]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/s390/kernel/vtime.c
s390/vtime: correct system time accounting
[mirror_ubuntu-zesty-kernel.git] / arch / s390 / kernel / vtime.c
1 /*
2 * Virtual cpu timer based timer functions.
3 *
4 * Copyright IBM Corp. 2004, 2012
5 * Author(s): Jan Glauber <jan.glauber@de.ibm.com>
6 */
7
8 #include <linux/kernel_stat.h>
9 #include <linux/export.h>
10 #include <linux/kernel.h>
11 #include <linux/timex.h>
12 #include <linux/types.h>
13 #include <linux/time.h>
14
15 #include <asm/cputime.h>
16 #include <asm/vtimer.h>
17 #include <asm/vtime.h>
18 #include <asm/cpu_mf.h>
19 #include <asm/smp.h>
20
21 #include "entry.h"
22
23 static void virt_timer_expire(void);
24
25 static LIST_HEAD(virt_timer_list);
26 static DEFINE_SPINLOCK(virt_timer_lock);
27 static atomic64_t virt_timer_current;
28 static atomic64_t virt_timer_elapsed;
29
30 DEFINE_PER_CPU(u64, mt_cycles[8]);
31 static DEFINE_PER_CPU(u64, mt_scaling_mult) = { 1 };
32 static DEFINE_PER_CPU(u64, mt_scaling_div) = { 1 };
33 static DEFINE_PER_CPU(u64, mt_scaling_jiffies);
34
35 static inline u64 get_vtimer(void)
36 {
37 u64 timer;
38
39 asm volatile("stpt %0" : "=m" (timer));
40 return timer;
41 }
42
43 static inline void set_vtimer(u64 expires)
44 {
45 u64 timer;
46
47 asm volatile(
48 " stpt %0\n" /* Store current cpu timer value */
49 " spt %1" /* Set new value imm. afterwards */
50 : "=m" (timer) : "m" (expires));
51 S390_lowcore.system_timer += S390_lowcore.last_update_timer - timer;
52 S390_lowcore.last_update_timer = expires;
53 }
54
55 static inline int virt_timer_forward(u64 elapsed)
56 {
57 BUG_ON(!irqs_disabled());
58
59 if (list_empty(&virt_timer_list))
60 return 0;
61 elapsed = atomic64_add_return(elapsed, &virt_timer_elapsed);
62 return elapsed >= atomic64_read(&virt_timer_current);
63 }
64
65 static void update_mt_scaling(void)
66 {
67 u64 cycles_new[8], *cycles_old;
68 u64 delta, fac, mult, div;
69 int i;
70
71 stcctm5(smp_cpu_mtid + 1, cycles_new);
72 cycles_old = this_cpu_ptr(mt_cycles);
73 fac = 1;
74 mult = div = 0;
75 for (i = 0; i <= smp_cpu_mtid; i++) {
76 delta = cycles_new[i] - cycles_old[i];
77 div += delta;
78 mult *= i + 1;
79 mult += delta * fac;
80 fac *= i + 1;
81 }
82 div *= fac;
83 if (div > 0) {
84 /* Update scaling factor */
85 __this_cpu_write(mt_scaling_mult, mult);
86 __this_cpu_write(mt_scaling_div, div);
87 memcpy(cycles_old, cycles_new,
88 sizeof(u64) * (smp_cpu_mtid + 1));
89 }
90 __this_cpu_write(mt_scaling_jiffies, jiffies_64);
91 }
92
93 /*
94 * Update process times based on virtual cpu times stored by entry.S
95 * to the lowcore fields user_timer, system_timer & steal_clock.
96 */
97 static int do_account_vtime(struct task_struct *tsk)
98 {
99 u64 timer, clock, user, system, steal;
100 u64 user_scaled, system_scaled;
101
102 timer = S390_lowcore.last_update_timer;
103 clock = S390_lowcore.last_update_clock;
104 asm volatile(
105 " stpt %0\n" /* Store current cpu timer value */
106 #ifdef CONFIG_HAVE_MARCH_Z9_109_FEATURES
107 " stckf %1" /* Store current tod clock value */
108 #else
109 " stck %1" /* Store current tod clock value */
110 #endif
111 : "=m" (S390_lowcore.last_update_timer),
112 "=m" (S390_lowcore.last_update_clock));
113 S390_lowcore.system_timer += timer - S390_lowcore.last_update_timer;
114 S390_lowcore.steal_timer += S390_lowcore.last_update_clock - clock;
115
116 /* Update MT utilization calculation */
117 if (smp_cpu_mtid &&
118 time_after64(jiffies_64, this_cpu_read(mt_scaling_jiffies)))
119 update_mt_scaling();
120
121 user = S390_lowcore.user_timer - tsk->thread.user_timer;
122 S390_lowcore.steal_timer -= user;
123 tsk->thread.user_timer = S390_lowcore.user_timer;
124
125 system = S390_lowcore.system_timer - tsk->thread.system_timer;
126 S390_lowcore.steal_timer -= system;
127 tsk->thread.system_timer = S390_lowcore.system_timer;
128
129 user_scaled = user;
130 system_scaled = system;
131 /* Do MT utilization scaling */
132 if (smp_cpu_mtid) {
133 u64 mult = __this_cpu_read(mt_scaling_mult);
134 u64 div = __this_cpu_read(mt_scaling_div);
135
136 user_scaled = (user_scaled * mult) / div;
137 system_scaled = (system_scaled * mult) / div;
138 }
139 account_user_time(tsk, user);
140 tsk->utimescaled += user_scaled;
141 account_system_time(tsk, 0, system);
142 tsk->stimescaled += system_scaled;
143
144 steal = S390_lowcore.steal_timer;
145 if ((s64) steal > 0) {
146 S390_lowcore.steal_timer = 0;
147 account_steal_time(steal);
148 }
149
150 return virt_timer_forward(user + system);
151 }
152
153 void vtime_task_switch(struct task_struct *prev)
154 {
155 do_account_vtime(prev);
156 prev->thread.user_timer = S390_lowcore.user_timer;
157 prev->thread.system_timer = S390_lowcore.system_timer;
158 S390_lowcore.user_timer = current->thread.user_timer;
159 S390_lowcore.system_timer = current->thread.system_timer;
160 }
161
162 /*
163 * In s390, accounting pending user time also implies
164 * accounting system time in order to correctly compute
165 * the stolen time accounting.
166 */
167 void vtime_account_user(struct task_struct *tsk)
168 {
169 if (do_account_vtime(tsk))
170 virt_timer_expire();
171 }
172
173 /*
174 * Update process times based on virtual cpu times stored by entry.S
175 * to the lowcore fields user_timer, system_timer & steal_clock.
176 */
177 void vtime_account_irq_enter(struct task_struct *tsk)
178 {
179 u64 timer, system, system_scaled;
180
181 timer = S390_lowcore.last_update_timer;
182 S390_lowcore.last_update_timer = get_vtimer();
183 S390_lowcore.system_timer += timer - S390_lowcore.last_update_timer;
184
185 /* Update MT utilization calculation */
186 if (smp_cpu_mtid &&
187 time_after64(jiffies_64, this_cpu_read(mt_scaling_jiffies)))
188 update_mt_scaling();
189
190 system = S390_lowcore.system_timer - tsk->thread.system_timer;
191 S390_lowcore.steal_timer -= system;
192 tsk->thread.system_timer = S390_lowcore.system_timer;
193 system_scaled = system;
194 /* Do MT utilization scaling */
195 if (smp_cpu_mtid) {
196 u64 mult = __this_cpu_read(mt_scaling_mult);
197 u64 div = __this_cpu_read(mt_scaling_div);
198
199 system_scaled = (system_scaled * mult) / div;
200 }
201 account_system_time(tsk, 0, system);
202 tsk->stimescaled += system_scaled;
203
204 virt_timer_forward(system);
205 }
206 EXPORT_SYMBOL_GPL(vtime_account_irq_enter);
207
208 void vtime_account_system(struct task_struct *tsk)
209 __attribute__((alias("vtime_account_irq_enter")));
210 EXPORT_SYMBOL_GPL(vtime_account_system);
211
212 /*
213 * Sorted add to a list. List is linear searched until first bigger
214 * element is found.
215 */
216 static void list_add_sorted(struct vtimer_list *timer, struct list_head *head)
217 {
218 struct vtimer_list *tmp;
219
220 list_for_each_entry(tmp, head, entry) {
221 if (tmp->expires > timer->expires) {
222 list_add_tail(&timer->entry, &tmp->entry);
223 return;
224 }
225 }
226 list_add_tail(&timer->entry, head);
227 }
228
229 /*
230 * Handler for expired virtual CPU timer.
231 */
232 static void virt_timer_expire(void)
233 {
234 struct vtimer_list *timer, *tmp;
235 unsigned long elapsed;
236 LIST_HEAD(cb_list);
237
238 /* walk timer list, fire all expired timers */
239 spin_lock(&virt_timer_lock);
240 elapsed = atomic64_read(&virt_timer_elapsed);
241 list_for_each_entry_safe(timer, tmp, &virt_timer_list, entry) {
242 if (timer->expires < elapsed)
243 /* move expired timer to the callback queue */
244 list_move_tail(&timer->entry, &cb_list);
245 else
246 timer->expires -= elapsed;
247 }
248 if (!list_empty(&virt_timer_list)) {
249 timer = list_first_entry(&virt_timer_list,
250 struct vtimer_list, entry);
251 atomic64_set(&virt_timer_current, timer->expires);
252 }
253 atomic64_sub(elapsed, &virt_timer_elapsed);
254 spin_unlock(&virt_timer_lock);
255
256 /* Do callbacks and recharge periodic timers */
257 list_for_each_entry_safe(timer, tmp, &cb_list, entry) {
258 list_del_init(&timer->entry);
259 timer->function(timer->data);
260 if (timer->interval) {
261 /* Recharge interval timer */
262 timer->expires = timer->interval +
263 atomic64_read(&virt_timer_elapsed);
264 spin_lock(&virt_timer_lock);
265 list_add_sorted(timer, &virt_timer_list);
266 spin_unlock(&virt_timer_lock);
267 }
268 }
269 }
270
271 void init_virt_timer(struct vtimer_list *timer)
272 {
273 timer->function = NULL;
274 INIT_LIST_HEAD(&timer->entry);
275 }
276 EXPORT_SYMBOL(init_virt_timer);
277
278 static inline int vtimer_pending(struct vtimer_list *timer)
279 {
280 return !list_empty(&timer->entry);
281 }
282
283 static void internal_add_vtimer(struct vtimer_list *timer)
284 {
285 if (list_empty(&virt_timer_list)) {
286 /* First timer, just program it. */
287 atomic64_set(&virt_timer_current, timer->expires);
288 atomic64_set(&virt_timer_elapsed, 0);
289 list_add(&timer->entry, &virt_timer_list);
290 } else {
291 /* Update timer against current base. */
292 timer->expires += atomic64_read(&virt_timer_elapsed);
293 if (likely((s64) timer->expires <
294 (s64) atomic64_read(&virt_timer_current)))
295 /* The new timer expires before the current timer. */
296 atomic64_set(&virt_timer_current, timer->expires);
297 /* Insert new timer into the list. */
298 list_add_sorted(timer, &virt_timer_list);
299 }
300 }
301
302 static void __add_vtimer(struct vtimer_list *timer, int periodic)
303 {
304 unsigned long flags;
305
306 timer->interval = periodic ? timer->expires : 0;
307 spin_lock_irqsave(&virt_timer_lock, flags);
308 internal_add_vtimer(timer);
309 spin_unlock_irqrestore(&virt_timer_lock, flags);
310 }
311
312 /*
313 * add_virt_timer - add an oneshot virtual CPU timer
314 */
315 void add_virt_timer(struct vtimer_list *timer)
316 {
317 __add_vtimer(timer, 0);
318 }
319 EXPORT_SYMBOL(add_virt_timer);
320
321 /*
322 * add_virt_timer_int - add an interval virtual CPU timer
323 */
324 void add_virt_timer_periodic(struct vtimer_list *timer)
325 {
326 __add_vtimer(timer, 1);
327 }
328 EXPORT_SYMBOL(add_virt_timer_periodic);
329
330 static int __mod_vtimer(struct vtimer_list *timer, u64 expires, int periodic)
331 {
332 unsigned long flags;
333 int rc;
334
335 BUG_ON(!timer->function);
336
337 if (timer->expires == expires && vtimer_pending(timer))
338 return 1;
339 spin_lock_irqsave(&virt_timer_lock, flags);
340 rc = vtimer_pending(timer);
341 if (rc)
342 list_del_init(&timer->entry);
343 timer->interval = periodic ? expires : 0;
344 timer->expires = expires;
345 internal_add_vtimer(timer);
346 spin_unlock_irqrestore(&virt_timer_lock, flags);
347 return rc;
348 }
349
350 /*
351 * returns whether it has modified a pending timer (1) or not (0)
352 */
353 int mod_virt_timer(struct vtimer_list *timer, u64 expires)
354 {
355 return __mod_vtimer(timer, expires, 0);
356 }
357 EXPORT_SYMBOL(mod_virt_timer);
358
359 /*
360 * returns whether it has modified a pending timer (1) or not (0)
361 */
362 int mod_virt_timer_periodic(struct vtimer_list *timer, u64 expires)
363 {
364 return __mod_vtimer(timer, expires, 1);
365 }
366 EXPORT_SYMBOL(mod_virt_timer_periodic);
367
368 /*
369 * Delete a virtual timer.
370 *
371 * returns whether the deleted timer was pending (1) or not (0)
372 */
373 int del_virt_timer(struct vtimer_list *timer)
374 {
375 unsigned long flags;
376
377 if (!vtimer_pending(timer))
378 return 0;
379 spin_lock_irqsave(&virt_timer_lock, flags);
380 list_del_init(&timer->entry);
381 spin_unlock_irqrestore(&virt_timer_lock, flags);
382 return 1;
383 }
384 EXPORT_SYMBOL(del_virt_timer);
385
386 /*
387 * Start the virtual CPU timer on the current CPU.
388 */
389 void vtime_init(void)
390 {
391 /* set initial cpu timer */
392 set_vtimer(VTIMER_MAX_SLICE);
393 /* Setup initial MT scaling values */
394 if (smp_cpu_mtid) {
395 __this_cpu_write(mt_scaling_jiffies, jiffies);
396 __this_cpu_write(mt_scaling_mult, 1);
397 __this_cpu_write(mt_scaling_div, 1);
398 stcctm5(smp_cpu_mtid + 1, this_cpu_ptr(mt_cycles));
399 }
400 }