]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/s390/kvm/gaccess.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[mirror_ubuntu-artful-kernel.git] / arch / s390 / kvm / gaccess.c
1 /*
2 * guest access functions
3 *
4 * Copyright IBM Corp. 2014
5 *
6 */
7
8 #include <linux/vmalloc.h>
9 #include <linux/mm_types.h>
10 #include <linux/err.h>
11
12 #include <asm/pgtable.h>
13 #include <asm/gmap.h>
14 #include "kvm-s390.h"
15 #include "gaccess.h"
16 #include <asm/switch_to.h>
17
18 union asce {
19 unsigned long val;
20 struct {
21 unsigned long origin : 52; /* Region- or Segment-Table Origin */
22 unsigned long : 2;
23 unsigned long g : 1; /* Subspace Group Control */
24 unsigned long p : 1; /* Private Space Control */
25 unsigned long s : 1; /* Storage-Alteration-Event Control */
26 unsigned long x : 1; /* Space-Switch-Event Control */
27 unsigned long r : 1; /* Real-Space Control */
28 unsigned long : 1;
29 unsigned long dt : 2; /* Designation-Type Control */
30 unsigned long tl : 2; /* Region- or Segment-Table Length */
31 };
32 };
33
34 enum {
35 ASCE_TYPE_SEGMENT = 0,
36 ASCE_TYPE_REGION3 = 1,
37 ASCE_TYPE_REGION2 = 2,
38 ASCE_TYPE_REGION1 = 3
39 };
40
41 union region1_table_entry {
42 unsigned long val;
43 struct {
44 unsigned long rto: 52;/* Region-Table Origin */
45 unsigned long : 2;
46 unsigned long p : 1; /* DAT-Protection Bit */
47 unsigned long : 1;
48 unsigned long tf : 2; /* Region-Second-Table Offset */
49 unsigned long i : 1; /* Region-Invalid Bit */
50 unsigned long : 1;
51 unsigned long tt : 2; /* Table-Type Bits */
52 unsigned long tl : 2; /* Region-Second-Table Length */
53 };
54 };
55
56 union region2_table_entry {
57 unsigned long val;
58 struct {
59 unsigned long rto: 52;/* Region-Table Origin */
60 unsigned long : 2;
61 unsigned long p : 1; /* DAT-Protection Bit */
62 unsigned long : 1;
63 unsigned long tf : 2; /* Region-Third-Table Offset */
64 unsigned long i : 1; /* Region-Invalid Bit */
65 unsigned long : 1;
66 unsigned long tt : 2; /* Table-Type Bits */
67 unsigned long tl : 2; /* Region-Third-Table Length */
68 };
69 };
70
71 struct region3_table_entry_fc0 {
72 unsigned long sto: 52;/* Segment-Table Origin */
73 unsigned long : 1;
74 unsigned long fc : 1; /* Format-Control */
75 unsigned long p : 1; /* DAT-Protection Bit */
76 unsigned long : 1;
77 unsigned long tf : 2; /* Segment-Table Offset */
78 unsigned long i : 1; /* Region-Invalid Bit */
79 unsigned long cr : 1; /* Common-Region Bit */
80 unsigned long tt : 2; /* Table-Type Bits */
81 unsigned long tl : 2; /* Segment-Table Length */
82 };
83
84 struct region3_table_entry_fc1 {
85 unsigned long rfaa : 33; /* Region-Frame Absolute Address */
86 unsigned long : 14;
87 unsigned long av : 1; /* ACCF-Validity Control */
88 unsigned long acc: 4; /* Access-Control Bits */
89 unsigned long f : 1; /* Fetch-Protection Bit */
90 unsigned long fc : 1; /* Format-Control */
91 unsigned long p : 1; /* DAT-Protection Bit */
92 unsigned long iep: 1; /* Instruction-Execution-Protection */
93 unsigned long : 2;
94 unsigned long i : 1; /* Region-Invalid Bit */
95 unsigned long cr : 1; /* Common-Region Bit */
96 unsigned long tt : 2; /* Table-Type Bits */
97 unsigned long : 2;
98 };
99
100 union region3_table_entry {
101 unsigned long val;
102 struct region3_table_entry_fc0 fc0;
103 struct region3_table_entry_fc1 fc1;
104 struct {
105 unsigned long : 53;
106 unsigned long fc : 1; /* Format-Control */
107 unsigned long : 4;
108 unsigned long i : 1; /* Region-Invalid Bit */
109 unsigned long cr : 1; /* Common-Region Bit */
110 unsigned long tt : 2; /* Table-Type Bits */
111 unsigned long : 2;
112 };
113 };
114
115 struct segment_entry_fc0 {
116 unsigned long pto: 53;/* Page-Table Origin */
117 unsigned long fc : 1; /* Format-Control */
118 unsigned long p : 1; /* DAT-Protection Bit */
119 unsigned long : 3;
120 unsigned long i : 1; /* Segment-Invalid Bit */
121 unsigned long cs : 1; /* Common-Segment Bit */
122 unsigned long tt : 2; /* Table-Type Bits */
123 unsigned long : 2;
124 };
125
126 struct segment_entry_fc1 {
127 unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
128 unsigned long : 3;
129 unsigned long av : 1; /* ACCF-Validity Control */
130 unsigned long acc: 4; /* Access-Control Bits */
131 unsigned long f : 1; /* Fetch-Protection Bit */
132 unsigned long fc : 1; /* Format-Control */
133 unsigned long p : 1; /* DAT-Protection Bit */
134 unsigned long iep: 1; /* Instruction-Execution-Protection */
135 unsigned long : 2;
136 unsigned long i : 1; /* Segment-Invalid Bit */
137 unsigned long cs : 1; /* Common-Segment Bit */
138 unsigned long tt : 2; /* Table-Type Bits */
139 unsigned long : 2;
140 };
141
142 union segment_table_entry {
143 unsigned long val;
144 struct segment_entry_fc0 fc0;
145 struct segment_entry_fc1 fc1;
146 struct {
147 unsigned long : 53;
148 unsigned long fc : 1; /* Format-Control */
149 unsigned long : 4;
150 unsigned long i : 1; /* Segment-Invalid Bit */
151 unsigned long cs : 1; /* Common-Segment Bit */
152 unsigned long tt : 2; /* Table-Type Bits */
153 unsigned long : 2;
154 };
155 };
156
157 enum {
158 TABLE_TYPE_SEGMENT = 0,
159 TABLE_TYPE_REGION3 = 1,
160 TABLE_TYPE_REGION2 = 2,
161 TABLE_TYPE_REGION1 = 3
162 };
163
164 union page_table_entry {
165 unsigned long val;
166 struct {
167 unsigned long pfra : 52; /* Page-Frame Real Address */
168 unsigned long z : 1; /* Zero Bit */
169 unsigned long i : 1; /* Page-Invalid Bit */
170 unsigned long p : 1; /* DAT-Protection Bit */
171 unsigned long iep: 1; /* Instruction-Execution-Protection */
172 unsigned long : 8;
173 };
174 };
175
176 /*
177 * vaddress union in order to easily decode a virtual address into its
178 * region first index, region second index etc. parts.
179 */
180 union vaddress {
181 unsigned long addr;
182 struct {
183 unsigned long rfx : 11;
184 unsigned long rsx : 11;
185 unsigned long rtx : 11;
186 unsigned long sx : 11;
187 unsigned long px : 8;
188 unsigned long bx : 12;
189 };
190 struct {
191 unsigned long rfx01 : 2;
192 unsigned long : 9;
193 unsigned long rsx01 : 2;
194 unsigned long : 9;
195 unsigned long rtx01 : 2;
196 unsigned long : 9;
197 unsigned long sx01 : 2;
198 unsigned long : 29;
199 };
200 };
201
202 /*
203 * raddress union which will contain the result (real or absolute address)
204 * after a page table walk. The rfaa, sfaa and pfra members are used to
205 * simply assign them the value of a region, segment or page table entry.
206 */
207 union raddress {
208 unsigned long addr;
209 unsigned long rfaa : 33; /* Region-Frame Absolute Address */
210 unsigned long sfaa : 44; /* Segment-Frame Absolute Address */
211 unsigned long pfra : 52; /* Page-Frame Real Address */
212 };
213
214 union alet {
215 u32 val;
216 struct {
217 u32 reserved : 7;
218 u32 p : 1;
219 u32 alesn : 8;
220 u32 alen : 16;
221 };
222 };
223
224 union ald {
225 u32 val;
226 struct {
227 u32 : 1;
228 u32 alo : 24;
229 u32 all : 7;
230 };
231 };
232
233 struct ale {
234 unsigned long i : 1; /* ALEN-Invalid Bit */
235 unsigned long : 5;
236 unsigned long fo : 1; /* Fetch-Only Bit */
237 unsigned long p : 1; /* Private Bit */
238 unsigned long alesn : 8; /* Access-List-Entry Sequence Number */
239 unsigned long aleax : 16; /* Access-List-Entry Authorization Index */
240 unsigned long : 32;
241 unsigned long : 1;
242 unsigned long asteo : 25; /* ASN-Second-Table-Entry Origin */
243 unsigned long : 6;
244 unsigned long astesn : 32; /* ASTE Sequence Number */
245 };
246
247 struct aste {
248 unsigned long i : 1; /* ASX-Invalid Bit */
249 unsigned long ato : 29; /* Authority-Table Origin */
250 unsigned long : 1;
251 unsigned long b : 1; /* Base-Space Bit */
252 unsigned long ax : 16; /* Authorization Index */
253 unsigned long atl : 12; /* Authority-Table Length */
254 unsigned long : 2;
255 unsigned long ca : 1; /* Controlled-ASN Bit */
256 unsigned long ra : 1; /* Reusable-ASN Bit */
257 unsigned long asce : 64; /* Address-Space-Control Element */
258 unsigned long ald : 32;
259 unsigned long astesn : 32;
260 /* .. more fields there */
261 };
262
263 int ipte_lock_held(struct kvm_vcpu *vcpu)
264 {
265 if (vcpu->arch.sie_block->eca & ECA_SII) {
266 int rc;
267
268 read_lock(&vcpu->kvm->arch.sca_lock);
269 rc = kvm_s390_get_ipte_control(vcpu->kvm)->kh != 0;
270 read_unlock(&vcpu->kvm->arch.sca_lock);
271 return rc;
272 }
273 return vcpu->kvm->arch.ipte_lock_count != 0;
274 }
275
276 static void ipte_lock_simple(struct kvm_vcpu *vcpu)
277 {
278 union ipte_control old, new, *ic;
279
280 mutex_lock(&vcpu->kvm->arch.ipte_mutex);
281 vcpu->kvm->arch.ipte_lock_count++;
282 if (vcpu->kvm->arch.ipte_lock_count > 1)
283 goto out;
284 retry:
285 read_lock(&vcpu->kvm->arch.sca_lock);
286 ic = kvm_s390_get_ipte_control(vcpu->kvm);
287 do {
288 old = READ_ONCE(*ic);
289 if (old.k) {
290 read_unlock(&vcpu->kvm->arch.sca_lock);
291 cond_resched();
292 goto retry;
293 }
294 new = old;
295 new.k = 1;
296 } while (cmpxchg(&ic->val, old.val, new.val) != old.val);
297 read_unlock(&vcpu->kvm->arch.sca_lock);
298 out:
299 mutex_unlock(&vcpu->kvm->arch.ipte_mutex);
300 }
301
302 static void ipte_unlock_simple(struct kvm_vcpu *vcpu)
303 {
304 union ipte_control old, new, *ic;
305
306 mutex_lock(&vcpu->kvm->arch.ipte_mutex);
307 vcpu->kvm->arch.ipte_lock_count--;
308 if (vcpu->kvm->arch.ipte_lock_count)
309 goto out;
310 read_lock(&vcpu->kvm->arch.sca_lock);
311 ic = kvm_s390_get_ipte_control(vcpu->kvm);
312 do {
313 old = READ_ONCE(*ic);
314 new = old;
315 new.k = 0;
316 } while (cmpxchg(&ic->val, old.val, new.val) != old.val);
317 read_unlock(&vcpu->kvm->arch.sca_lock);
318 wake_up(&vcpu->kvm->arch.ipte_wq);
319 out:
320 mutex_unlock(&vcpu->kvm->arch.ipte_mutex);
321 }
322
323 static void ipte_lock_siif(struct kvm_vcpu *vcpu)
324 {
325 union ipte_control old, new, *ic;
326
327 retry:
328 read_lock(&vcpu->kvm->arch.sca_lock);
329 ic = kvm_s390_get_ipte_control(vcpu->kvm);
330 do {
331 old = READ_ONCE(*ic);
332 if (old.kg) {
333 read_unlock(&vcpu->kvm->arch.sca_lock);
334 cond_resched();
335 goto retry;
336 }
337 new = old;
338 new.k = 1;
339 new.kh++;
340 } while (cmpxchg(&ic->val, old.val, new.val) != old.val);
341 read_unlock(&vcpu->kvm->arch.sca_lock);
342 }
343
344 static void ipte_unlock_siif(struct kvm_vcpu *vcpu)
345 {
346 union ipte_control old, new, *ic;
347
348 read_lock(&vcpu->kvm->arch.sca_lock);
349 ic = kvm_s390_get_ipte_control(vcpu->kvm);
350 do {
351 old = READ_ONCE(*ic);
352 new = old;
353 new.kh--;
354 if (!new.kh)
355 new.k = 0;
356 } while (cmpxchg(&ic->val, old.val, new.val) != old.val);
357 read_unlock(&vcpu->kvm->arch.sca_lock);
358 if (!new.kh)
359 wake_up(&vcpu->kvm->arch.ipte_wq);
360 }
361
362 void ipte_lock(struct kvm_vcpu *vcpu)
363 {
364 if (vcpu->arch.sie_block->eca & ECA_SII)
365 ipte_lock_siif(vcpu);
366 else
367 ipte_lock_simple(vcpu);
368 }
369
370 void ipte_unlock(struct kvm_vcpu *vcpu)
371 {
372 if (vcpu->arch.sie_block->eca & ECA_SII)
373 ipte_unlock_siif(vcpu);
374 else
375 ipte_unlock_simple(vcpu);
376 }
377
378 static int ar_translation(struct kvm_vcpu *vcpu, union asce *asce, u8 ar,
379 enum gacc_mode mode)
380 {
381 union alet alet;
382 struct ale ale;
383 struct aste aste;
384 unsigned long ald_addr, authority_table_addr;
385 union ald ald;
386 int eax, rc;
387 u8 authority_table;
388
389 if (ar >= NUM_ACRS)
390 return -EINVAL;
391
392 save_access_regs(vcpu->run->s.regs.acrs);
393 alet.val = vcpu->run->s.regs.acrs[ar];
394
395 if (ar == 0 || alet.val == 0) {
396 asce->val = vcpu->arch.sie_block->gcr[1];
397 return 0;
398 } else if (alet.val == 1) {
399 asce->val = vcpu->arch.sie_block->gcr[7];
400 return 0;
401 }
402
403 if (alet.reserved)
404 return PGM_ALET_SPECIFICATION;
405
406 if (alet.p)
407 ald_addr = vcpu->arch.sie_block->gcr[5];
408 else
409 ald_addr = vcpu->arch.sie_block->gcr[2];
410 ald_addr &= 0x7fffffc0;
411
412 rc = read_guest_real(vcpu, ald_addr + 16, &ald.val, sizeof(union ald));
413 if (rc)
414 return rc;
415
416 if (alet.alen / 8 > ald.all)
417 return PGM_ALEN_TRANSLATION;
418
419 if (0x7fffffff - ald.alo * 128 < alet.alen * 16)
420 return PGM_ADDRESSING;
421
422 rc = read_guest_real(vcpu, ald.alo * 128 + alet.alen * 16, &ale,
423 sizeof(struct ale));
424 if (rc)
425 return rc;
426
427 if (ale.i == 1)
428 return PGM_ALEN_TRANSLATION;
429 if (ale.alesn != alet.alesn)
430 return PGM_ALE_SEQUENCE;
431
432 rc = read_guest_real(vcpu, ale.asteo * 64, &aste, sizeof(struct aste));
433 if (rc)
434 return rc;
435
436 if (aste.i)
437 return PGM_ASTE_VALIDITY;
438 if (aste.astesn != ale.astesn)
439 return PGM_ASTE_SEQUENCE;
440
441 if (ale.p == 1) {
442 eax = (vcpu->arch.sie_block->gcr[8] >> 16) & 0xffff;
443 if (ale.aleax != eax) {
444 if (eax / 16 > aste.atl)
445 return PGM_EXTENDED_AUTHORITY;
446
447 authority_table_addr = aste.ato * 4 + eax / 4;
448
449 rc = read_guest_real(vcpu, authority_table_addr,
450 &authority_table,
451 sizeof(u8));
452 if (rc)
453 return rc;
454
455 if ((authority_table & (0x40 >> ((eax & 3) * 2))) == 0)
456 return PGM_EXTENDED_AUTHORITY;
457 }
458 }
459
460 if (ale.fo == 1 && mode == GACC_STORE)
461 return PGM_PROTECTION;
462
463 asce->val = aste.asce;
464 return 0;
465 }
466
467 struct trans_exc_code_bits {
468 unsigned long addr : 52; /* Translation-exception Address */
469 unsigned long fsi : 2; /* Access Exception Fetch/Store Indication */
470 unsigned long : 2;
471 unsigned long b56 : 1;
472 unsigned long : 3;
473 unsigned long b60 : 1;
474 unsigned long b61 : 1;
475 unsigned long as : 2; /* ASCE Identifier */
476 };
477
478 enum {
479 FSI_UNKNOWN = 0, /* Unknown wether fetch or store */
480 FSI_STORE = 1, /* Exception was due to store operation */
481 FSI_FETCH = 2 /* Exception was due to fetch operation */
482 };
483
484 enum prot_type {
485 PROT_TYPE_LA = 0,
486 PROT_TYPE_KEYC = 1,
487 PROT_TYPE_ALC = 2,
488 PROT_TYPE_DAT = 3,
489 PROT_TYPE_IEP = 4,
490 };
491
492 static int trans_exc(struct kvm_vcpu *vcpu, int code, unsigned long gva,
493 u8 ar, enum gacc_mode mode, enum prot_type prot)
494 {
495 struct kvm_s390_pgm_info *pgm = &vcpu->arch.pgm;
496 struct trans_exc_code_bits *tec;
497
498 memset(pgm, 0, sizeof(*pgm));
499 pgm->code = code;
500 tec = (struct trans_exc_code_bits *)&pgm->trans_exc_code;
501
502 switch (code) {
503 case PGM_PROTECTION:
504 switch (prot) {
505 case PROT_TYPE_IEP:
506 tec->b61 = 1;
507 /* FALL THROUGH */
508 case PROT_TYPE_LA:
509 tec->b56 = 1;
510 break;
511 case PROT_TYPE_KEYC:
512 tec->b60 = 1;
513 break;
514 case PROT_TYPE_ALC:
515 tec->b60 = 1;
516 /* FALL THROUGH */
517 case PROT_TYPE_DAT:
518 tec->b61 = 1;
519 break;
520 }
521 /* FALL THROUGH */
522 case PGM_ASCE_TYPE:
523 case PGM_PAGE_TRANSLATION:
524 case PGM_REGION_FIRST_TRANS:
525 case PGM_REGION_SECOND_TRANS:
526 case PGM_REGION_THIRD_TRANS:
527 case PGM_SEGMENT_TRANSLATION:
528 /*
529 * op_access_id only applies to MOVE_PAGE -> set bit 61
530 * exc_access_id has to be set to 0 for some instructions. Both
531 * cases have to be handled by the caller.
532 */
533 tec->addr = gva >> PAGE_SHIFT;
534 tec->fsi = mode == GACC_STORE ? FSI_STORE : FSI_FETCH;
535 tec->as = psw_bits(vcpu->arch.sie_block->gpsw).as;
536 /* FALL THROUGH */
537 case PGM_ALEN_TRANSLATION:
538 case PGM_ALE_SEQUENCE:
539 case PGM_ASTE_VALIDITY:
540 case PGM_ASTE_SEQUENCE:
541 case PGM_EXTENDED_AUTHORITY:
542 /*
543 * We can always store exc_access_id, as it is
544 * undefined for non-ar cases. It is undefined for
545 * most DAT protection exceptions.
546 */
547 pgm->exc_access_id = ar;
548 break;
549 }
550 return code;
551 }
552
553 static int get_vcpu_asce(struct kvm_vcpu *vcpu, union asce *asce,
554 unsigned long ga, u8 ar, enum gacc_mode mode)
555 {
556 int rc;
557 struct psw_bits psw = psw_bits(vcpu->arch.sie_block->gpsw);
558
559 if (!psw.dat) {
560 asce->val = 0;
561 asce->r = 1;
562 return 0;
563 }
564
565 if ((mode == GACC_IFETCH) && (psw.as != PSW_BITS_AS_HOME))
566 psw.as = PSW_BITS_AS_PRIMARY;
567
568 switch (psw.as) {
569 case PSW_BITS_AS_PRIMARY:
570 asce->val = vcpu->arch.sie_block->gcr[1];
571 return 0;
572 case PSW_BITS_AS_SECONDARY:
573 asce->val = vcpu->arch.sie_block->gcr[7];
574 return 0;
575 case PSW_BITS_AS_HOME:
576 asce->val = vcpu->arch.sie_block->gcr[13];
577 return 0;
578 case PSW_BITS_AS_ACCREG:
579 rc = ar_translation(vcpu, asce, ar, mode);
580 if (rc > 0)
581 return trans_exc(vcpu, rc, ga, ar, mode, PROT_TYPE_ALC);
582 return rc;
583 }
584 return 0;
585 }
586
587 static int deref_table(struct kvm *kvm, unsigned long gpa, unsigned long *val)
588 {
589 return kvm_read_guest(kvm, gpa, val, sizeof(*val));
590 }
591
592 /**
593 * guest_translate - translate a guest virtual into a guest absolute address
594 * @vcpu: virtual cpu
595 * @gva: guest virtual address
596 * @gpa: points to where guest physical (absolute) address should be stored
597 * @asce: effective asce
598 * @mode: indicates the access mode to be used
599 * @prot: returns the type for protection exceptions
600 *
601 * Translate a guest virtual address into a guest absolute address by means
602 * of dynamic address translation as specified by the architecture.
603 * If the resulting absolute address is not available in the configuration
604 * an addressing exception is indicated and @gpa will not be changed.
605 *
606 * Returns: - zero on success; @gpa contains the resulting absolute address
607 * - a negative value if guest access failed due to e.g. broken
608 * guest mapping
609 * - a positve value if an access exception happened. In this case
610 * the returned value is the program interruption code as defined
611 * by the architecture
612 */
613 static unsigned long guest_translate(struct kvm_vcpu *vcpu, unsigned long gva,
614 unsigned long *gpa, const union asce asce,
615 enum gacc_mode mode, enum prot_type *prot)
616 {
617 union vaddress vaddr = {.addr = gva};
618 union raddress raddr = {.addr = gva};
619 union page_table_entry pte;
620 int dat_protection = 0;
621 int iep_protection = 0;
622 union ctlreg0 ctlreg0;
623 unsigned long ptr;
624 int edat1, edat2, iep;
625
626 ctlreg0.val = vcpu->arch.sie_block->gcr[0];
627 edat1 = ctlreg0.edat && test_kvm_facility(vcpu->kvm, 8);
628 edat2 = edat1 && test_kvm_facility(vcpu->kvm, 78);
629 iep = ctlreg0.iep && test_kvm_facility(vcpu->kvm, 130);
630 if (asce.r)
631 goto real_address;
632 ptr = asce.origin * 4096;
633 switch (asce.dt) {
634 case ASCE_TYPE_REGION1:
635 if (vaddr.rfx01 > asce.tl)
636 return PGM_REGION_FIRST_TRANS;
637 ptr += vaddr.rfx * 8;
638 break;
639 case ASCE_TYPE_REGION2:
640 if (vaddr.rfx)
641 return PGM_ASCE_TYPE;
642 if (vaddr.rsx01 > asce.tl)
643 return PGM_REGION_SECOND_TRANS;
644 ptr += vaddr.rsx * 8;
645 break;
646 case ASCE_TYPE_REGION3:
647 if (vaddr.rfx || vaddr.rsx)
648 return PGM_ASCE_TYPE;
649 if (vaddr.rtx01 > asce.tl)
650 return PGM_REGION_THIRD_TRANS;
651 ptr += vaddr.rtx * 8;
652 break;
653 case ASCE_TYPE_SEGMENT:
654 if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
655 return PGM_ASCE_TYPE;
656 if (vaddr.sx01 > asce.tl)
657 return PGM_SEGMENT_TRANSLATION;
658 ptr += vaddr.sx * 8;
659 break;
660 }
661 switch (asce.dt) {
662 case ASCE_TYPE_REGION1: {
663 union region1_table_entry rfte;
664
665 if (kvm_is_error_gpa(vcpu->kvm, ptr))
666 return PGM_ADDRESSING;
667 if (deref_table(vcpu->kvm, ptr, &rfte.val))
668 return -EFAULT;
669 if (rfte.i)
670 return PGM_REGION_FIRST_TRANS;
671 if (rfte.tt != TABLE_TYPE_REGION1)
672 return PGM_TRANSLATION_SPEC;
673 if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
674 return PGM_REGION_SECOND_TRANS;
675 if (edat1)
676 dat_protection |= rfte.p;
677 ptr = rfte.rto * 4096 + vaddr.rsx * 8;
678 }
679 /* fallthrough */
680 case ASCE_TYPE_REGION2: {
681 union region2_table_entry rste;
682
683 if (kvm_is_error_gpa(vcpu->kvm, ptr))
684 return PGM_ADDRESSING;
685 if (deref_table(vcpu->kvm, ptr, &rste.val))
686 return -EFAULT;
687 if (rste.i)
688 return PGM_REGION_SECOND_TRANS;
689 if (rste.tt != TABLE_TYPE_REGION2)
690 return PGM_TRANSLATION_SPEC;
691 if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
692 return PGM_REGION_THIRD_TRANS;
693 if (edat1)
694 dat_protection |= rste.p;
695 ptr = rste.rto * 4096 + vaddr.rtx * 8;
696 }
697 /* fallthrough */
698 case ASCE_TYPE_REGION3: {
699 union region3_table_entry rtte;
700
701 if (kvm_is_error_gpa(vcpu->kvm, ptr))
702 return PGM_ADDRESSING;
703 if (deref_table(vcpu->kvm, ptr, &rtte.val))
704 return -EFAULT;
705 if (rtte.i)
706 return PGM_REGION_THIRD_TRANS;
707 if (rtte.tt != TABLE_TYPE_REGION3)
708 return PGM_TRANSLATION_SPEC;
709 if (rtte.cr && asce.p && edat2)
710 return PGM_TRANSLATION_SPEC;
711 if (rtte.fc && edat2) {
712 dat_protection |= rtte.fc1.p;
713 iep_protection = rtte.fc1.iep;
714 raddr.rfaa = rtte.fc1.rfaa;
715 goto absolute_address;
716 }
717 if (vaddr.sx01 < rtte.fc0.tf)
718 return PGM_SEGMENT_TRANSLATION;
719 if (vaddr.sx01 > rtte.fc0.tl)
720 return PGM_SEGMENT_TRANSLATION;
721 if (edat1)
722 dat_protection |= rtte.fc0.p;
723 ptr = rtte.fc0.sto * 4096 + vaddr.sx * 8;
724 }
725 /* fallthrough */
726 case ASCE_TYPE_SEGMENT: {
727 union segment_table_entry ste;
728
729 if (kvm_is_error_gpa(vcpu->kvm, ptr))
730 return PGM_ADDRESSING;
731 if (deref_table(vcpu->kvm, ptr, &ste.val))
732 return -EFAULT;
733 if (ste.i)
734 return PGM_SEGMENT_TRANSLATION;
735 if (ste.tt != TABLE_TYPE_SEGMENT)
736 return PGM_TRANSLATION_SPEC;
737 if (ste.cs && asce.p)
738 return PGM_TRANSLATION_SPEC;
739 if (ste.fc && edat1) {
740 dat_protection |= ste.fc1.p;
741 iep_protection = ste.fc1.iep;
742 raddr.sfaa = ste.fc1.sfaa;
743 goto absolute_address;
744 }
745 dat_protection |= ste.fc0.p;
746 ptr = ste.fc0.pto * 2048 + vaddr.px * 8;
747 }
748 }
749 if (kvm_is_error_gpa(vcpu->kvm, ptr))
750 return PGM_ADDRESSING;
751 if (deref_table(vcpu->kvm, ptr, &pte.val))
752 return -EFAULT;
753 if (pte.i)
754 return PGM_PAGE_TRANSLATION;
755 if (pte.z)
756 return PGM_TRANSLATION_SPEC;
757 dat_protection |= pte.p;
758 iep_protection = pte.iep;
759 raddr.pfra = pte.pfra;
760 real_address:
761 raddr.addr = kvm_s390_real_to_abs(vcpu, raddr.addr);
762 absolute_address:
763 if (mode == GACC_STORE && dat_protection) {
764 *prot = PROT_TYPE_DAT;
765 return PGM_PROTECTION;
766 }
767 if (mode == GACC_IFETCH && iep_protection && iep) {
768 *prot = PROT_TYPE_IEP;
769 return PGM_PROTECTION;
770 }
771 if (kvm_is_error_gpa(vcpu->kvm, raddr.addr))
772 return PGM_ADDRESSING;
773 *gpa = raddr.addr;
774 return 0;
775 }
776
777 static inline int is_low_address(unsigned long ga)
778 {
779 /* Check for address ranges 0..511 and 4096..4607 */
780 return (ga & ~0x11fful) == 0;
781 }
782
783 static int low_address_protection_enabled(struct kvm_vcpu *vcpu,
784 const union asce asce)
785 {
786 union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
787 psw_t *psw = &vcpu->arch.sie_block->gpsw;
788
789 if (!ctlreg0.lap)
790 return 0;
791 if (psw_bits(*psw).dat && asce.p)
792 return 0;
793 return 1;
794 }
795
796 static int guest_page_range(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar,
797 unsigned long *pages, unsigned long nr_pages,
798 const union asce asce, enum gacc_mode mode)
799 {
800 psw_t *psw = &vcpu->arch.sie_block->gpsw;
801 int lap_enabled, rc = 0;
802 enum prot_type prot;
803
804 lap_enabled = low_address_protection_enabled(vcpu, asce);
805 while (nr_pages) {
806 ga = kvm_s390_logical_to_effective(vcpu, ga);
807 if (mode == GACC_STORE && lap_enabled && is_low_address(ga))
808 return trans_exc(vcpu, PGM_PROTECTION, ga, ar, mode,
809 PROT_TYPE_LA);
810 ga &= PAGE_MASK;
811 if (psw_bits(*psw).dat) {
812 rc = guest_translate(vcpu, ga, pages, asce, mode, &prot);
813 if (rc < 0)
814 return rc;
815 } else {
816 *pages = kvm_s390_real_to_abs(vcpu, ga);
817 if (kvm_is_error_gpa(vcpu->kvm, *pages))
818 rc = PGM_ADDRESSING;
819 }
820 if (rc)
821 return trans_exc(vcpu, rc, ga, ar, mode, prot);
822 ga += PAGE_SIZE;
823 pages++;
824 nr_pages--;
825 }
826 return 0;
827 }
828
829 int access_guest(struct kvm_vcpu *vcpu, unsigned long ga, u8 ar, void *data,
830 unsigned long len, enum gacc_mode mode)
831 {
832 psw_t *psw = &vcpu->arch.sie_block->gpsw;
833 unsigned long _len, nr_pages, gpa, idx;
834 unsigned long pages_array[2];
835 unsigned long *pages;
836 int need_ipte_lock;
837 union asce asce;
838 int rc;
839
840 if (!len)
841 return 0;
842 ga = kvm_s390_logical_to_effective(vcpu, ga);
843 rc = get_vcpu_asce(vcpu, &asce, ga, ar, mode);
844 if (rc)
845 return rc;
846 nr_pages = (((ga & ~PAGE_MASK) + len - 1) >> PAGE_SHIFT) + 1;
847 pages = pages_array;
848 if (nr_pages > ARRAY_SIZE(pages_array))
849 pages = vmalloc(nr_pages * sizeof(unsigned long));
850 if (!pages)
851 return -ENOMEM;
852 need_ipte_lock = psw_bits(*psw).dat && !asce.r;
853 if (need_ipte_lock)
854 ipte_lock(vcpu);
855 rc = guest_page_range(vcpu, ga, ar, pages, nr_pages, asce, mode);
856 for (idx = 0; idx < nr_pages && !rc; idx++) {
857 gpa = *(pages + idx) + (ga & ~PAGE_MASK);
858 _len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len);
859 if (mode == GACC_STORE)
860 rc = kvm_write_guest(vcpu->kvm, gpa, data, _len);
861 else
862 rc = kvm_read_guest(vcpu->kvm, gpa, data, _len);
863 len -= _len;
864 ga += _len;
865 data += _len;
866 }
867 if (need_ipte_lock)
868 ipte_unlock(vcpu);
869 if (nr_pages > ARRAY_SIZE(pages_array))
870 vfree(pages);
871 return rc;
872 }
873
874 int access_guest_real(struct kvm_vcpu *vcpu, unsigned long gra,
875 void *data, unsigned long len, enum gacc_mode mode)
876 {
877 unsigned long _len, gpa;
878 int rc = 0;
879
880 while (len && !rc) {
881 gpa = kvm_s390_real_to_abs(vcpu, gra);
882 _len = min(PAGE_SIZE - (gpa & ~PAGE_MASK), len);
883 if (mode)
884 rc = write_guest_abs(vcpu, gpa, data, _len);
885 else
886 rc = read_guest_abs(vcpu, gpa, data, _len);
887 len -= _len;
888 gra += _len;
889 data += _len;
890 }
891 return rc;
892 }
893
894 /**
895 * guest_translate_address - translate guest logical into guest absolute address
896 *
897 * Parameter semantics are the same as the ones from guest_translate.
898 * The memory contents at the guest address are not changed.
899 *
900 * Note: The IPTE lock is not taken during this function, so the caller
901 * has to take care of this.
902 */
903 int guest_translate_address(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar,
904 unsigned long *gpa, enum gacc_mode mode)
905 {
906 psw_t *psw = &vcpu->arch.sie_block->gpsw;
907 enum prot_type prot;
908 union asce asce;
909 int rc;
910
911 gva = kvm_s390_logical_to_effective(vcpu, gva);
912 rc = get_vcpu_asce(vcpu, &asce, gva, ar, mode);
913 if (rc)
914 return rc;
915 if (is_low_address(gva) && low_address_protection_enabled(vcpu, asce)) {
916 if (mode == GACC_STORE)
917 return trans_exc(vcpu, PGM_PROTECTION, gva, 0,
918 mode, PROT_TYPE_LA);
919 }
920
921 if (psw_bits(*psw).dat && !asce.r) { /* Use DAT? */
922 rc = guest_translate(vcpu, gva, gpa, asce, mode, &prot);
923 if (rc > 0)
924 return trans_exc(vcpu, rc, gva, 0, mode, prot);
925 } else {
926 *gpa = kvm_s390_real_to_abs(vcpu, gva);
927 if (kvm_is_error_gpa(vcpu->kvm, *gpa))
928 return trans_exc(vcpu, rc, gva, PGM_ADDRESSING, mode, 0);
929 }
930
931 return rc;
932 }
933
934 /**
935 * check_gva_range - test a range of guest virtual addresses for accessibility
936 */
937 int check_gva_range(struct kvm_vcpu *vcpu, unsigned long gva, u8 ar,
938 unsigned long length, enum gacc_mode mode)
939 {
940 unsigned long gpa;
941 unsigned long currlen;
942 int rc = 0;
943
944 ipte_lock(vcpu);
945 while (length > 0 && !rc) {
946 currlen = min(length, PAGE_SIZE - (gva % PAGE_SIZE));
947 rc = guest_translate_address(vcpu, gva, ar, &gpa, mode);
948 gva += currlen;
949 length -= currlen;
950 }
951 ipte_unlock(vcpu);
952
953 return rc;
954 }
955
956 /**
957 * kvm_s390_check_low_addr_prot_real - check for low-address protection
958 * @gra: Guest real address
959 *
960 * Checks whether an address is subject to low-address protection and set
961 * up vcpu->arch.pgm accordingly if necessary.
962 *
963 * Return: 0 if no protection exception, or PGM_PROTECTION if protected.
964 */
965 int kvm_s390_check_low_addr_prot_real(struct kvm_vcpu *vcpu, unsigned long gra)
966 {
967 union ctlreg0 ctlreg0 = {.val = vcpu->arch.sie_block->gcr[0]};
968
969 if (!ctlreg0.lap || !is_low_address(gra))
970 return 0;
971 return trans_exc(vcpu, PGM_PROTECTION, gra, 0, GACC_STORE, PROT_TYPE_LA);
972 }
973
974 /**
975 * kvm_s390_shadow_tables - walk the guest page table and create shadow tables
976 * @sg: pointer to the shadow guest address space structure
977 * @saddr: faulting address in the shadow gmap
978 * @pgt: pointer to the page table address result
979 * @fake: pgt references contiguous guest memory block, not a pgtable
980 */
981 static int kvm_s390_shadow_tables(struct gmap *sg, unsigned long saddr,
982 unsigned long *pgt, int *dat_protection,
983 int *fake)
984 {
985 struct gmap *parent;
986 union asce asce;
987 union vaddress vaddr;
988 unsigned long ptr;
989 int rc;
990
991 *fake = 0;
992 *dat_protection = 0;
993 parent = sg->parent;
994 vaddr.addr = saddr;
995 asce.val = sg->orig_asce;
996 ptr = asce.origin * 4096;
997 if (asce.r) {
998 *fake = 1;
999 ptr = 0;
1000 asce.dt = ASCE_TYPE_REGION1;
1001 }
1002 switch (asce.dt) {
1003 case ASCE_TYPE_REGION1:
1004 if (vaddr.rfx01 > asce.tl && !*fake)
1005 return PGM_REGION_FIRST_TRANS;
1006 break;
1007 case ASCE_TYPE_REGION2:
1008 if (vaddr.rfx)
1009 return PGM_ASCE_TYPE;
1010 if (vaddr.rsx01 > asce.tl)
1011 return PGM_REGION_SECOND_TRANS;
1012 break;
1013 case ASCE_TYPE_REGION3:
1014 if (vaddr.rfx || vaddr.rsx)
1015 return PGM_ASCE_TYPE;
1016 if (vaddr.rtx01 > asce.tl)
1017 return PGM_REGION_THIRD_TRANS;
1018 break;
1019 case ASCE_TYPE_SEGMENT:
1020 if (vaddr.rfx || vaddr.rsx || vaddr.rtx)
1021 return PGM_ASCE_TYPE;
1022 if (vaddr.sx01 > asce.tl)
1023 return PGM_SEGMENT_TRANSLATION;
1024 break;
1025 }
1026
1027 switch (asce.dt) {
1028 case ASCE_TYPE_REGION1: {
1029 union region1_table_entry rfte;
1030
1031 if (*fake) {
1032 ptr += (unsigned long) vaddr.rfx << 53;
1033 rfte.val = ptr;
1034 goto shadow_r2t;
1035 }
1036 rc = gmap_read_table(parent, ptr + vaddr.rfx * 8, &rfte.val);
1037 if (rc)
1038 return rc;
1039 if (rfte.i)
1040 return PGM_REGION_FIRST_TRANS;
1041 if (rfte.tt != TABLE_TYPE_REGION1)
1042 return PGM_TRANSLATION_SPEC;
1043 if (vaddr.rsx01 < rfte.tf || vaddr.rsx01 > rfte.tl)
1044 return PGM_REGION_SECOND_TRANS;
1045 if (sg->edat_level >= 1)
1046 *dat_protection |= rfte.p;
1047 ptr = rfte.rto << 12UL;
1048 shadow_r2t:
1049 rc = gmap_shadow_r2t(sg, saddr, rfte.val, *fake);
1050 if (rc)
1051 return rc;
1052 /* fallthrough */
1053 }
1054 case ASCE_TYPE_REGION2: {
1055 union region2_table_entry rste;
1056
1057 if (*fake) {
1058 ptr += (unsigned long) vaddr.rsx << 42;
1059 rste.val = ptr;
1060 goto shadow_r3t;
1061 }
1062 rc = gmap_read_table(parent, ptr + vaddr.rsx * 8, &rste.val);
1063 if (rc)
1064 return rc;
1065 if (rste.i)
1066 return PGM_REGION_SECOND_TRANS;
1067 if (rste.tt != TABLE_TYPE_REGION2)
1068 return PGM_TRANSLATION_SPEC;
1069 if (vaddr.rtx01 < rste.tf || vaddr.rtx01 > rste.tl)
1070 return PGM_REGION_THIRD_TRANS;
1071 if (sg->edat_level >= 1)
1072 *dat_protection |= rste.p;
1073 ptr = rste.rto << 12UL;
1074 shadow_r3t:
1075 rste.p |= *dat_protection;
1076 rc = gmap_shadow_r3t(sg, saddr, rste.val, *fake);
1077 if (rc)
1078 return rc;
1079 /* fallthrough */
1080 }
1081 case ASCE_TYPE_REGION3: {
1082 union region3_table_entry rtte;
1083
1084 if (*fake) {
1085 ptr += (unsigned long) vaddr.rtx << 31;
1086 rtte.val = ptr;
1087 goto shadow_sgt;
1088 }
1089 rc = gmap_read_table(parent, ptr + vaddr.rtx * 8, &rtte.val);
1090 if (rc)
1091 return rc;
1092 if (rtte.i)
1093 return PGM_REGION_THIRD_TRANS;
1094 if (rtte.tt != TABLE_TYPE_REGION3)
1095 return PGM_TRANSLATION_SPEC;
1096 if (rtte.cr && asce.p && sg->edat_level >= 2)
1097 return PGM_TRANSLATION_SPEC;
1098 if (rtte.fc && sg->edat_level >= 2) {
1099 *dat_protection |= rtte.fc0.p;
1100 *fake = 1;
1101 ptr = rtte.fc1.rfaa << 31UL;
1102 rtte.val = ptr;
1103 goto shadow_sgt;
1104 }
1105 if (vaddr.sx01 < rtte.fc0.tf || vaddr.sx01 > rtte.fc0.tl)
1106 return PGM_SEGMENT_TRANSLATION;
1107 if (sg->edat_level >= 1)
1108 *dat_protection |= rtte.fc0.p;
1109 ptr = rtte.fc0.sto << 12UL;
1110 shadow_sgt:
1111 rtte.fc0.p |= *dat_protection;
1112 rc = gmap_shadow_sgt(sg, saddr, rtte.val, *fake);
1113 if (rc)
1114 return rc;
1115 /* fallthrough */
1116 }
1117 case ASCE_TYPE_SEGMENT: {
1118 union segment_table_entry ste;
1119
1120 if (*fake) {
1121 ptr += (unsigned long) vaddr.sx << 20;
1122 ste.val = ptr;
1123 goto shadow_pgt;
1124 }
1125 rc = gmap_read_table(parent, ptr + vaddr.sx * 8, &ste.val);
1126 if (rc)
1127 return rc;
1128 if (ste.i)
1129 return PGM_SEGMENT_TRANSLATION;
1130 if (ste.tt != TABLE_TYPE_SEGMENT)
1131 return PGM_TRANSLATION_SPEC;
1132 if (ste.cs && asce.p)
1133 return PGM_TRANSLATION_SPEC;
1134 *dat_protection |= ste.fc0.p;
1135 if (ste.fc && sg->edat_level >= 1) {
1136 *fake = 1;
1137 ptr = ste.fc1.sfaa << 20UL;
1138 ste.val = ptr;
1139 goto shadow_pgt;
1140 }
1141 ptr = ste.fc0.pto << 11UL;
1142 shadow_pgt:
1143 ste.fc0.p |= *dat_protection;
1144 rc = gmap_shadow_pgt(sg, saddr, ste.val, *fake);
1145 if (rc)
1146 return rc;
1147 }
1148 }
1149 /* Return the parent address of the page table */
1150 *pgt = ptr;
1151 return 0;
1152 }
1153
1154 /**
1155 * kvm_s390_shadow_fault - handle fault on a shadow page table
1156 * @vcpu: virtual cpu
1157 * @sg: pointer to the shadow guest address space structure
1158 * @saddr: faulting address in the shadow gmap
1159 *
1160 * Returns: - 0 if the shadow fault was successfully resolved
1161 * - > 0 (pgm exception code) on exceptions while faulting
1162 * - -EAGAIN if the caller can retry immediately
1163 * - -EFAULT when accessing invalid guest addresses
1164 * - -ENOMEM if out of memory
1165 */
1166 int kvm_s390_shadow_fault(struct kvm_vcpu *vcpu, struct gmap *sg,
1167 unsigned long saddr)
1168 {
1169 union vaddress vaddr;
1170 union page_table_entry pte;
1171 unsigned long pgt;
1172 int dat_protection, fake;
1173 int rc;
1174
1175 down_read(&sg->mm->mmap_sem);
1176 /*
1177 * We don't want any guest-2 tables to change - so the parent
1178 * tables/pointers we read stay valid - unshadowing is however
1179 * always possible - only guest_table_lock protects us.
1180 */
1181 ipte_lock(vcpu);
1182
1183 rc = gmap_shadow_pgt_lookup(sg, saddr, &pgt, &dat_protection, &fake);
1184 if (rc)
1185 rc = kvm_s390_shadow_tables(sg, saddr, &pgt, &dat_protection,
1186 &fake);
1187
1188 vaddr.addr = saddr;
1189 if (fake) {
1190 /* offset in 1MB guest memory block */
1191 pte.val = pgt + ((unsigned long) vaddr.px << 12UL);
1192 goto shadow_page;
1193 }
1194 if (!rc)
1195 rc = gmap_read_table(sg->parent, pgt + vaddr.px * 8, &pte.val);
1196 if (!rc && pte.i)
1197 rc = PGM_PAGE_TRANSLATION;
1198 if (!rc && pte.z)
1199 rc = PGM_TRANSLATION_SPEC;
1200 shadow_page:
1201 pte.p |= dat_protection;
1202 if (!rc)
1203 rc = gmap_shadow_page(sg, saddr, __pte(pte.val));
1204 ipte_unlock(vcpu);
1205 up_read(&sg->mm->mmap_sem);
1206 return rc;
1207 }