparator_max)
196 set_clock_comparator(S390_lowcore.clock_comparator);
197 }
198
199 static void stp_timing_alert(struct stp_irq_parm *);
200
201 static void timing_alert_interrupt(struct ext_code ext_code,
202 unsigned int param32, unsigned long param64)
203 {
204 inc_irq_stat(IRQEXT_TLA);
205 if (param32 & 0x00038000)
206 stp_timing_alert((struct stp_irq_parm *) &param32);
207 }
208
209 static void stp_reset(void);
210
211 void read_persistent_clock64(struct timespec64 *ts)
212 {
213 unsigned char clk[STORE_CLOCK_EXT_SIZE];
214 __u64 delta;
215
216 delta = initial_leap_seconds + TOD_UNIX_EPOCH;
217 get_tod_clock_ext(clk);
218 *(__u64 *) &clk[1] -= delta;
219 if (*(__u64 *) &clk[1] > delta)
220 clk[0]--;
221 ext_to_timespec64(clk, ts);
222 }
223
224 void read_boot_clock64(struct timespec64 *ts)
225 {
226 unsigned char clk[STORE_CLOCK_EXT_SIZE];
227 __u64 delta;
228
229 delta = initial_leap_seconds + TOD_UNIX_EPOCH;
230 memcpy(clk, tod_clock_base, 16);
231 *(__u64 *) &clk[1] -= delta;
232 if (*(__u64 *) &clk[1] > delta)
233 clk[0]--;
234 ext_to_timespec64(clk, ts);
235 }
236
237 static u64 read_tod_clock(struct clocksource *cs)
238 {
239 unsigned long long now, adj;
240
241 preempt_disable(); /* protect from changes to steering parameters */
242 now = get_tod_clock();
243 adj = tod_steering_end - now;
244 if (unlikely((s64) adj >= 0))
245 /*
246 * manually steer by 1 cycle every 2^16 cycles. This
247 * corresponds to shifting the tod delta by 15. 1s is
248 * therefore steered in ~9h. The adjust will decrease
249 * over time, until it finally reaches 0.
250 */
251 now += (tod_steering_delta < 0) ? (adj >> 15) : -(adj >> 15);
252 preempt_enable();
253 return now;
254 }
255
256 static struct clocksource clocksource_tod = {
257 .name = "tod",
258 .rating = 400,
259 .read = read_tod_clock,
260 .mask = -1ULL,
261 .mult = 1000,
262 .shift = 12,
263 .flags = CLOCK_SOURCE_IS_CONTINUOUS,
264 };
265
266 struct clocksource * __init clocksource_default_clock(void)
267 {
268 return &clocksource_tod;
269 }
270
271 void update_vsyscall(struct timekeeper *tk)
272 {
273 u64 nsecps;
274
275 if (tk->tkr_mono.clock != &clocksource_tod)
276 return;
277
278 /* Make userspace gettimeofday spin until we're done. */
279 ++vdso_data->tb_update_count;
280 smp_wmb();
281 vdso_data->xtime_tod_stamp = tk->tkr_mono.cycle_last;
282 vdso_data->xtime_clock_sec = tk->xtime_sec;
283 vdso_data->xtime_clock_nsec = tk->tkr_mono.xtime_nsec;
284 vdso_data->wtom_clock_sec =
285 tk->xtime_sec + tk->wall_to_monotonic.tv_sec;
286 vdso_data->wtom_clock_nsec = tk->tkr_mono.xtime_nsec +
287 + ((u64) tk->wall_to_monotonic.tv_nsec << tk->tkr_mono.shift);
288 nsecps = (u64) NSEC_PER_SEC << tk->tkr_mono.shift;
289 while (vdso_data->wtom_clock_nsec >= nsecps) {
290 vdso_data->wtom_clock_nsec -= nsecps;
291 vdso_data->wtom_clock_sec++;
292 }
293
294 vdso_data->xtime_coarse_sec = tk->xtime_sec;
295 vdso_data->xtime_coarse_nsec =
296 (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
297 vdso_data->wtom_coarse_sec =
298 vdso_data->xtime_coarse_sec + tk->wall_to_monotonic.tv_sec;
299 vdso_data->wtom_coarse_nsec =
300 vdso_data->xtime_coarse_nsec + tk->wall_to_monotonic.tv_nsec;
301 while (vdso_data->wtom_coarse_nsec >= NSEC_PER_SEC) {
302 vdso_data->wtom_coarse_nsec -= NSEC_PER_SEC;
303 vdso_data->wtom_coarse_sec++;
304 }
305
306 vdso_data->tk_mult = tk->tkr_mono.mult;
307 vdso_data->tk_shift = tk->tkr_mono.shift;
308 smp_wmb();
309 ++vdso_data->tb_update_count;
310 }
311
312 extern struct timezone sys_tz;
313
314 void update_vsyscall_tz(void)
315 {
316 vdso_data->tz_minuteswest = sys_tz.tz_minuteswest;
317 vdso_data->tz_dsttime = sys_tz.tz_dsttime;
318 }
319
320 /*
321 * Initialize the TOD clock and the CPU timer of
322 * the boot cpu.
323 */
324 void __init time_init(void)
325 {
326 /* Reset time synchronization interfaces. */
327 stp_reset();
328
329 /* request the clock comparator external interrupt */
330 if (register_external_irq(EXT_IRQ_CLK_COMP, clock_comparator_interrupt))
331 panic("Couldn't request external interrupt 0x1004");
332
333 /* request the timing alert external interrupt */
334 if (register_external_irq(EXT_IRQ_TIMING_ALERT, timing_alert_interrupt))
335 panic("Couldn't request external interrupt 0x1406");
336
337 if (__clocksource_register(&clocksource_tod) != 0)
338 panic("Could not register TOD clock source");
339
340 /* Enable TOD clock interrupts on the boot cpu. */
341 init_cpu_timer();
342
343 /* Enable cpu timer interrupts on the boot cpu. */
344 vtime_init();
345 }
346
347 static DEFINE_PER_CPU(atomic_t, clock_sync_word);
348 static DEFINE_MUTEX(clock_sync_mutex);
349 static unsigned long clock_sync_flags;
350
351 #define CLOCK_SYNC_HAS_STP 0
352 #define CLOCK_SYNC_STP 1
353
354 /*
355 * The get_clock function for the physical clock. It will get the current
356 * TOD clock, subtract the LPAR offset and write the result to *clock.
357 * The function returns 0 if the clock is in sync with the external time
358 * source. If the clock mode is local it will return -EOPNOTSUPP and
359 * -EAGAIN if the clock is not in sync with the external reference.
360 */
361 int get_phys_clock(unsigned long *clock)
362 {
363 atomic_t *sw_ptr;
364 unsigned int sw0, sw1;
365
366 sw_ptr = &get_cpu_var(clock_sync_word);
367 sw0 = atomic_read(sw_ptr);
368 *clock = get_tod_clock() - lpar_offset;
369 sw1 = atomic_read(sw_ptr);
370 put_cpu_var(clock_sync_word);
371 if (sw0 == sw1 && (sw0 & 0x80000000U))
372 /* Success: time is in sync. */
373 return 0;
374 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
375 return -EOPNOTSUPP;
376 if (!test_bit(CLOCK_SYNC_STP, &clock_sync_flags))
377 return -EACCES;
378 return -EAGAIN;
379 }
380 EXPORT_SYMBOL(get_phys_clock);
381
382 /*
383 * Make get_phys_clock() return -EAGAIN.
384 */
385 static void disable_sync_clock(void *dummy)
386 {
387 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
388 /*
389 * Clear the in-sync bit 2^31. All get_phys_clock calls will
390 * fail until the sync bit is turned back on. In addition
391 * increase the "sequence" counter to avoid the race of an
392 * stp event and the complete recovery against get_phys_clock.
393 */
394 atomic_andnot(0x80000000, sw_ptr);
395 atomic_inc(sw_ptr);
396 }
397
398 /*
399 * Make get_phys_clock() return 0 again.
400 * Needs to be called from a context disabled for preemption.
401 */
402 static void enable_sync_clock(void)
403 {
404 atomic_t *sw_ptr = this_cpu_ptr(&clock_sync_word);
405 atomic_or(0x80000000, sw_ptr);
406 }
407
408 /*
409 * Function to check if the clock is in sync.
410 */
411 static inline int check_sync_clock(void)
412 {
413 atomic_t *sw_ptr;
414 int rc;
415
416 sw_ptr = &get_cpu_var(clock_sync_word);
417 rc = (atomic_read(sw_ptr) & 0x80000000U) != 0;
418 put_cpu_var(clock_sync_word);
419 return rc;
420 }
421
422 /*
423 * Apply clock delta to the global data structures.
424 * This is called once on the CPU that performed the clock sync.
425 */
426 static void clock_sync_global(unsigned long long delta)
427 {
428 unsigned long now, adj;
429 struct ptff_qto qto;
430
431 /* Fixup the monotonic sched clock. */
432 *(unsigned long long *) &tod_clock_base[1] += delta;
433 if (*(unsigned long long *) &tod_clock_base[1] < delta)
434 /* Epoch overflow */
435 tod_clock_base[0]++;
436 /* Adjust TOD steering parameters. */
437 vdso_data->tb_update_count++;
438 now = get_tod_clock();
439 adj = tod_steering_end - now;
440 if (unlikely((s64) adj >= 0))
441 /* Calculate how much of the old adjustment is left. */
442 tod_steering_delta = (tod_steering_delta < 0) ?
443 -(adj >> 15) : (adj >> 15);
444 tod_steering_delta += delta;
445 if ((abs(tod_steering_delta) >> 48) != 0)
446 panic("TOD clock sync offset %lli is too large to drift\n",
447 tod_steering_delta);
448 tod_steering_end = now + (abs(tod_steering_delta) << 15);
449 vdso_data->ts_dir = (tod_steering_delta < 0) ? 0 : 1;
450 vdso_data->ts_end = tod_steering_end;
451 vdso_data->tb_update_count++;
452 /* Update LPAR offset. */
453 if (ptff_query(PTFF_QTO) && ptff(&qto, sizeof(qto), PTFF_QTO) == 0)
454 lpar_offset = qto.tod_epoch_difference;
455 /* Call the TOD clock change notifier. */
456 atomic_notifier_call_chain(&s390_epoch_delta_notifier, 0, &delta);
457 }
458
459 /*
460 * Apply clock delta to the per-CPU data structures of this CPU.
461 * This is called for each online CPU after the call to clock_sync_global.
462 */
463 static void clock_sync_local(unsigned long long delta)
464 {
465 /* Add the delta to the clock comparator. */
466 if (S390_lowcore.clock_comparator != clock_comparator_max) {
467 S390_lowcore.clock_comparator += delta;
468 set_clock_comparator(S390_lowcore.clock_comparator);
469 }
470 /* Adjust the last_update_clock time-stamp. */
471 S390_lowcore.last_update_clock += delta;
472 }
473
474 /* Single threaded workqueue used for stp sync events */
475 static struct workqueue_struct *time_sync_wq;
476
477 static void __init time_init_wq(void)
478 {
479 if (time_sync_wq)
480 return;
481 time_sync_wq = create_singlethread_workqueue("timesync");
482 }
483
484 struct clock_sync_data {
485 atomic_t cpus;
486 int in_sync;
487 unsigned long long clock_delta;
488 };
489
490 /*
491 * Server Time Protocol (STP) code.
492 */
493 static bool stp_online;
494 static struct stp_sstpi stp_info;
495 static void *stp_page;
496
497 static void stp_work_fn(struct work_struct *work);
498 static DEFINE_MUTEX(stp_work_mutex);
499 static DECLARE_WORK(stp_work, stp_work_fn);
500 static struct timer_list stp_timer;
501
502 static int __init early_parse_stp(char *p)
503 {
504 return kstrtobool(p, &stp_online);
505 }
506 early_param("stp", early_parse_stp);
507
508 /*
509 * Reset STP attachment.
510 */
511 static void __init stp_reset(void)
512 {
513 int rc;
514
515 stp_page = (void *) get_zeroed_page(GFP_ATOMIC);
516 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
517 if (rc == 0)
518 set_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags);
519 else if (stp_online) {
520 pr_warn("The real or virtual hardware system does not provide an STP interface\n");
521 free_page((unsigned long) stp_page);
522 stp_page = NULL;
523 stp_online = false;
524 }
525 }
526
527 static void stp_timeout(struct timer_list *unused)
528 {
529 queue_work(time_sync_wq, &stp_work);
530 }
531
532 static int __init stp_init(void)
533 {
534 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
535 return 0;
536 timer_setup(&stp_timer, stp_timeout, 0);
537 time_init_wq();
538 if (!stp_online)
539 return 0;
540 queue_work(time_sync_wq, &stp_work);
541 return 0;
542 }
543
544 arch_initcall(stp_init);
545
546 /*
547 * STP timing alert. There are three causes:
548 * 1) timing status change
549 * 2) link availability change
550 * 3) time control parameter change
551 * In all three cases we are only interested in the clock source state.
552 * If a STP clock source is now available use it.
553 */
554 static void stp_timing_alert(struct stp_irq_parm *intparm)
555 {
556 if (intparm->tsc || intparm->lac || intparm->tcpc)
557 queue_work(time_sync_wq, &stp_work);
558 }
559
560 /*
561 * STP sync check machine check. This is called when the timing state
562 * changes from the synchronized state to the unsynchronized state.
563 * After a STP sync check the clock is not in sync. The machine check
564 * is broadcasted to all cpus at the same time.
565 */
566 int stp_sync_check(void)
567 {
568 disable_sync_clock(NULL);
569 return 1;
570 }
571
572 /*
573 * STP island condition machine check. This is called when an attached
574 * server attempts to communicate over an STP link and the servers
575 * have matching CTN ids and have a valid stratum-1 configuration
576 * but the configurations do not match.
577 */
578 int stp_island_check(void)
579 {
580 disable_sync_clock(NULL);
581 return 1;
582 }
583
584 void stp_queue_work(void)
585 {
586 queue_work(time_sync_wq, &stp_work);
587 }
588
589 static int stp_sync_clock(void *data)
590 {
591 struct clock_sync_data *sync = data;
592 unsigned long long clock_delta;
593 static int first;
594 int rc;
595
596 enable_sync_clock();
597 if (xchg(&first, 1) == 0) {
598 /* Wait until all other cpus entered the sync function. */
599 while (atomic_read(&sync->cpus) != 0)
600 cpu_relax();
601 rc = 0;
602 if (stp_info.todoff[0] || stp_info.todoff[1] ||
603 stp_info.todoff[2] || stp_info.todoff[3] ||
604 stp_info.tmd != 2) {
605 rc = chsc_sstpc(stp_page, STP_OP_SYNC, 0,
606 &clock_delta);
607 if (rc == 0) {
608 sync->clock_delta = clock_delta;
609 clock_sync_global(clock_delta);
610 rc = chsc_sstpi(stp_page, &stp_info,
611 sizeof(struct stp_sstpi));
612 if (rc == 0 && stp_info.tmd != 2)
613 rc = -EAGAIN;
614 }
615 }
616 sync->in_sync = rc ? -EAGAIN : 1;
617 xchg(&first, 0);
618 } else {
619 /* Slave */
620 atomic_dec(&sync->cpus);
621 /* Wait for in_sync to be set. */
622 while (READ_ONCE(sync->in_sync) == 0)
623 __udelay(1);
624 }
625 if (sync->in_sync != 1)
626 /* Didn't work. Clear per-cpu in sync bit again. */
627 disable_sync_clock(NULL);
628 /* Apply clock delta to per-CPU fields of this CPU. */
629 clock_sync_local(sync->clock_delta);
630
631 return 0;
632 }
633
634 /*
635 * STP work. Check for the STP state and take over the clock
636 * synchronization if the STP clock source is usable.
637 */
638 static void stp_work_fn(struct work_struct *work)
639 {
640 struct clock_sync_data stp_sync;
641 int rc;
642
643 /* prevent multiple execution. */
644 mutex_lock(&stp_work_mutex);
645
646 if (!stp_online) {
647 chsc_sstpc(stp_page, STP_OP_CTRL, 0x0000, NULL);
648 del_timer_sync(&stp_timer);
649 goto out_unlock;
650 }
651
652 rc = chsc_sstpc(stp_page, STP_OP_CTRL, 0xb0e0, NULL);
653 if (rc)
654 goto out_unlock;
655
656 rc = chsc_sstpi(stp_page, &stp_info, sizeof(struct stp_sstpi));
657 if (rc || stp_info.c == 0)
658 goto out_unlock;
659
660 /* Skip synchronization if the clock is already in sync. */
661 if (check_sync_clock())
662 goto out_unlock;
663
664 memset(&stp_sync, 0, sizeof(stp_sync));
665 cpus_read_lock();
666 atomic_set(&stp_sync.cpus, num_online_cpus() - 1);
667 stop_machine_cpuslocked(stp_sync_clock, &stp_sync, cpu_online_mask);
668 cpus_read_unlock();
669
670 if (!check_sync_clock())
671 /*
672 * There is a usable clock but the synchonization failed.
673 * Retry after a second.
674 */
675 mod_timer(&stp_timer, jiffies + HZ);
676
677 out_unlock:
678 mutex_unlock(&stp_work_mutex);
679 }
680
681 /*
682 * STP subsys sysfs interface functions
683 */
684 static struct bus_type stp_subsys = {
685 .name = "stp",
686 .dev_name = "stp",
687 };
688
689 static ssize_t stp_ctn_id_show(struct device *dev,
690 struct device_attribute *attr,
691 char *buf)
692 {
693 if (!stp_online)
694 return -ENODATA;
695 return sprintf(buf, "%016llx\n",
696 *(unsigned long long *) stp_info.ctnid);
697 }
698
699 static DEVICE_ATTR(ctn_id, 0400, stp_ctn_id_show, NULL);
700
701 static ssize_t stp_ctn_type_show(struct device *dev,
702 struct device_attribute *attr,
703 char *buf)
704 {
705 if (!stp_online)
706 return -ENODATA;
707 return sprintf(buf, "%i\n", stp_info.ctn);
708 }
709
710 static DEVICE_ATTR(ctn_type, 0400, stp_ctn_type_show, NULL);
711
712 static ssize_t stp_dst_offset_show(struct device *dev,
713 struct device_attribute *attr,
714 char *buf)
715 {
716 if (!stp_online || !(stp_info.vbits & 0x2000))
717 return -ENODATA;
718 return sprintf(buf, "%i\n", (int)(s16) stp_info.dsto);
719 }
720
721 static DEVICE_ATTR(dst_offset, 0400, stp_dst_offset_show, NULL);
722
723 static ssize_t stp_leap_seconds_show(struct device *dev,
724 struct device_attribute *attr,
725 char *buf)
726 {
727 if (!stp_online || !(stp_info.vbits & 0x8000))
728 return -ENODATA;
729 return sprintf(buf, "%i\n", (int)(s16) stp_info.leaps);
730 }
731
732 static DEVICE_ATTR(leap_seconds, 0400, stp_leap_seconds_show, NULL);
733
734 static ssize_t stp_stratum_show(struct device *dev,
735 struct device_attribute *attr,
736 char *buf)
737 {
738 if (!stp_online)
739 return -ENODATA;
740 return sprintf(buf, "%i\n", (int)(s16) stp_info.stratum);
741 }
742
743 static DEVICE_ATTR(stratum, 0400, stp_stratum_show, NULL);
744
745 static ssize_t stp_time_offset_show(struct device *dev,
746 struct device_attribute *attr,
747 char *buf)
748 {
749 if (!stp_online || !(stp_info.vbits & 0x0800))
750 return -ENODATA;
751 return sprintf(buf, "%i\n", (int) stp_info.tto);
752 }
753
754 static DEVICE_ATTR(time_offset, 0400, stp_time_offset_show, NULL);
755
756 static ssize_t stp_time_zone_offset_show(struct device *dev,
757 struct device_attribute *attr,
758 char *buf)
759 {
760 if (!stp_online || !(stp_info.vbits & 0x4000))
761 return -ENODATA;
762 return sprintf(buf, "%i\n", (int)(s16) stp_info.tzo);
763 }
764
765 static DEVICE_ATTR(time_zone_offset, 0400,
766 stp_time_zone_offset_show, NULL);
767
768 static ssize_t stp_timing_mode_show(struct device *dev,
769 struct device_attribute *attr,
770 char *buf)
771 {
772 if (!stp_online)
773 return -ENODATA;
774 return sprintf(buf, "%i\n", stp_info.tmd);
775 }
776
777 static DEVICE_ATTR(timing_mode, 0400, stp_timing_mode_show, NULL);
778
779 static ssize_t stp_timing_state_show(struct device *dev,
780 struct device_attribute *attr,
781 char *buf)
782 {
783 if (!stp_online)
784 return -ENODATA;
785 return sprintf(buf, "%i\n", stp_info.tst);
786 }
787
788 static DEVICE_ATTR(timing_state, 0400, stp_timing_state_show, NULL);
789
790 static ssize_t stp_online_show(struct device *dev,
791 struct device_attribute *attr,
792 char *buf)
793 {
794 return sprintf(buf, "%i\n", stp_online);
795 }
796
797 static ssize_t stp_online_store(struct device *dev,
798 struct device_attribute *attr,
799 const char *buf, size_t count)
800 {
801 unsigned int value;
802
803 value = simple_strtoul(buf, NULL, 0);
804 if (value != 0 && value != 1)
805 return -EINVAL;
806 if (!test_bit(CLOCK_SYNC_HAS_STP, &clock_sync_flags))
807 return -EOPNOTSUPP;
808 mutex_lock(&clock_sync_mutex);
809 stp_online = value;
810 if (stp_online)
811 set_bit(CLOCK_SYNC_STP, &clock_sync_flags);
812 else
813 clear_bit(CLOCK_SYNC_STP, &clock_sync_flags);
814 queue_work(time_sync_wq, &stp_work);
815 mutex_unlock(&clock_sync_mutex);
816 return count;
817 }
818
819 /*
820 * Can't use DEVICE_ATTR because the attribute should be named
821 * stp/online but dev_attr_online already exists in this file ..
822 */
823 static struct device_attribute dev_attr_stp_online = {
824 .attr = { .name = "online", .mode = 0600 },
825 .show = stp_online_show,
826 .store = stp_online_store,
827 };
828
829 static struct device_attribute *stp_attributes[] = {
830 &dev_attr_ctn_id,
831 &dev_attr_ctn_type,
832 &dev_attr_dst_offset,
833 &dev_attr_leap_seconds,
834 &dev_attr_stp_online,
835 &dev_attr_stratum,
836 &dev_attr_time_offset,
837 &dev_attr_time_zone_offset,
838 &dev_attr_timing_mode,
839 &dev_attr_timing_state,
840 NULL
841 };
842
843 static int __init stp_init_sysfs(void)
844 {
845 struct device_attribute **attr;
846 int rc;
847
848 rc = subsys_system_register(&stp_subsys, NULL);
849 if (rc)
850 goto out;
851 for (attr = stp_attributes; *attr; attr++) {
852 rc = device_create_file(stp_subsys.dev_root, *attr);
853 if (rc)
854 goto out_unreg;
855 }
856 return 0;
857 out_unreg:
858 for (; attr >= stp_attributes; attr--)
859 device_remove_file(stp_subsys.dev_root, *attr);
860 bus_unregister(&stp_subsys);
861 out:
862 return rc;
863 }
864
865 device_initcall(stp_init_sysfs);