]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/s390/kvm/interrupt.c
spi: Fix double "when"
[mirror_ubuntu-hirsute-kernel.git] / arch / s390 / kvm / interrupt.c
1 /*
2 * handling kvm guest interrupts
3 *
4 * Copyright IBM Corp. 2008, 2015
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License (version 2 only)
8 * as published by the Free Software Foundation.
9 *
10 * Author(s): Carsten Otte <cotte@de.ibm.com>
11 */
12
13 #include <linux/interrupt.h>
14 #include <linux/kvm_host.h>
15 #include <linux/hrtimer.h>
16 #include <linux/mmu_context.h>
17 #include <linux/signal.h>
18 #include <linux/slab.h>
19 #include <linux/bitmap.h>
20 #include <linux/vmalloc.h>
21 #include <asm/asm-offsets.h>
22 #include <asm/dis.h>
23 #include <linux/uaccess.h>
24 #include <asm/sclp.h>
25 #include <asm/isc.h>
26 #include <asm/gmap.h>
27 #include <asm/switch_to.h>
28 #include <asm/nmi.h>
29 #include "kvm-s390.h"
30 #include "gaccess.h"
31 #include "trace-s390.h"
32
33 #define PFAULT_INIT 0x0600
34 #define PFAULT_DONE 0x0680
35 #define VIRTIO_PARAM 0x0d00
36
37 /* handle external calls via sigp interpretation facility */
38 static int sca_ext_call_pending(struct kvm_vcpu *vcpu, int *src_id)
39 {
40 int c, scn;
41
42 if (!(atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_ECALL_PEND))
43 return 0;
44
45 BUG_ON(!kvm_s390_use_sca_entries());
46 read_lock(&vcpu->kvm->arch.sca_lock);
47 if (vcpu->kvm->arch.use_esca) {
48 struct esca_block *sca = vcpu->kvm->arch.sca;
49 union esca_sigp_ctrl sigp_ctrl =
50 sca->cpu[vcpu->vcpu_id].sigp_ctrl;
51
52 c = sigp_ctrl.c;
53 scn = sigp_ctrl.scn;
54 } else {
55 struct bsca_block *sca = vcpu->kvm->arch.sca;
56 union bsca_sigp_ctrl sigp_ctrl =
57 sca->cpu[vcpu->vcpu_id].sigp_ctrl;
58
59 c = sigp_ctrl.c;
60 scn = sigp_ctrl.scn;
61 }
62 read_unlock(&vcpu->kvm->arch.sca_lock);
63
64 if (src_id)
65 *src_id = scn;
66
67 return c;
68 }
69
70 static int sca_inject_ext_call(struct kvm_vcpu *vcpu, int src_id)
71 {
72 int expect, rc;
73
74 BUG_ON(!kvm_s390_use_sca_entries());
75 read_lock(&vcpu->kvm->arch.sca_lock);
76 if (vcpu->kvm->arch.use_esca) {
77 struct esca_block *sca = vcpu->kvm->arch.sca;
78 union esca_sigp_ctrl *sigp_ctrl =
79 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
80 union esca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;
81
82 new_val.scn = src_id;
83 new_val.c = 1;
84 old_val.c = 0;
85
86 expect = old_val.value;
87 rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
88 } else {
89 struct bsca_block *sca = vcpu->kvm->arch.sca;
90 union bsca_sigp_ctrl *sigp_ctrl =
91 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
92 union bsca_sigp_ctrl new_val = {0}, old_val = *sigp_ctrl;
93
94 new_val.scn = src_id;
95 new_val.c = 1;
96 old_val.c = 0;
97
98 expect = old_val.value;
99 rc = cmpxchg(&sigp_ctrl->value, old_val.value, new_val.value);
100 }
101 read_unlock(&vcpu->kvm->arch.sca_lock);
102
103 if (rc != expect) {
104 /* another external call is pending */
105 return -EBUSY;
106 }
107 atomic_or(CPUSTAT_ECALL_PEND, &vcpu->arch.sie_block->cpuflags);
108 return 0;
109 }
110
111 static void sca_clear_ext_call(struct kvm_vcpu *vcpu)
112 {
113 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
114 int rc, expect;
115
116 if (!kvm_s390_use_sca_entries())
117 return;
118 atomic_andnot(CPUSTAT_ECALL_PEND, li->cpuflags);
119 read_lock(&vcpu->kvm->arch.sca_lock);
120 if (vcpu->kvm->arch.use_esca) {
121 struct esca_block *sca = vcpu->kvm->arch.sca;
122 union esca_sigp_ctrl *sigp_ctrl =
123 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
124 union esca_sigp_ctrl old = *sigp_ctrl;
125
126 expect = old.value;
127 rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
128 } else {
129 struct bsca_block *sca = vcpu->kvm->arch.sca;
130 union bsca_sigp_ctrl *sigp_ctrl =
131 &(sca->cpu[vcpu->vcpu_id].sigp_ctrl);
132 union bsca_sigp_ctrl old = *sigp_ctrl;
133
134 expect = old.value;
135 rc = cmpxchg(&sigp_ctrl->value, old.value, 0);
136 }
137 read_unlock(&vcpu->kvm->arch.sca_lock);
138 WARN_ON(rc != expect); /* cannot clear? */
139 }
140
141 int psw_extint_disabled(struct kvm_vcpu *vcpu)
142 {
143 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_EXT);
144 }
145
146 static int psw_ioint_disabled(struct kvm_vcpu *vcpu)
147 {
148 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_IO);
149 }
150
151 static int psw_mchk_disabled(struct kvm_vcpu *vcpu)
152 {
153 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_MCHECK);
154 }
155
156 static int psw_interrupts_disabled(struct kvm_vcpu *vcpu)
157 {
158 return psw_extint_disabled(vcpu) &&
159 psw_ioint_disabled(vcpu) &&
160 psw_mchk_disabled(vcpu);
161 }
162
163 static int ckc_interrupts_enabled(struct kvm_vcpu *vcpu)
164 {
165 if (psw_extint_disabled(vcpu) ||
166 !(vcpu->arch.sie_block->gcr[0] & 0x800ul))
167 return 0;
168 if (guestdbg_enabled(vcpu) && guestdbg_sstep_enabled(vcpu))
169 /* No timer interrupts when single stepping */
170 return 0;
171 return 1;
172 }
173
174 static int ckc_irq_pending(struct kvm_vcpu *vcpu)
175 {
176 if (vcpu->arch.sie_block->ckc >= kvm_s390_get_tod_clock_fast(vcpu->kvm))
177 return 0;
178 return ckc_interrupts_enabled(vcpu);
179 }
180
181 static int cpu_timer_interrupts_enabled(struct kvm_vcpu *vcpu)
182 {
183 return !psw_extint_disabled(vcpu) &&
184 (vcpu->arch.sie_block->gcr[0] & 0x400ul);
185 }
186
187 static int cpu_timer_irq_pending(struct kvm_vcpu *vcpu)
188 {
189 if (!cpu_timer_interrupts_enabled(vcpu))
190 return 0;
191 return kvm_s390_get_cpu_timer(vcpu) >> 63;
192 }
193
194 static inline int is_ioirq(unsigned long irq_type)
195 {
196 return ((irq_type >= IRQ_PEND_IO_ISC_0) &&
197 (irq_type <= IRQ_PEND_IO_ISC_7));
198 }
199
200 static uint64_t isc_to_isc_bits(int isc)
201 {
202 return (0x80 >> isc) << 24;
203 }
204
205 static inline u8 int_word_to_isc(u32 int_word)
206 {
207 return (int_word & 0x38000000) >> 27;
208 }
209
210 static inline unsigned long pending_irqs(struct kvm_vcpu *vcpu)
211 {
212 return vcpu->kvm->arch.float_int.pending_irqs |
213 vcpu->arch.local_int.pending_irqs;
214 }
215
216 static inline int isc_to_irq_type(unsigned long isc)
217 {
218 return IRQ_PEND_IO_ISC_0 + isc;
219 }
220
221 static inline int irq_type_to_isc(unsigned long irq_type)
222 {
223 return irq_type - IRQ_PEND_IO_ISC_0;
224 }
225
226 static unsigned long disable_iscs(struct kvm_vcpu *vcpu,
227 unsigned long active_mask)
228 {
229 int i;
230
231 for (i = 0; i <= MAX_ISC; i++)
232 if (!(vcpu->arch.sie_block->gcr[6] & isc_to_isc_bits(i)))
233 active_mask &= ~(1UL << (isc_to_irq_type(i)));
234
235 return active_mask;
236 }
237
238 static unsigned long deliverable_irqs(struct kvm_vcpu *vcpu)
239 {
240 unsigned long active_mask;
241
242 active_mask = pending_irqs(vcpu);
243 if (!active_mask)
244 return 0;
245
246 if (psw_extint_disabled(vcpu))
247 active_mask &= ~IRQ_PEND_EXT_MASK;
248 if (psw_ioint_disabled(vcpu))
249 active_mask &= ~IRQ_PEND_IO_MASK;
250 else
251 active_mask = disable_iscs(vcpu, active_mask);
252 if (!(vcpu->arch.sie_block->gcr[0] & 0x2000ul))
253 __clear_bit(IRQ_PEND_EXT_EXTERNAL, &active_mask);
254 if (!(vcpu->arch.sie_block->gcr[0] & 0x4000ul))
255 __clear_bit(IRQ_PEND_EXT_EMERGENCY, &active_mask);
256 if (!(vcpu->arch.sie_block->gcr[0] & 0x800ul))
257 __clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &active_mask);
258 if (!(vcpu->arch.sie_block->gcr[0] & 0x400ul))
259 __clear_bit(IRQ_PEND_EXT_CPU_TIMER, &active_mask);
260 if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
261 __clear_bit(IRQ_PEND_EXT_SERVICE, &active_mask);
262 if (psw_mchk_disabled(vcpu))
263 active_mask &= ~IRQ_PEND_MCHK_MASK;
264 /*
265 * Check both floating and local interrupt's cr14 because
266 * bit IRQ_PEND_MCHK_REP could be set in both cases.
267 */
268 if (!(vcpu->arch.sie_block->gcr[14] &
269 (vcpu->kvm->arch.float_int.mchk.cr14 |
270 vcpu->arch.local_int.irq.mchk.cr14)))
271 __clear_bit(IRQ_PEND_MCHK_REP, &active_mask);
272
273 /*
274 * STOP irqs will never be actively delivered. They are triggered via
275 * intercept requests and cleared when the stop intercept is performed.
276 */
277 __clear_bit(IRQ_PEND_SIGP_STOP, &active_mask);
278
279 return active_mask;
280 }
281
282 static void __set_cpu_idle(struct kvm_vcpu *vcpu)
283 {
284 atomic_or(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags);
285 set_bit(vcpu->vcpu_id, vcpu->arch.local_int.float_int->idle_mask);
286 }
287
288 static void __unset_cpu_idle(struct kvm_vcpu *vcpu)
289 {
290 atomic_andnot(CPUSTAT_WAIT, &vcpu->arch.sie_block->cpuflags);
291 clear_bit(vcpu->vcpu_id, vcpu->arch.local_int.float_int->idle_mask);
292 }
293
294 static void __reset_intercept_indicators(struct kvm_vcpu *vcpu)
295 {
296 atomic_andnot(CPUSTAT_IO_INT | CPUSTAT_EXT_INT | CPUSTAT_STOP_INT,
297 &vcpu->arch.sie_block->cpuflags);
298 vcpu->arch.sie_block->lctl = 0x0000;
299 vcpu->arch.sie_block->ictl &= ~(ICTL_LPSW | ICTL_STCTL | ICTL_PINT);
300
301 if (guestdbg_enabled(vcpu)) {
302 vcpu->arch.sie_block->lctl |= (LCTL_CR0 | LCTL_CR9 |
303 LCTL_CR10 | LCTL_CR11);
304 vcpu->arch.sie_block->ictl |= (ICTL_STCTL | ICTL_PINT);
305 }
306 }
307
308 static void __set_cpuflag(struct kvm_vcpu *vcpu, u32 flag)
309 {
310 atomic_or(flag, &vcpu->arch.sie_block->cpuflags);
311 }
312
313 static void set_intercept_indicators_io(struct kvm_vcpu *vcpu)
314 {
315 if (!(pending_irqs(vcpu) & IRQ_PEND_IO_MASK))
316 return;
317 else if (psw_ioint_disabled(vcpu))
318 __set_cpuflag(vcpu, CPUSTAT_IO_INT);
319 else
320 vcpu->arch.sie_block->lctl |= LCTL_CR6;
321 }
322
323 static void set_intercept_indicators_ext(struct kvm_vcpu *vcpu)
324 {
325 if (!(pending_irqs(vcpu) & IRQ_PEND_EXT_MASK))
326 return;
327 if (psw_extint_disabled(vcpu))
328 __set_cpuflag(vcpu, CPUSTAT_EXT_INT);
329 else
330 vcpu->arch.sie_block->lctl |= LCTL_CR0;
331 }
332
333 static void set_intercept_indicators_mchk(struct kvm_vcpu *vcpu)
334 {
335 if (!(pending_irqs(vcpu) & IRQ_PEND_MCHK_MASK))
336 return;
337 if (psw_mchk_disabled(vcpu))
338 vcpu->arch.sie_block->ictl |= ICTL_LPSW;
339 else
340 vcpu->arch.sie_block->lctl |= LCTL_CR14;
341 }
342
343 static void set_intercept_indicators_stop(struct kvm_vcpu *vcpu)
344 {
345 if (kvm_s390_is_stop_irq_pending(vcpu))
346 __set_cpuflag(vcpu, CPUSTAT_STOP_INT);
347 }
348
349 /* Set interception request for non-deliverable interrupts */
350 static void set_intercept_indicators(struct kvm_vcpu *vcpu)
351 {
352 set_intercept_indicators_io(vcpu);
353 set_intercept_indicators_ext(vcpu);
354 set_intercept_indicators_mchk(vcpu);
355 set_intercept_indicators_stop(vcpu);
356 }
357
358 static int __must_check __deliver_cpu_timer(struct kvm_vcpu *vcpu)
359 {
360 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
361 int rc;
362
363 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
364 0, 0);
365
366 rc = put_guest_lc(vcpu, EXT_IRQ_CPU_TIMER,
367 (u16 *)__LC_EXT_INT_CODE);
368 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
369 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
370 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
371 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
372 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
373 clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
374 return rc ? -EFAULT : 0;
375 }
376
377 static int __must_check __deliver_ckc(struct kvm_vcpu *vcpu)
378 {
379 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
380 int rc;
381
382 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
383 0, 0);
384
385 rc = put_guest_lc(vcpu, EXT_IRQ_CLK_COMP,
386 (u16 __user *)__LC_EXT_INT_CODE);
387 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
388 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
389 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
390 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
391 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
392 clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
393 return rc ? -EFAULT : 0;
394 }
395
396 static int __must_check __deliver_pfault_init(struct kvm_vcpu *vcpu)
397 {
398 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
399 struct kvm_s390_ext_info ext;
400 int rc;
401
402 spin_lock(&li->lock);
403 ext = li->irq.ext;
404 clear_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
405 li->irq.ext.ext_params2 = 0;
406 spin_unlock(&li->lock);
407
408 VCPU_EVENT(vcpu, 4, "deliver: pfault init token 0x%llx",
409 ext.ext_params2);
410 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
411 KVM_S390_INT_PFAULT_INIT,
412 0, ext.ext_params2);
413
414 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE, (u16 *) __LC_EXT_INT_CODE);
415 rc |= put_guest_lc(vcpu, PFAULT_INIT, (u16 *) __LC_EXT_CPU_ADDR);
416 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
417 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
418 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
419 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
420 rc |= put_guest_lc(vcpu, ext.ext_params2, (u64 *) __LC_EXT_PARAMS2);
421 return rc ? -EFAULT : 0;
422 }
423
424 static int __write_machine_check(struct kvm_vcpu *vcpu,
425 struct kvm_s390_mchk_info *mchk)
426 {
427 unsigned long ext_sa_addr;
428 unsigned long lc;
429 freg_t fprs[NUM_FPRS];
430 union mci mci;
431 int rc;
432
433 mci.val = mchk->mcic;
434 /* take care of lazy register loading */
435 save_fpu_regs();
436 save_access_regs(vcpu->run->s.regs.acrs);
437 if (MACHINE_HAS_GS && vcpu->arch.gs_enabled)
438 save_gs_cb(current->thread.gs_cb);
439
440 /* Extended save area */
441 rc = read_guest_lc(vcpu, __LC_MCESAD, &ext_sa_addr,
442 sizeof(unsigned long));
443 /* Only bits 0 through 63-LC are used for address formation */
444 lc = ext_sa_addr & MCESA_LC_MASK;
445 if (test_kvm_facility(vcpu->kvm, 133)) {
446 switch (lc) {
447 case 0:
448 case 10:
449 ext_sa_addr &= ~0x3ffUL;
450 break;
451 case 11:
452 ext_sa_addr &= ~0x7ffUL;
453 break;
454 case 12:
455 ext_sa_addr &= ~0xfffUL;
456 break;
457 default:
458 ext_sa_addr = 0;
459 break;
460 }
461 } else {
462 ext_sa_addr &= ~0x3ffUL;
463 }
464
465 if (!rc && mci.vr && ext_sa_addr && test_kvm_facility(vcpu->kvm, 129)) {
466 if (write_guest_abs(vcpu, ext_sa_addr, vcpu->run->s.regs.vrs,
467 512))
468 mci.vr = 0;
469 } else {
470 mci.vr = 0;
471 }
472 if (!rc && mci.gs && ext_sa_addr && test_kvm_facility(vcpu->kvm, 133)
473 && (lc == 11 || lc == 12)) {
474 if (write_guest_abs(vcpu, ext_sa_addr + 1024,
475 &vcpu->run->s.regs.gscb, 32))
476 mci.gs = 0;
477 } else {
478 mci.gs = 0;
479 }
480
481 /* General interruption information */
482 rc |= put_guest_lc(vcpu, 1, (u8 __user *) __LC_AR_MODE_ID);
483 rc |= write_guest_lc(vcpu, __LC_MCK_OLD_PSW,
484 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
485 rc |= read_guest_lc(vcpu, __LC_MCK_NEW_PSW,
486 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
487 rc |= put_guest_lc(vcpu, mci.val, (u64 __user *) __LC_MCCK_CODE);
488
489 /* Register-save areas */
490 if (MACHINE_HAS_VX) {
491 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
492 rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA, fprs, 128);
493 } else {
494 rc |= write_guest_lc(vcpu, __LC_FPREGS_SAVE_AREA,
495 vcpu->run->s.regs.fprs, 128);
496 }
497 rc |= write_guest_lc(vcpu, __LC_GPREGS_SAVE_AREA,
498 vcpu->run->s.regs.gprs, 128);
499 rc |= put_guest_lc(vcpu, current->thread.fpu.fpc,
500 (u32 __user *) __LC_FP_CREG_SAVE_AREA);
501 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->todpr,
502 (u32 __user *) __LC_TOD_PROGREG_SAVE_AREA);
503 rc |= put_guest_lc(vcpu, kvm_s390_get_cpu_timer(vcpu),
504 (u64 __user *) __LC_CPU_TIMER_SAVE_AREA);
505 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->ckc >> 8,
506 (u64 __user *) __LC_CLOCK_COMP_SAVE_AREA);
507 rc |= write_guest_lc(vcpu, __LC_AREGS_SAVE_AREA,
508 &vcpu->run->s.regs.acrs, 64);
509 rc |= write_guest_lc(vcpu, __LC_CREGS_SAVE_AREA,
510 &vcpu->arch.sie_block->gcr, 128);
511
512 /* Extended interruption information */
513 rc |= put_guest_lc(vcpu, mchk->ext_damage_code,
514 (u32 __user *) __LC_EXT_DAMAGE_CODE);
515 rc |= put_guest_lc(vcpu, mchk->failing_storage_address,
516 (u64 __user *) __LC_MCCK_FAIL_STOR_ADDR);
517 rc |= write_guest_lc(vcpu, __LC_PSW_SAVE_AREA, &mchk->fixed_logout,
518 sizeof(mchk->fixed_logout));
519 return rc ? -EFAULT : 0;
520 }
521
522 static int __must_check __deliver_machine_check(struct kvm_vcpu *vcpu)
523 {
524 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
525 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
526 struct kvm_s390_mchk_info mchk = {};
527 int deliver = 0;
528 int rc = 0;
529
530 spin_lock(&fi->lock);
531 spin_lock(&li->lock);
532 if (test_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs) ||
533 test_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs)) {
534 /*
535 * If there was an exigent machine check pending, then any
536 * repressible machine checks that might have been pending
537 * are indicated along with it, so always clear bits for
538 * repressible and exigent interrupts
539 */
540 mchk = li->irq.mchk;
541 clear_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
542 clear_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
543 memset(&li->irq.mchk, 0, sizeof(mchk));
544 deliver = 1;
545 }
546 /*
547 * We indicate floating repressible conditions along with
548 * other pending conditions. Channel Report Pending and Channel
549 * Subsystem damage are the only two and and are indicated by
550 * bits in mcic and masked in cr14.
551 */
552 if (test_and_clear_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
553 mchk.mcic |= fi->mchk.mcic;
554 mchk.cr14 |= fi->mchk.cr14;
555 memset(&fi->mchk, 0, sizeof(mchk));
556 deliver = 1;
557 }
558 spin_unlock(&li->lock);
559 spin_unlock(&fi->lock);
560
561 if (deliver) {
562 VCPU_EVENT(vcpu, 3, "deliver: machine check mcic 0x%llx",
563 mchk.mcic);
564 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
565 KVM_S390_MCHK,
566 mchk.cr14, mchk.mcic);
567 rc = __write_machine_check(vcpu, &mchk);
568 }
569 return rc;
570 }
571
572 static int __must_check __deliver_restart(struct kvm_vcpu *vcpu)
573 {
574 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
575 int rc;
576
577 VCPU_EVENT(vcpu, 3, "%s", "deliver: cpu restart");
578 vcpu->stat.deliver_restart_signal++;
579 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
580
581 rc = write_guest_lc(vcpu,
582 offsetof(struct lowcore, restart_old_psw),
583 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
584 rc |= read_guest_lc(vcpu, offsetof(struct lowcore, restart_psw),
585 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
586 clear_bit(IRQ_PEND_RESTART, &li->pending_irqs);
587 return rc ? -EFAULT : 0;
588 }
589
590 static int __must_check __deliver_set_prefix(struct kvm_vcpu *vcpu)
591 {
592 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
593 struct kvm_s390_prefix_info prefix;
594
595 spin_lock(&li->lock);
596 prefix = li->irq.prefix;
597 li->irq.prefix.address = 0;
598 clear_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
599 spin_unlock(&li->lock);
600
601 vcpu->stat.deliver_prefix_signal++;
602 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
603 KVM_S390_SIGP_SET_PREFIX,
604 prefix.address, 0);
605
606 kvm_s390_set_prefix(vcpu, prefix.address);
607 return 0;
608 }
609
610 static int __must_check __deliver_emergency_signal(struct kvm_vcpu *vcpu)
611 {
612 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
613 int rc;
614 int cpu_addr;
615
616 spin_lock(&li->lock);
617 cpu_addr = find_first_bit(li->sigp_emerg_pending, KVM_MAX_VCPUS);
618 clear_bit(cpu_addr, li->sigp_emerg_pending);
619 if (bitmap_empty(li->sigp_emerg_pending, KVM_MAX_VCPUS))
620 clear_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
621 spin_unlock(&li->lock);
622
623 VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp emerg");
624 vcpu->stat.deliver_emergency_signal++;
625 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
626 cpu_addr, 0);
627
628 rc = put_guest_lc(vcpu, EXT_IRQ_EMERGENCY_SIG,
629 (u16 *)__LC_EXT_INT_CODE);
630 rc |= put_guest_lc(vcpu, cpu_addr, (u16 *)__LC_EXT_CPU_ADDR);
631 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
632 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
633 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
634 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
635 return rc ? -EFAULT : 0;
636 }
637
638 static int __must_check __deliver_external_call(struct kvm_vcpu *vcpu)
639 {
640 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
641 struct kvm_s390_extcall_info extcall;
642 int rc;
643
644 spin_lock(&li->lock);
645 extcall = li->irq.extcall;
646 li->irq.extcall.code = 0;
647 clear_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
648 spin_unlock(&li->lock);
649
650 VCPU_EVENT(vcpu, 4, "%s", "deliver: sigp ext call");
651 vcpu->stat.deliver_external_call++;
652 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
653 KVM_S390_INT_EXTERNAL_CALL,
654 extcall.code, 0);
655
656 rc = put_guest_lc(vcpu, EXT_IRQ_EXTERNAL_CALL,
657 (u16 *)__LC_EXT_INT_CODE);
658 rc |= put_guest_lc(vcpu, extcall.code, (u16 *)__LC_EXT_CPU_ADDR);
659 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
660 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
661 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW, &vcpu->arch.sie_block->gpsw,
662 sizeof(psw_t));
663 return rc ? -EFAULT : 0;
664 }
665
666 static int __must_check __deliver_prog(struct kvm_vcpu *vcpu)
667 {
668 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
669 struct kvm_s390_pgm_info pgm_info;
670 int rc = 0, nullifying = false;
671 u16 ilen;
672
673 spin_lock(&li->lock);
674 pgm_info = li->irq.pgm;
675 clear_bit(IRQ_PEND_PROG, &li->pending_irqs);
676 memset(&li->irq.pgm, 0, sizeof(pgm_info));
677 spin_unlock(&li->lock);
678
679 ilen = pgm_info.flags & KVM_S390_PGM_FLAGS_ILC_MASK;
680 VCPU_EVENT(vcpu, 3, "deliver: program irq code 0x%x, ilen:%d",
681 pgm_info.code, ilen);
682 vcpu->stat.deliver_program_int++;
683 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
684 pgm_info.code, 0);
685
686 switch (pgm_info.code & ~PGM_PER) {
687 case PGM_AFX_TRANSLATION:
688 case PGM_ASX_TRANSLATION:
689 case PGM_EX_TRANSLATION:
690 case PGM_LFX_TRANSLATION:
691 case PGM_LSTE_SEQUENCE:
692 case PGM_LSX_TRANSLATION:
693 case PGM_LX_TRANSLATION:
694 case PGM_PRIMARY_AUTHORITY:
695 case PGM_SECONDARY_AUTHORITY:
696 nullifying = true;
697 /* fall through */
698 case PGM_SPACE_SWITCH:
699 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
700 (u64 *)__LC_TRANS_EXC_CODE);
701 break;
702 case PGM_ALEN_TRANSLATION:
703 case PGM_ALE_SEQUENCE:
704 case PGM_ASTE_INSTANCE:
705 case PGM_ASTE_SEQUENCE:
706 case PGM_ASTE_VALIDITY:
707 case PGM_EXTENDED_AUTHORITY:
708 rc = put_guest_lc(vcpu, pgm_info.exc_access_id,
709 (u8 *)__LC_EXC_ACCESS_ID);
710 nullifying = true;
711 break;
712 case PGM_ASCE_TYPE:
713 case PGM_PAGE_TRANSLATION:
714 case PGM_REGION_FIRST_TRANS:
715 case PGM_REGION_SECOND_TRANS:
716 case PGM_REGION_THIRD_TRANS:
717 case PGM_SEGMENT_TRANSLATION:
718 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
719 (u64 *)__LC_TRANS_EXC_CODE);
720 rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
721 (u8 *)__LC_EXC_ACCESS_ID);
722 rc |= put_guest_lc(vcpu, pgm_info.op_access_id,
723 (u8 *)__LC_OP_ACCESS_ID);
724 nullifying = true;
725 break;
726 case PGM_MONITOR:
727 rc = put_guest_lc(vcpu, pgm_info.mon_class_nr,
728 (u16 *)__LC_MON_CLASS_NR);
729 rc |= put_guest_lc(vcpu, pgm_info.mon_code,
730 (u64 *)__LC_MON_CODE);
731 break;
732 case PGM_VECTOR_PROCESSING:
733 case PGM_DATA:
734 rc = put_guest_lc(vcpu, pgm_info.data_exc_code,
735 (u32 *)__LC_DATA_EXC_CODE);
736 break;
737 case PGM_PROTECTION:
738 rc = put_guest_lc(vcpu, pgm_info.trans_exc_code,
739 (u64 *)__LC_TRANS_EXC_CODE);
740 rc |= put_guest_lc(vcpu, pgm_info.exc_access_id,
741 (u8 *)__LC_EXC_ACCESS_ID);
742 break;
743 case PGM_STACK_FULL:
744 case PGM_STACK_EMPTY:
745 case PGM_STACK_SPECIFICATION:
746 case PGM_STACK_TYPE:
747 case PGM_STACK_OPERATION:
748 case PGM_TRACE_TABEL:
749 case PGM_CRYPTO_OPERATION:
750 nullifying = true;
751 break;
752 }
753
754 if (pgm_info.code & PGM_PER) {
755 rc |= put_guest_lc(vcpu, pgm_info.per_code,
756 (u8 *) __LC_PER_CODE);
757 rc |= put_guest_lc(vcpu, pgm_info.per_atmid,
758 (u8 *)__LC_PER_ATMID);
759 rc |= put_guest_lc(vcpu, pgm_info.per_address,
760 (u64 *) __LC_PER_ADDRESS);
761 rc |= put_guest_lc(vcpu, pgm_info.per_access_id,
762 (u8 *) __LC_PER_ACCESS_ID);
763 }
764
765 if (nullifying && !(pgm_info.flags & KVM_S390_PGM_FLAGS_NO_REWIND))
766 kvm_s390_rewind_psw(vcpu, ilen);
767
768 /* bit 1+2 of the target are the ilc, so we can directly use ilen */
769 rc |= put_guest_lc(vcpu, ilen, (u16 *) __LC_PGM_ILC);
770 rc |= put_guest_lc(vcpu, vcpu->arch.sie_block->gbea,
771 (u64 *) __LC_LAST_BREAK);
772 rc |= put_guest_lc(vcpu, pgm_info.code,
773 (u16 *)__LC_PGM_INT_CODE);
774 rc |= write_guest_lc(vcpu, __LC_PGM_OLD_PSW,
775 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
776 rc |= read_guest_lc(vcpu, __LC_PGM_NEW_PSW,
777 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
778 return rc ? -EFAULT : 0;
779 }
780
781 static int __must_check __deliver_service(struct kvm_vcpu *vcpu)
782 {
783 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
784 struct kvm_s390_ext_info ext;
785 int rc = 0;
786
787 spin_lock(&fi->lock);
788 if (!(test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs))) {
789 spin_unlock(&fi->lock);
790 return 0;
791 }
792 ext = fi->srv_signal;
793 memset(&fi->srv_signal, 0, sizeof(ext));
794 clear_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
795 spin_unlock(&fi->lock);
796
797 VCPU_EVENT(vcpu, 4, "deliver: sclp parameter 0x%x",
798 ext.ext_params);
799 vcpu->stat.deliver_service_signal++;
800 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id, KVM_S390_INT_SERVICE,
801 ext.ext_params, 0);
802
803 rc = put_guest_lc(vcpu, EXT_IRQ_SERVICE_SIG, (u16 *)__LC_EXT_INT_CODE);
804 rc |= put_guest_lc(vcpu, 0, (u16 *)__LC_EXT_CPU_ADDR);
805 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
806 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
807 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
808 &vcpu->arch.sie_block->gpsw, sizeof(psw_t));
809 rc |= put_guest_lc(vcpu, ext.ext_params,
810 (u32 *)__LC_EXT_PARAMS);
811
812 return rc ? -EFAULT : 0;
813 }
814
815 static int __must_check __deliver_pfault_done(struct kvm_vcpu *vcpu)
816 {
817 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
818 struct kvm_s390_interrupt_info *inti;
819 int rc = 0;
820
821 spin_lock(&fi->lock);
822 inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_PFAULT],
823 struct kvm_s390_interrupt_info,
824 list);
825 if (inti) {
826 list_del(&inti->list);
827 fi->counters[FIRQ_CNTR_PFAULT] -= 1;
828 }
829 if (list_empty(&fi->lists[FIRQ_LIST_PFAULT]))
830 clear_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
831 spin_unlock(&fi->lock);
832
833 if (inti) {
834 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
835 KVM_S390_INT_PFAULT_DONE, 0,
836 inti->ext.ext_params2);
837 VCPU_EVENT(vcpu, 4, "deliver: pfault done token 0x%llx",
838 inti->ext.ext_params2);
839
840 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
841 (u16 *)__LC_EXT_INT_CODE);
842 rc |= put_guest_lc(vcpu, PFAULT_DONE,
843 (u16 *)__LC_EXT_CPU_ADDR);
844 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
845 &vcpu->arch.sie_block->gpsw,
846 sizeof(psw_t));
847 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
848 &vcpu->arch.sie_block->gpsw,
849 sizeof(psw_t));
850 rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
851 (u64 *)__LC_EXT_PARAMS2);
852 kfree(inti);
853 }
854 return rc ? -EFAULT : 0;
855 }
856
857 static int __must_check __deliver_virtio(struct kvm_vcpu *vcpu)
858 {
859 struct kvm_s390_float_interrupt *fi = &vcpu->kvm->arch.float_int;
860 struct kvm_s390_interrupt_info *inti;
861 int rc = 0;
862
863 spin_lock(&fi->lock);
864 inti = list_first_entry_or_null(&fi->lists[FIRQ_LIST_VIRTIO],
865 struct kvm_s390_interrupt_info,
866 list);
867 if (inti) {
868 VCPU_EVENT(vcpu, 4,
869 "deliver: virtio parm: 0x%x,parm64: 0x%llx",
870 inti->ext.ext_params, inti->ext.ext_params2);
871 vcpu->stat.deliver_virtio_interrupt++;
872 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
873 inti->type,
874 inti->ext.ext_params,
875 inti->ext.ext_params2);
876 list_del(&inti->list);
877 fi->counters[FIRQ_CNTR_VIRTIO] -= 1;
878 }
879 if (list_empty(&fi->lists[FIRQ_LIST_VIRTIO]))
880 clear_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
881 spin_unlock(&fi->lock);
882
883 if (inti) {
884 rc = put_guest_lc(vcpu, EXT_IRQ_CP_SERVICE,
885 (u16 *)__LC_EXT_INT_CODE);
886 rc |= put_guest_lc(vcpu, VIRTIO_PARAM,
887 (u16 *)__LC_EXT_CPU_ADDR);
888 rc |= write_guest_lc(vcpu, __LC_EXT_OLD_PSW,
889 &vcpu->arch.sie_block->gpsw,
890 sizeof(psw_t));
891 rc |= read_guest_lc(vcpu, __LC_EXT_NEW_PSW,
892 &vcpu->arch.sie_block->gpsw,
893 sizeof(psw_t));
894 rc |= put_guest_lc(vcpu, inti->ext.ext_params,
895 (u32 *)__LC_EXT_PARAMS);
896 rc |= put_guest_lc(vcpu, inti->ext.ext_params2,
897 (u64 *)__LC_EXT_PARAMS2);
898 kfree(inti);
899 }
900 return rc ? -EFAULT : 0;
901 }
902
903 static int __must_check __deliver_io(struct kvm_vcpu *vcpu,
904 unsigned long irq_type)
905 {
906 struct list_head *isc_list;
907 struct kvm_s390_float_interrupt *fi;
908 struct kvm_s390_interrupt_info *inti = NULL;
909 int rc = 0;
910
911 fi = &vcpu->kvm->arch.float_int;
912
913 spin_lock(&fi->lock);
914 isc_list = &fi->lists[irq_type_to_isc(irq_type)];
915 inti = list_first_entry_or_null(isc_list,
916 struct kvm_s390_interrupt_info,
917 list);
918 if (inti) {
919 if (inti->type & KVM_S390_INT_IO_AI_MASK)
920 VCPU_EVENT(vcpu, 4, "%s", "deliver: I/O (AI)");
921 else
922 VCPU_EVENT(vcpu, 4, "deliver: I/O %x ss %x schid %04x",
923 inti->io.subchannel_id >> 8,
924 inti->io.subchannel_id >> 1 & 0x3,
925 inti->io.subchannel_nr);
926
927 vcpu->stat.deliver_io_int++;
928 trace_kvm_s390_deliver_interrupt(vcpu->vcpu_id,
929 inti->type,
930 ((__u32)inti->io.subchannel_id << 16) |
931 inti->io.subchannel_nr,
932 ((__u64)inti->io.io_int_parm << 32) |
933 inti->io.io_int_word);
934 list_del(&inti->list);
935 fi->counters[FIRQ_CNTR_IO] -= 1;
936 }
937 if (list_empty(isc_list))
938 clear_bit(irq_type, &fi->pending_irqs);
939 spin_unlock(&fi->lock);
940
941 if (inti) {
942 rc = put_guest_lc(vcpu, inti->io.subchannel_id,
943 (u16 *)__LC_SUBCHANNEL_ID);
944 rc |= put_guest_lc(vcpu, inti->io.subchannel_nr,
945 (u16 *)__LC_SUBCHANNEL_NR);
946 rc |= put_guest_lc(vcpu, inti->io.io_int_parm,
947 (u32 *)__LC_IO_INT_PARM);
948 rc |= put_guest_lc(vcpu, inti->io.io_int_word,
949 (u32 *)__LC_IO_INT_WORD);
950 rc |= write_guest_lc(vcpu, __LC_IO_OLD_PSW,
951 &vcpu->arch.sie_block->gpsw,
952 sizeof(psw_t));
953 rc |= read_guest_lc(vcpu, __LC_IO_NEW_PSW,
954 &vcpu->arch.sie_block->gpsw,
955 sizeof(psw_t));
956 kfree(inti);
957 }
958
959 return rc ? -EFAULT : 0;
960 }
961
962 typedef int (*deliver_irq_t)(struct kvm_vcpu *vcpu);
963
964 static const deliver_irq_t deliver_irq_funcs[] = {
965 [IRQ_PEND_MCHK_EX] = __deliver_machine_check,
966 [IRQ_PEND_MCHK_REP] = __deliver_machine_check,
967 [IRQ_PEND_PROG] = __deliver_prog,
968 [IRQ_PEND_EXT_EMERGENCY] = __deliver_emergency_signal,
969 [IRQ_PEND_EXT_EXTERNAL] = __deliver_external_call,
970 [IRQ_PEND_EXT_CLOCK_COMP] = __deliver_ckc,
971 [IRQ_PEND_EXT_CPU_TIMER] = __deliver_cpu_timer,
972 [IRQ_PEND_RESTART] = __deliver_restart,
973 [IRQ_PEND_SET_PREFIX] = __deliver_set_prefix,
974 [IRQ_PEND_PFAULT_INIT] = __deliver_pfault_init,
975 [IRQ_PEND_EXT_SERVICE] = __deliver_service,
976 [IRQ_PEND_PFAULT_DONE] = __deliver_pfault_done,
977 [IRQ_PEND_VIRTIO] = __deliver_virtio,
978 };
979
980 /* Check whether an external call is pending (deliverable or not) */
981 int kvm_s390_ext_call_pending(struct kvm_vcpu *vcpu)
982 {
983 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
984
985 if (!sclp.has_sigpif)
986 return test_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs);
987
988 return sca_ext_call_pending(vcpu, NULL);
989 }
990
991 int kvm_s390_vcpu_has_irq(struct kvm_vcpu *vcpu, int exclude_stop)
992 {
993 if (deliverable_irqs(vcpu))
994 return 1;
995
996 if (kvm_cpu_has_pending_timer(vcpu))
997 return 1;
998
999 /* external call pending and deliverable */
1000 if (kvm_s390_ext_call_pending(vcpu) &&
1001 !psw_extint_disabled(vcpu) &&
1002 (vcpu->arch.sie_block->gcr[0] & 0x2000ul))
1003 return 1;
1004
1005 if (!exclude_stop && kvm_s390_is_stop_irq_pending(vcpu))
1006 return 1;
1007 return 0;
1008 }
1009
1010 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
1011 {
1012 return ckc_irq_pending(vcpu) || cpu_timer_irq_pending(vcpu);
1013 }
1014
1015 static u64 __calculate_sltime(struct kvm_vcpu *vcpu)
1016 {
1017 u64 now, cputm, sltime = 0;
1018
1019 if (ckc_interrupts_enabled(vcpu)) {
1020 now = kvm_s390_get_tod_clock_fast(vcpu->kvm);
1021 sltime = tod_to_ns(vcpu->arch.sie_block->ckc - now);
1022 /* already expired or overflow? */
1023 if (!sltime || vcpu->arch.sie_block->ckc <= now)
1024 return 0;
1025 if (cpu_timer_interrupts_enabled(vcpu)) {
1026 cputm = kvm_s390_get_cpu_timer(vcpu);
1027 /* already expired? */
1028 if (cputm >> 63)
1029 return 0;
1030 return min(sltime, tod_to_ns(cputm));
1031 }
1032 } else if (cpu_timer_interrupts_enabled(vcpu)) {
1033 sltime = kvm_s390_get_cpu_timer(vcpu);
1034 /* already expired? */
1035 if (sltime >> 63)
1036 return 0;
1037 }
1038 return sltime;
1039 }
1040
1041 int kvm_s390_handle_wait(struct kvm_vcpu *vcpu)
1042 {
1043 u64 sltime;
1044
1045 vcpu->stat.exit_wait_state++;
1046
1047 /* fast path */
1048 if (kvm_arch_vcpu_runnable(vcpu))
1049 return 0;
1050
1051 if (psw_interrupts_disabled(vcpu)) {
1052 VCPU_EVENT(vcpu, 3, "%s", "disabled wait");
1053 return -EOPNOTSUPP; /* disabled wait */
1054 }
1055
1056 if (!ckc_interrupts_enabled(vcpu) &&
1057 !cpu_timer_interrupts_enabled(vcpu)) {
1058 VCPU_EVENT(vcpu, 3, "%s", "enabled wait w/o timer");
1059 __set_cpu_idle(vcpu);
1060 goto no_timer;
1061 }
1062
1063 sltime = __calculate_sltime(vcpu);
1064 if (!sltime)
1065 return 0;
1066
1067 __set_cpu_idle(vcpu);
1068 hrtimer_start(&vcpu->arch.ckc_timer, sltime, HRTIMER_MODE_REL);
1069 VCPU_EVENT(vcpu, 4, "enabled wait: %llu ns", sltime);
1070 no_timer:
1071 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
1072 kvm_vcpu_block(vcpu);
1073 __unset_cpu_idle(vcpu);
1074 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
1075
1076 hrtimer_cancel(&vcpu->arch.ckc_timer);
1077 return 0;
1078 }
1079
1080 void kvm_s390_vcpu_wakeup(struct kvm_vcpu *vcpu)
1081 {
1082 /*
1083 * We cannot move this into the if, as the CPU might be already
1084 * in kvm_vcpu_block without having the waitqueue set (polling)
1085 */
1086 vcpu->valid_wakeup = true;
1087 /*
1088 * This is mostly to document, that the read in swait_active could
1089 * be moved before other stores, leading to subtle races.
1090 * All current users do not store or use an atomic like update
1091 */
1092 smp_mb__after_atomic();
1093 if (swait_active(&vcpu->wq)) {
1094 /*
1095 * The vcpu gave up the cpu voluntarily, mark it as a good
1096 * yield-candidate.
1097 */
1098 vcpu->preempted = true;
1099 swake_up(&vcpu->wq);
1100 vcpu->stat.halt_wakeup++;
1101 }
1102 /*
1103 * The VCPU might not be sleeping but is executing the VSIE. Let's
1104 * kick it, so it leaves the SIE to process the request.
1105 */
1106 kvm_s390_vsie_kick(vcpu);
1107 }
1108
1109 enum hrtimer_restart kvm_s390_idle_wakeup(struct hrtimer *timer)
1110 {
1111 struct kvm_vcpu *vcpu;
1112 u64 sltime;
1113
1114 vcpu = container_of(timer, struct kvm_vcpu, arch.ckc_timer);
1115 sltime = __calculate_sltime(vcpu);
1116
1117 /*
1118 * If the monotonic clock runs faster than the tod clock we might be
1119 * woken up too early and have to go back to sleep to avoid deadlocks.
1120 */
1121 if (sltime && hrtimer_forward_now(timer, ns_to_ktime(sltime)))
1122 return HRTIMER_RESTART;
1123 kvm_s390_vcpu_wakeup(vcpu);
1124 return HRTIMER_NORESTART;
1125 }
1126
1127 void kvm_s390_clear_local_irqs(struct kvm_vcpu *vcpu)
1128 {
1129 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1130
1131 spin_lock(&li->lock);
1132 li->pending_irqs = 0;
1133 bitmap_zero(li->sigp_emerg_pending, KVM_MAX_VCPUS);
1134 memset(&li->irq, 0, sizeof(li->irq));
1135 spin_unlock(&li->lock);
1136
1137 sca_clear_ext_call(vcpu);
1138 }
1139
1140 int __must_check kvm_s390_deliver_pending_interrupts(struct kvm_vcpu *vcpu)
1141 {
1142 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1143 deliver_irq_t func;
1144 int rc = 0;
1145 unsigned long irq_type;
1146 unsigned long irqs;
1147
1148 __reset_intercept_indicators(vcpu);
1149
1150 /* pending ckc conditions might have been invalidated */
1151 clear_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1152 if (ckc_irq_pending(vcpu))
1153 set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1154
1155 /* pending cpu timer conditions might have been invalidated */
1156 clear_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1157 if (cpu_timer_irq_pending(vcpu))
1158 set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1159
1160 while ((irqs = deliverable_irqs(vcpu)) && !rc) {
1161 /* bits are in the order of interrupt priority */
1162 irq_type = find_first_bit(&irqs, IRQ_PEND_COUNT);
1163 if (is_ioirq(irq_type)) {
1164 rc = __deliver_io(vcpu, irq_type);
1165 } else {
1166 func = deliver_irq_funcs[irq_type];
1167 if (!func) {
1168 WARN_ON_ONCE(func == NULL);
1169 clear_bit(irq_type, &li->pending_irqs);
1170 continue;
1171 }
1172 rc = func(vcpu);
1173 }
1174 }
1175
1176 set_intercept_indicators(vcpu);
1177
1178 return rc;
1179 }
1180
1181 static int __inject_prog(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1182 {
1183 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1184
1185 VCPU_EVENT(vcpu, 3, "inject: program irq code 0x%x", irq->u.pgm.code);
1186 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_PROGRAM_INT,
1187 irq->u.pgm.code, 0);
1188
1189 if (!(irq->u.pgm.flags & KVM_S390_PGM_FLAGS_ILC_VALID)) {
1190 /* auto detection if no valid ILC was given */
1191 irq->u.pgm.flags &= ~KVM_S390_PGM_FLAGS_ILC_MASK;
1192 irq->u.pgm.flags |= kvm_s390_get_ilen(vcpu);
1193 irq->u.pgm.flags |= KVM_S390_PGM_FLAGS_ILC_VALID;
1194 }
1195
1196 if (irq->u.pgm.code == PGM_PER) {
1197 li->irq.pgm.code |= PGM_PER;
1198 li->irq.pgm.flags = irq->u.pgm.flags;
1199 /* only modify PER related information */
1200 li->irq.pgm.per_address = irq->u.pgm.per_address;
1201 li->irq.pgm.per_code = irq->u.pgm.per_code;
1202 li->irq.pgm.per_atmid = irq->u.pgm.per_atmid;
1203 li->irq.pgm.per_access_id = irq->u.pgm.per_access_id;
1204 } else if (!(irq->u.pgm.code & PGM_PER)) {
1205 li->irq.pgm.code = (li->irq.pgm.code & PGM_PER) |
1206 irq->u.pgm.code;
1207 li->irq.pgm.flags = irq->u.pgm.flags;
1208 /* only modify non-PER information */
1209 li->irq.pgm.trans_exc_code = irq->u.pgm.trans_exc_code;
1210 li->irq.pgm.mon_code = irq->u.pgm.mon_code;
1211 li->irq.pgm.data_exc_code = irq->u.pgm.data_exc_code;
1212 li->irq.pgm.mon_class_nr = irq->u.pgm.mon_class_nr;
1213 li->irq.pgm.exc_access_id = irq->u.pgm.exc_access_id;
1214 li->irq.pgm.op_access_id = irq->u.pgm.op_access_id;
1215 } else {
1216 li->irq.pgm = irq->u.pgm;
1217 }
1218 set_bit(IRQ_PEND_PROG, &li->pending_irqs);
1219 return 0;
1220 }
1221
1222 static int __inject_pfault_init(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1223 {
1224 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1225
1226 VCPU_EVENT(vcpu, 4, "inject: pfault init parameter block at 0x%llx",
1227 irq->u.ext.ext_params2);
1228 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_PFAULT_INIT,
1229 irq->u.ext.ext_params,
1230 irq->u.ext.ext_params2);
1231
1232 li->irq.ext = irq->u.ext;
1233 set_bit(IRQ_PEND_PFAULT_INIT, &li->pending_irqs);
1234 atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1235 return 0;
1236 }
1237
1238 static int __inject_extcall(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1239 {
1240 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1241 struct kvm_s390_extcall_info *extcall = &li->irq.extcall;
1242 uint16_t src_id = irq->u.extcall.code;
1243
1244 VCPU_EVENT(vcpu, 4, "inject: external call source-cpu:%u",
1245 src_id);
1246 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EXTERNAL_CALL,
1247 src_id, 0);
1248
1249 /* sending vcpu invalid */
1250 if (kvm_get_vcpu_by_id(vcpu->kvm, src_id) == NULL)
1251 return -EINVAL;
1252
1253 if (sclp.has_sigpif)
1254 return sca_inject_ext_call(vcpu, src_id);
1255
1256 if (test_and_set_bit(IRQ_PEND_EXT_EXTERNAL, &li->pending_irqs))
1257 return -EBUSY;
1258 *extcall = irq->u.extcall;
1259 atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1260 return 0;
1261 }
1262
1263 static int __inject_set_prefix(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1264 {
1265 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1266 struct kvm_s390_prefix_info *prefix = &li->irq.prefix;
1267
1268 VCPU_EVENT(vcpu, 3, "inject: set prefix to %x",
1269 irq->u.prefix.address);
1270 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_SET_PREFIX,
1271 irq->u.prefix.address, 0);
1272
1273 if (!is_vcpu_stopped(vcpu))
1274 return -EBUSY;
1275
1276 *prefix = irq->u.prefix;
1277 set_bit(IRQ_PEND_SET_PREFIX, &li->pending_irqs);
1278 return 0;
1279 }
1280
1281 #define KVM_S390_STOP_SUPP_FLAGS (KVM_S390_STOP_FLAG_STORE_STATUS)
1282 static int __inject_sigp_stop(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1283 {
1284 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1285 struct kvm_s390_stop_info *stop = &li->irq.stop;
1286 int rc = 0;
1287
1288 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_SIGP_STOP, 0, 0);
1289
1290 if (irq->u.stop.flags & ~KVM_S390_STOP_SUPP_FLAGS)
1291 return -EINVAL;
1292
1293 if (is_vcpu_stopped(vcpu)) {
1294 if (irq->u.stop.flags & KVM_S390_STOP_FLAG_STORE_STATUS)
1295 rc = kvm_s390_store_status_unloaded(vcpu,
1296 KVM_S390_STORE_STATUS_NOADDR);
1297 return rc;
1298 }
1299
1300 if (test_and_set_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs))
1301 return -EBUSY;
1302 stop->flags = irq->u.stop.flags;
1303 __set_cpuflag(vcpu, CPUSTAT_STOP_INT);
1304 return 0;
1305 }
1306
1307 static int __inject_sigp_restart(struct kvm_vcpu *vcpu,
1308 struct kvm_s390_irq *irq)
1309 {
1310 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1311
1312 VCPU_EVENT(vcpu, 3, "%s", "inject: restart int");
1313 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_RESTART, 0, 0);
1314
1315 set_bit(IRQ_PEND_RESTART, &li->pending_irqs);
1316 return 0;
1317 }
1318
1319 static int __inject_sigp_emergency(struct kvm_vcpu *vcpu,
1320 struct kvm_s390_irq *irq)
1321 {
1322 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1323
1324 VCPU_EVENT(vcpu, 4, "inject: emergency from cpu %u",
1325 irq->u.emerg.code);
1326 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_EMERGENCY,
1327 irq->u.emerg.code, 0);
1328
1329 /* sending vcpu invalid */
1330 if (kvm_get_vcpu_by_id(vcpu->kvm, irq->u.emerg.code) == NULL)
1331 return -EINVAL;
1332
1333 set_bit(irq->u.emerg.code, li->sigp_emerg_pending);
1334 set_bit(IRQ_PEND_EXT_EMERGENCY, &li->pending_irqs);
1335 atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1336 return 0;
1337 }
1338
1339 static int __inject_mchk(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1340 {
1341 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1342 struct kvm_s390_mchk_info *mchk = &li->irq.mchk;
1343
1344 VCPU_EVENT(vcpu, 3, "inject: machine check mcic 0x%llx",
1345 irq->u.mchk.mcic);
1346 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_MCHK, 0,
1347 irq->u.mchk.mcic);
1348
1349 /*
1350 * Because repressible machine checks can be indicated along with
1351 * exigent machine checks (PoP, Chapter 11, Interruption action)
1352 * we need to combine cr14, mcic and external damage code.
1353 * Failing storage address and the logout area should not be or'ed
1354 * together, we just indicate the last occurrence of the corresponding
1355 * machine check
1356 */
1357 mchk->cr14 |= irq->u.mchk.cr14;
1358 mchk->mcic |= irq->u.mchk.mcic;
1359 mchk->ext_damage_code |= irq->u.mchk.ext_damage_code;
1360 mchk->failing_storage_address = irq->u.mchk.failing_storage_address;
1361 memcpy(&mchk->fixed_logout, &irq->u.mchk.fixed_logout,
1362 sizeof(mchk->fixed_logout));
1363 if (mchk->mcic & MCHK_EX_MASK)
1364 set_bit(IRQ_PEND_MCHK_EX, &li->pending_irqs);
1365 else if (mchk->mcic & MCHK_REP_MASK)
1366 set_bit(IRQ_PEND_MCHK_REP, &li->pending_irqs);
1367 return 0;
1368 }
1369
1370 static int __inject_ckc(struct kvm_vcpu *vcpu)
1371 {
1372 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1373
1374 VCPU_EVENT(vcpu, 3, "%s", "inject: clock comparator external");
1375 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CLOCK_COMP,
1376 0, 0);
1377
1378 set_bit(IRQ_PEND_EXT_CLOCK_COMP, &li->pending_irqs);
1379 atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1380 return 0;
1381 }
1382
1383 static int __inject_cpu_timer(struct kvm_vcpu *vcpu)
1384 {
1385 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1386
1387 VCPU_EVENT(vcpu, 3, "%s", "inject: cpu timer external");
1388 trace_kvm_s390_inject_vcpu(vcpu->vcpu_id, KVM_S390_INT_CPU_TIMER,
1389 0, 0);
1390
1391 set_bit(IRQ_PEND_EXT_CPU_TIMER, &li->pending_irqs);
1392 atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1393 return 0;
1394 }
1395
1396 static struct kvm_s390_interrupt_info *get_io_int(struct kvm *kvm,
1397 int isc, u32 schid)
1398 {
1399 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1400 struct list_head *isc_list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
1401 struct kvm_s390_interrupt_info *iter;
1402 u16 id = (schid & 0xffff0000U) >> 16;
1403 u16 nr = schid & 0x0000ffffU;
1404
1405 spin_lock(&fi->lock);
1406 list_for_each_entry(iter, isc_list, list) {
1407 if (schid && (id != iter->io.subchannel_id ||
1408 nr != iter->io.subchannel_nr))
1409 continue;
1410 /* found an appropriate entry */
1411 list_del_init(&iter->list);
1412 fi->counters[FIRQ_CNTR_IO] -= 1;
1413 if (list_empty(isc_list))
1414 clear_bit(isc_to_irq_type(isc), &fi->pending_irqs);
1415 spin_unlock(&fi->lock);
1416 return iter;
1417 }
1418 spin_unlock(&fi->lock);
1419 return NULL;
1420 }
1421
1422 /*
1423 * Dequeue and return an I/O interrupt matching any of the interruption
1424 * subclasses as designated by the isc mask in cr6 and the schid (if != 0).
1425 */
1426 struct kvm_s390_interrupt_info *kvm_s390_get_io_int(struct kvm *kvm,
1427 u64 isc_mask, u32 schid)
1428 {
1429 struct kvm_s390_interrupt_info *inti = NULL;
1430 int isc;
1431
1432 for (isc = 0; isc <= MAX_ISC && !inti; isc++) {
1433 if (isc_mask & isc_to_isc_bits(isc))
1434 inti = get_io_int(kvm, isc, schid);
1435 }
1436 return inti;
1437 }
1438
1439 #define SCCB_MASK 0xFFFFFFF8
1440 #define SCCB_EVENT_PENDING 0x3
1441
1442 static int __inject_service(struct kvm *kvm,
1443 struct kvm_s390_interrupt_info *inti)
1444 {
1445 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1446
1447 spin_lock(&fi->lock);
1448 fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_EVENT_PENDING;
1449 /*
1450 * Early versions of the QEMU s390 bios will inject several
1451 * service interrupts after another without handling a
1452 * condition code indicating busy.
1453 * We will silently ignore those superfluous sccb values.
1454 * A future version of QEMU will take care of serialization
1455 * of servc requests
1456 */
1457 if (fi->srv_signal.ext_params & SCCB_MASK)
1458 goto out;
1459 fi->srv_signal.ext_params |= inti->ext.ext_params & SCCB_MASK;
1460 set_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs);
1461 out:
1462 spin_unlock(&fi->lock);
1463 kfree(inti);
1464 return 0;
1465 }
1466
1467 static int __inject_virtio(struct kvm *kvm,
1468 struct kvm_s390_interrupt_info *inti)
1469 {
1470 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1471
1472 spin_lock(&fi->lock);
1473 if (fi->counters[FIRQ_CNTR_VIRTIO] >= KVM_S390_MAX_VIRTIO_IRQS) {
1474 spin_unlock(&fi->lock);
1475 return -EBUSY;
1476 }
1477 fi->counters[FIRQ_CNTR_VIRTIO] += 1;
1478 list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_VIRTIO]);
1479 set_bit(IRQ_PEND_VIRTIO, &fi->pending_irqs);
1480 spin_unlock(&fi->lock);
1481 return 0;
1482 }
1483
1484 static int __inject_pfault_done(struct kvm *kvm,
1485 struct kvm_s390_interrupt_info *inti)
1486 {
1487 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1488
1489 spin_lock(&fi->lock);
1490 if (fi->counters[FIRQ_CNTR_PFAULT] >=
1491 (ASYNC_PF_PER_VCPU * KVM_MAX_VCPUS)) {
1492 spin_unlock(&fi->lock);
1493 return -EBUSY;
1494 }
1495 fi->counters[FIRQ_CNTR_PFAULT] += 1;
1496 list_add_tail(&inti->list, &fi->lists[FIRQ_LIST_PFAULT]);
1497 set_bit(IRQ_PEND_PFAULT_DONE, &fi->pending_irqs);
1498 spin_unlock(&fi->lock);
1499 return 0;
1500 }
1501
1502 #define CR_PENDING_SUBCLASS 28
1503 static int __inject_float_mchk(struct kvm *kvm,
1504 struct kvm_s390_interrupt_info *inti)
1505 {
1506 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1507
1508 spin_lock(&fi->lock);
1509 fi->mchk.cr14 |= inti->mchk.cr14 & (1UL << CR_PENDING_SUBCLASS);
1510 fi->mchk.mcic |= inti->mchk.mcic;
1511 set_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs);
1512 spin_unlock(&fi->lock);
1513 kfree(inti);
1514 return 0;
1515 }
1516
1517 static int __inject_io(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
1518 {
1519 struct kvm_s390_float_interrupt *fi;
1520 struct list_head *list;
1521 int isc;
1522
1523 fi = &kvm->arch.float_int;
1524 spin_lock(&fi->lock);
1525 if (fi->counters[FIRQ_CNTR_IO] >= KVM_S390_MAX_FLOAT_IRQS) {
1526 spin_unlock(&fi->lock);
1527 return -EBUSY;
1528 }
1529 fi->counters[FIRQ_CNTR_IO] += 1;
1530
1531 if (inti->type & KVM_S390_INT_IO_AI_MASK)
1532 VM_EVENT(kvm, 4, "%s", "inject: I/O (AI)");
1533 else
1534 VM_EVENT(kvm, 4, "inject: I/O %x ss %x schid %04x",
1535 inti->io.subchannel_id >> 8,
1536 inti->io.subchannel_id >> 1 & 0x3,
1537 inti->io.subchannel_nr);
1538 isc = int_word_to_isc(inti->io.io_int_word);
1539 list = &fi->lists[FIRQ_LIST_IO_ISC_0 + isc];
1540 list_add_tail(&inti->list, list);
1541 set_bit(isc_to_irq_type(isc), &fi->pending_irqs);
1542 spin_unlock(&fi->lock);
1543 return 0;
1544 }
1545
1546 /*
1547 * Find a destination VCPU for a floating irq and kick it.
1548 */
1549 static void __floating_irq_kick(struct kvm *kvm, u64 type)
1550 {
1551 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1552 struct kvm_s390_local_interrupt *li;
1553 struct kvm_vcpu *dst_vcpu;
1554 int sigcpu, online_vcpus, nr_tries = 0;
1555
1556 online_vcpus = atomic_read(&kvm->online_vcpus);
1557 if (!online_vcpus)
1558 return;
1559
1560 /* find idle VCPUs first, then round robin */
1561 sigcpu = find_first_bit(fi->idle_mask, online_vcpus);
1562 if (sigcpu == online_vcpus) {
1563 do {
1564 sigcpu = fi->next_rr_cpu;
1565 fi->next_rr_cpu = (fi->next_rr_cpu + 1) % online_vcpus;
1566 /* avoid endless loops if all vcpus are stopped */
1567 if (nr_tries++ >= online_vcpus)
1568 return;
1569 } while (is_vcpu_stopped(kvm_get_vcpu(kvm, sigcpu)));
1570 }
1571 dst_vcpu = kvm_get_vcpu(kvm, sigcpu);
1572
1573 /* make the VCPU drop out of the SIE, or wake it up if sleeping */
1574 li = &dst_vcpu->arch.local_int;
1575 spin_lock(&li->lock);
1576 switch (type) {
1577 case KVM_S390_MCHK:
1578 atomic_or(CPUSTAT_STOP_INT, li->cpuflags);
1579 break;
1580 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1581 atomic_or(CPUSTAT_IO_INT, li->cpuflags);
1582 break;
1583 default:
1584 atomic_or(CPUSTAT_EXT_INT, li->cpuflags);
1585 break;
1586 }
1587 spin_unlock(&li->lock);
1588 kvm_s390_vcpu_wakeup(dst_vcpu);
1589 }
1590
1591 static int __inject_vm(struct kvm *kvm, struct kvm_s390_interrupt_info *inti)
1592 {
1593 u64 type = READ_ONCE(inti->type);
1594 int rc;
1595
1596 switch (type) {
1597 case KVM_S390_MCHK:
1598 rc = __inject_float_mchk(kvm, inti);
1599 break;
1600 case KVM_S390_INT_VIRTIO:
1601 rc = __inject_virtio(kvm, inti);
1602 break;
1603 case KVM_S390_INT_SERVICE:
1604 rc = __inject_service(kvm, inti);
1605 break;
1606 case KVM_S390_INT_PFAULT_DONE:
1607 rc = __inject_pfault_done(kvm, inti);
1608 break;
1609 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1610 rc = __inject_io(kvm, inti);
1611 break;
1612 default:
1613 rc = -EINVAL;
1614 }
1615 if (rc)
1616 return rc;
1617
1618 __floating_irq_kick(kvm, type);
1619 return 0;
1620 }
1621
1622 int kvm_s390_inject_vm(struct kvm *kvm,
1623 struct kvm_s390_interrupt *s390int)
1624 {
1625 struct kvm_s390_interrupt_info *inti;
1626 int rc;
1627
1628 inti = kzalloc(sizeof(*inti), GFP_KERNEL);
1629 if (!inti)
1630 return -ENOMEM;
1631
1632 inti->type = s390int->type;
1633 switch (inti->type) {
1634 case KVM_S390_INT_VIRTIO:
1635 VM_EVENT(kvm, 5, "inject: virtio parm:%x,parm64:%llx",
1636 s390int->parm, s390int->parm64);
1637 inti->ext.ext_params = s390int->parm;
1638 inti->ext.ext_params2 = s390int->parm64;
1639 break;
1640 case KVM_S390_INT_SERVICE:
1641 VM_EVENT(kvm, 4, "inject: sclp parm:%x", s390int->parm);
1642 inti->ext.ext_params = s390int->parm;
1643 break;
1644 case KVM_S390_INT_PFAULT_DONE:
1645 inti->ext.ext_params2 = s390int->parm64;
1646 break;
1647 case KVM_S390_MCHK:
1648 VM_EVENT(kvm, 3, "inject: machine check mcic 0x%llx",
1649 s390int->parm64);
1650 inti->mchk.cr14 = s390int->parm; /* upper bits are not used */
1651 inti->mchk.mcic = s390int->parm64;
1652 break;
1653 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1654 inti->io.subchannel_id = s390int->parm >> 16;
1655 inti->io.subchannel_nr = s390int->parm & 0x0000ffffu;
1656 inti->io.io_int_parm = s390int->parm64 >> 32;
1657 inti->io.io_int_word = s390int->parm64 & 0x00000000ffffffffull;
1658 break;
1659 default:
1660 kfree(inti);
1661 return -EINVAL;
1662 }
1663 trace_kvm_s390_inject_vm(s390int->type, s390int->parm, s390int->parm64,
1664 2);
1665
1666 rc = __inject_vm(kvm, inti);
1667 if (rc)
1668 kfree(inti);
1669 return rc;
1670 }
1671
1672 int kvm_s390_reinject_io_int(struct kvm *kvm,
1673 struct kvm_s390_interrupt_info *inti)
1674 {
1675 return __inject_vm(kvm, inti);
1676 }
1677
1678 int s390int_to_s390irq(struct kvm_s390_interrupt *s390int,
1679 struct kvm_s390_irq *irq)
1680 {
1681 irq->type = s390int->type;
1682 switch (irq->type) {
1683 case KVM_S390_PROGRAM_INT:
1684 if (s390int->parm & 0xffff0000)
1685 return -EINVAL;
1686 irq->u.pgm.code = s390int->parm;
1687 break;
1688 case KVM_S390_SIGP_SET_PREFIX:
1689 irq->u.prefix.address = s390int->parm;
1690 break;
1691 case KVM_S390_SIGP_STOP:
1692 irq->u.stop.flags = s390int->parm;
1693 break;
1694 case KVM_S390_INT_EXTERNAL_CALL:
1695 if (s390int->parm & 0xffff0000)
1696 return -EINVAL;
1697 irq->u.extcall.code = s390int->parm;
1698 break;
1699 case KVM_S390_INT_EMERGENCY:
1700 if (s390int->parm & 0xffff0000)
1701 return -EINVAL;
1702 irq->u.emerg.code = s390int->parm;
1703 break;
1704 case KVM_S390_MCHK:
1705 irq->u.mchk.mcic = s390int->parm64;
1706 break;
1707 }
1708 return 0;
1709 }
1710
1711 int kvm_s390_is_stop_irq_pending(struct kvm_vcpu *vcpu)
1712 {
1713 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1714
1715 return test_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
1716 }
1717
1718 void kvm_s390_clear_stop_irq(struct kvm_vcpu *vcpu)
1719 {
1720 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1721
1722 spin_lock(&li->lock);
1723 li->irq.stop.flags = 0;
1724 clear_bit(IRQ_PEND_SIGP_STOP, &li->pending_irqs);
1725 spin_unlock(&li->lock);
1726 }
1727
1728 static int do_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1729 {
1730 int rc;
1731
1732 switch (irq->type) {
1733 case KVM_S390_PROGRAM_INT:
1734 rc = __inject_prog(vcpu, irq);
1735 break;
1736 case KVM_S390_SIGP_SET_PREFIX:
1737 rc = __inject_set_prefix(vcpu, irq);
1738 break;
1739 case KVM_S390_SIGP_STOP:
1740 rc = __inject_sigp_stop(vcpu, irq);
1741 break;
1742 case KVM_S390_RESTART:
1743 rc = __inject_sigp_restart(vcpu, irq);
1744 break;
1745 case KVM_S390_INT_CLOCK_COMP:
1746 rc = __inject_ckc(vcpu);
1747 break;
1748 case KVM_S390_INT_CPU_TIMER:
1749 rc = __inject_cpu_timer(vcpu);
1750 break;
1751 case KVM_S390_INT_EXTERNAL_CALL:
1752 rc = __inject_extcall(vcpu, irq);
1753 break;
1754 case KVM_S390_INT_EMERGENCY:
1755 rc = __inject_sigp_emergency(vcpu, irq);
1756 break;
1757 case KVM_S390_MCHK:
1758 rc = __inject_mchk(vcpu, irq);
1759 break;
1760 case KVM_S390_INT_PFAULT_INIT:
1761 rc = __inject_pfault_init(vcpu, irq);
1762 break;
1763 case KVM_S390_INT_VIRTIO:
1764 case KVM_S390_INT_SERVICE:
1765 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1766 default:
1767 rc = -EINVAL;
1768 }
1769
1770 return rc;
1771 }
1772
1773 int kvm_s390_inject_vcpu(struct kvm_vcpu *vcpu, struct kvm_s390_irq *irq)
1774 {
1775 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
1776 int rc;
1777
1778 spin_lock(&li->lock);
1779 rc = do_inject_vcpu(vcpu, irq);
1780 spin_unlock(&li->lock);
1781 if (!rc)
1782 kvm_s390_vcpu_wakeup(vcpu);
1783 return rc;
1784 }
1785
1786 static inline void clear_irq_list(struct list_head *_list)
1787 {
1788 struct kvm_s390_interrupt_info *inti, *n;
1789
1790 list_for_each_entry_safe(inti, n, _list, list) {
1791 list_del(&inti->list);
1792 kfree(inti);
1793 }
1794 }
1795
1796 static void inti_to_irq(struct kvm_s390_interrupt_info *inti,
1797 struct kvm_s390_irq *irq)
1798 {
1799 irq->type = inti->type;
1800 switch (inti->type) {
1801 case KVM_S390_INT_PFAULT_INIT:
1802 case KVM_S390_INT_PFAULT_DONE:
1803 case KVM_S390_INT_VIRTIO:
1804 irq->u.ext = inti->ext;
1805 break;
1806 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1807 irq->u.io = inti->io;
1808 break;
1809 }
1810 }
1811
1812 void kvm_s390_clear_float_irqs(struct kvm *kvm)
1813 {
1814 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1815 int i;
1816
1817 spin_lock(&fi->lock);
1818 fi->pending_irqs = 0;
1819 memset(&fi->srv_signal, 0, sizeof(fi->srv_signal));
1820 memset(&fi->mchk, 0, sizeof(fi->mchk));
1821 for (i = 0; i < FIRQ_LIST_COUNT; i++)
1822 clear_irq_list(&fi->lists[i]);
1823 for (i = 0; i < FIRQ_MAX_COUNT; i++)
1824 fi->counters[i] = 0;
1825 spin_unlock(&fi->lock);
1826 };
1827
1828 static int get_all_floating_irqs(struct kvm *kvm, u8 __user *usrbuf, u64 len)
1829 {
1830 struct kvm_s390_interrupt_info *inti;
1831 struct kvm_s390_float_interrupt *fi;
1832 struct kvm_s390_irq *buf;
1833 struct kvm_s390_irq *irq;
1834 int max_irqs;
1835 int ret = 0;
1836 int n = 0;
1837 int i;
1838
1839 if (len > KVM_S390_FLIC_MAX_BUFFER || len == 0)
1840 return -EINVAL;
1841
1842 /*
1843 * We are already using -ENOMEM to signal
1844 * userspace it may retry with a bigger buffer,
1845 * so we need to use something else for this case
1846 */
1847 buf = vzalloc(len);
1848 if (!buf)
1849 return -ENOBUFS;
1850
1851 max_irqs = len / sizeof(struct kvm_s390_irq);
1852
1853 fi = &kvm->arch.float_int;
1854 spin_lock(&fi->lock);
1855 for (i = 0; i < FIRQ_LIST_COUNT; i++) {
1856 list_for_each_entry(inti, &fi->lists[i], list) {
1857 if (n == max_irqs) {
1858 /* signal userspace to try again */
1859 ret = -ENOMEM;
1860 goto out;
1861 }
1862 inti_to_irq(inti, &buf[n]);
1863 n++;
1864 }
1865 }
1866 if (test_bit(IRQ_PEND_EXT_SERVICE, &fi->pending_irqs)) {
1867 if (n == max_irqs) {
1868 /* signal userspace to try again */
1869 ret = -ENOMEM;
1870 goto out;
1871 }
1872 irq = (struct kvm_s390_irq *) &buf[n];
1873 irq->type = KVM_S390_INT_SERVICE;
1874 irq->u.ext = fi->srv_signal;
1875 n++;
1876 }
1877 if (test_bit(IRQ_PEND_MCHK_REP, &fi->pending_irqs)) {
1878 if (n == max_irqs) {
1879 /* signal userspace to try again */
1880 ret = -ENOMEM;
1881 goto out;
1882 }
1883 irq = (struct kvm_s390_irq *) &buf[n];
1884 irq->type = KVM_S390_MCHK;
1885 irq->u.mchk = fi->mchk;
1886 n++;
1887 }
1888
1889 out:
1890 spin_unlock(&fi->lock);
1891 if (!ret && n > 0) {
1892 if (copy_to_user(usrbuf, buf, sizeof(struct kvm_s390_irq) * n))
1893 ret = -EFAULT;
1894 }
1895 vfree(buf);
1896
1897 return ret < 0 ? ret : n;
1898 }
1899
1900 static int flic_ais_mode_get_all(struct kvm *kvm, struct kvm_device_attr *attr)
1901 {
1902 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
1903 struct kvm_s390_ais_all ais;
1904
1905 if (attr->attr < sizeof(ais))
1906 return -EINVAL;
1907
1908 if (!test_kvm_facility(kvm, 72))
1909 return -ENOTSUPP;
1910
1911 mutex_lock(&fi->ais_lock);
1912 ais.simm = fi->simm;
1913 ais.nimm = fi->nimm;
1914 mutex_unlock(&fi->ais_lock);
1915
1916 if (copy_to_user((void __user *)attr->addr, &ais, sizeof(ais)))
1917 return -EFAULT;
1918
1919 return 0;
1920 }
1921
1922 static int flic_get_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
1923 {
1924 int r;
1925
1926 switch (attr->group) {
1927 case KVM_DEV_FLIC_GET_ALL_IRQS:
1928 r = get_all_floating_irqs(dev->kvm, (u8 __user *) attr->addr,
1929 attr->attr);
1930 break;
1931 case KVM_DEV_FLIC_AISM_ALL:
1932 r = flic_ais_mode_get_all(dev->kvm, attr);
1933 break;
1934 default:
1935 r = -EINVAL;
1936 }
1937
1938 return r;
1939 }
1940
1941 static inline int copy_irq_from_user(struct kvm_s390_interrupt_info *inti,
1942 u64 addr)
1943 {
1944 struct kvm_s390_irq __user *uptr = (struct kvm_s390_irq __user *) addr;
1945 void *target = NULL;
1946 void __user *source;
1947 u64 size;
1948
1949 if (get_user(inti->type, (u64 __user *)addr))
1950 return -EFAULT;
1951
1952 switch (inti->type) {
1953 case KVM_S390_INT_PFAULT_INIT:
1954 case KVM_S390_INT_PFAULT_DONE:
1955 case KVM_S390_INT_VIRTIO:
1956 case KVM_S390_INT_SERVICE:
1957 target = (void *) &inti->ext;
1958 source = &uptr->u.ext;
1959 size = sizeof(inti->ext);
1960 break;
1961 case KVM_S390_INT_IO_MIN...KVM_S390_INT_IO_MAX:
1962 target = (void *) &inti->io;
1963 source = &uptr->u.io;
1964 size = sizeof(inti->io);
1965 break;
1966 case KVM_S390_MCHK:
1967 target = (void *) &inti->mchk;
1968 source = &uptr->u.mchk;
1969 size = sizeof(inti->mchk);
1970 break;
1971 default:
1972 return -EINVAL;
1973 }
1974
1975 if (copy_from_user(target, source, size))
1976 return -EFAULT;
1977
1978 return 0;
1979 }
1980
1981 static int enqueue_floating_irq(struct kvm_device *dev,
1982 struct kvm_device_attr *attr)
1983 {
1984 struct kvm_s390_interrupt_info *inti = NULL;
1985 int r = 0;
1986 int len = attr->attr;
1987
1988 if (len % sizeof(struct kvm_s390_irq) != 0)
1989 return -EINVAL;
1990 else if (len > KVM_S390_FLIC_MAX_BUFFER)
1991 return -EINVAL;
1992
1993 while (len >= sizeof(struct kvm_s390_irq)) {
1994 inti = kzalloc(sizeof(*inti), GFP_KERNEL);
1995 if (!inti)
1996 return -ENOMEM;
1997
1998 r = copy_irq_from_user(inti, attr->addr);
1999 if (r) {
2000 kfree(inti);
2001 return r;
2002 }
2003 r = __inject_vm(dev->kvm, inti);
2004 if (r) {
2005 kfree(inti);
2006 return r;
2007 }
2008 len -= sizeof(struct kvm_s390_irq);
2009 attr->addr += sizeof(struct kvm_s390_irq);
2010 }
2011
2012 return r;
2013 }
2014
2015 static struct s390_io_adapter *get_io_adapter(struct kvm *kvm, unsigned int id)
2016 {
2017 if (id >= MAX_S390_IO_ADAPTERS)
2018 return NULL;
2019 return kvm->arch.adapters[id];
2020 }
2021
2022 static int register_io_adapter(struct kvm_device *dev,
2023 struct kvm_device_attr *attr)
2024 {
2025 struct s390_io_adapter *adapter;
2026 struct kvm_s390_io_adapter adapter_info;
2027
2028 if (copy_from_user(&adapter_info,
2029 (void __user *)attr->addr, sizeof(adapter_info)))
2030 return -EFAULT;
2031
2032 if ((adapter_info.id >= MAX_S390_IO_ADAPTERS) ||
2033 (dev->kvm->arch.adapters[adapter_info.id] != NULL))
2034 return -EINVAL;
2035
2036 adapter = kzalloc(sizeof(*adapter), GFP_KERNEL);
2037 if (!adapter)
2038 return -ENOMEM;
2039
2040 INIT_LIST_HEAD(&adapter->maps);
2041 init_rwsem(&adapter->maps_lock);
2042 atomic_set(&adapter->nr_maps, 0);
2043 adapter->id = adapter_info.id;
2044 adapter->isc = adapter_info.isc;
2045 adapter->maskable = adapter_info.maskable;
2046 adapter->masked = false;
2047 adapter->swap = adapter_info.swap;
2048 adapter->suppressible = (adapter_info.flags) &
2049 KVM_S390_ADAPTER_SUPPRESSIBLE;
2050 dev->kvm->arch.adapters[adapter->id] = adapter;
2051
2052 return 0;
2053 }
2054
2055 int kvm_s390_mask_adapter(struct kvm *kvm, unsigned int id, bool masked)
2056 {
2057 int ret;
2058 struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
2059
2060 if (!adapter || !adapter->maskable)
2061 return -EINVAL;
2062 ret = adapter->masked;
2063 adapter->masked = masked;
2064 return ret;
2065 }
2066
2067 static int kvm_s390_adapter_map(struct kvm *kvm, unsigned int id, __u64 addr)
2068 {
2069 struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
2070 struct s390_map_info *map;
2071 int ret;
2072
2073 if (!adapter || !addr)
2074 return -EINVAL;
2075
2076 map = kzalloc(sizeof(*map), GFP_KERNEL);
2077 if (!map) {
2078 ret = -ENOMEM;
2079 goto out;
2080 }
2081 INIT_LIST_HEAD(&map->list);
2082 map->guest_addr = addr;
2083 map->addr = gmap_translate(kvm->arch.gmap, addr);
2084 if (map->addr == -EFAULT) {
2085 ret = -EFAULT;
2086 goto out;
2087 }
2088 ret = get_user_pages_fast(map->addr, 1, 1, &map->page);
2089 if (ret < 0)
2090 goto out;
2091 BUG_ON(ret != 1);
2092 down_write(&adapter->maps_lock);
2093 if (atomic_inc_return(&adapter->nr_maps) < MAX_S390_ADAPTER_MAPS) {
2094 list_add_tail(&map->list, &adapter->maps);
2095 ret = 0;
2096 } else {
2097 put_page(map->page);
2098 ret = -EINVAL;
2099 }
2100 up_write(&adapter->maps_lock);
2101 out:
2102 if (ret)
2103 kfree(map);
2104 return ret;
2105 }
2106
2107 static int kvm_s390_adapter_unmap(struct kvm *kvm, unsigned int id, __u64 addr)
2108 {
2109 struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
2110 struct s390_map_info *map, *tmp;
2111 int found = 0;
2112
2113 if (!adapter || !addr)
2114 return -EINVAL;
2115
2116 down_write(&adapter->maps_lock);
2117 list_for_each_entry_safe(map, tmp, &adapter->maps, list) {
2118 if (map->guest_addr == addr) {
2119 found = 1;
2120 atomic_dec(&adapter->nr_maps);
2121 list_del(&map->list);
2122 put_page(map->page);
2123 kfree(map);
2124 break;
2125 }
2126 }
2127 up_write(&adapter->maps_lock);
2128
2129 return found ? 0 : -EINVAL;
2130 }
2131
2132 void kvm_s390_destroy_adapters(struct kvm *kvm)
2133 {
2134 int i;
2135 struct s390_map_info *map, *tmp;
2136
2137 for (i = 0; i < MAX_S390_IO_ADAPTERS; i++) {
2138 if (!kvm->arch.adapters[i])
2139 continue;
2140 list_for_each_entry_safe(map, tmp,
2141 &kvm->arch.adapters[i]->maps, list) {
2142 list_del(&map->list);
2143 put_page(map->page);
2144 kfree(map);
2145 }
2146 kfree(kvm->arch.adapters[i]);
2147 }
2148 }
2149
2150 static int modify_io_adapter(struct kvm_device *dev,
2151 struct kvm_device_attr *attr)
2152 {
2153 struct kvm_s390_io_adapter_req req;
2154 struct s390_io_adapter *adapter;
2155 int ret;
2156
2157 if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
2158 return -EFAULT;
2159
2160 adapter = get_io_adapter(dev->kvm, req.id);
2161 if (!adapter)
2162 return -EINVAL;
2163 switch (req.type) {
2164 case KVM_S390_IO_ADAPTER_MASK:
2165 ret = kvm_s390_mask_adapter(dev->kvm, req.id, req.mask);
2166 if (ret > 0)
2167 ret = 0;
2168 break;
2169 case KVM_S390_IO_ADAPTER_MAP:
2170 ret = kvm_s390_adapter_map(dev->kvm, req.id, req.addr);
2171 break;
2172 case KVM_S390_IO_ADAPTER_UNMAP:
2173 ret = kvm_s390_adapter_unmap(dev->kvm, req.id, req.addr);
2174 break;
2175 default:
2176 ret = -EINVAL;
2177 }
2178
2179 return ret;
2180 }
2181
2182 static int clear_io_irq(struct kvm *kvm, struct kvm_device_attr *attr)
2183
2184 {
2185 const u64 isc_mask = 0xffUL << 24; /* all iscs set */
2186 u32 schid;
2187
2188 if (attr->flags)
2189 return -EINVAL;
2190 if (attr->attr != sizeof(schid))
2191 return -EINVAL;
2192 if (copy_from_user(&schid, (void __user *) attr->addr, sizeof(schid)))
2193 return -EFAULT;
2194 if (!schid)
2195 return -EINVAL;
2196 kfree(kvm_s390_get_io_int(kvm, isc_mask, schid));
2197 /*
2198 * If userspace is conforming to the architecture, we can have at most
2199 * one pending I/O interrupt per subchannel, so this is effectively a
2200 * clear all.
2201 */
2202 return 0;
2203 }
2204
2205 static int modify_ais_mode(struct kvm *kvm, struct kvm_device_attr *attr)
2206 {
2207 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2208 struct kvm_s390_ais_req req;
2209 int ret = 0;
2210
2211 if (!test_kvm_facility(kvm, 72))
2212 return -ENOTSUPP;
2213
2214 if (copy_from_user(&req, (void __user *)attr->addr, sizeof(req)))
2215 return -EFAULT;
2216
2217 if (req.isc > MAX_ISC)
2218 return -EINVAL;
2219
2220 trace_kvm_s390_modify_ais_mode(req.isc,
2221 (fi->simm & AIS_MODE_MASK(req.isc)) ?
2222 (fi->nimm & AIS_MODE_MASK(req.isc)) ?
2223 2 : KVM_S390_AIS_MODE_SINGLE :
2224 KVM_S390_AIS_MODE_ALL, req.mode);
2225
2226 mutex_lock(&fi->ais_lock);
2227 switch (req.mode) {
2228 case KVM_S390_AIS_MODE_ALL:
2229 fi->simm &= ~AIS_MODE_MASK(req.isc);
2230 fi->nimm &= ~AIS_MODE_MASK(req.isc);
2231 break;
2232 case KVM_S390_AIS_MODE_SINGLE:
2233 fi->simm |= AIS_MODE_MASK(req.isc);
2234 fi->nimm &= ~AIS_MODE_MASK(req.isc);
2235 break;
2236 default:
2237 ret = -EINVAL;
2238 }
2239 mutex_unlock(&fi->ais_lock);
2240
2241 return ret;
2242 }
2243
2244 static int kvm_s390_inject_airq(struct kvm *kvm,
2245 struct s390_io_adapter *adapter)
2246 {
2247 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2248 struct kvm_s390_interrupt s390int = {
2249 .type = KVM_S390_INT_IO(1, 0, 0, 0),
2250 .parm = 0,
2251 .parm64 = (adapter->isc << 27) | 0x80000000,
2252 };
2253 int ret = 0;
2254
2255 if (!test_kvm_facility(kvm, 72) || !adapter->suppressible)
2256 return kvm_s390_inject_vm(kvm, &s390int);
2257
2258 mutex_lock(&fi->ais_lock);
2259 if (fi->nimm & AIS_MODE_MASK(adapter->isc)) {
2260 trace_kvm_s390_airq_suppressed(adapter->id, adapter->isc);
2261 goto out;
2262 }
2263
2264 ret = kvm_s390_inject_vm(kvm, &s390int);
2265 if (!ret && (fi->simm & AIS_MODE_MASK(adapter->isc))) {
2266 fi->nimm |= AIS_MODE_MASK(adapter->isc);
2267 trace_kvm_s390_modify_ais_mode(adapter->isc,
2268 KVM_S390_AIS_MODE_SINGLE, 2);
2269 }
2270 out:
2271 mutex_unlock(&fi->ais_lock);
2272 return ret;
2273 }
2274
2275 static int flic_inject_airq(struct kvm *kvm, struct kvm_device_attr *attr)
2276 {
2277 unsigned int id = attr->attr;
2278 struct s390_io_adapter *adapter = get_io_adapter(kvm, id);
2279
2280 if (!adapter)
2281 return -EINVAL;
2282
2283 return kvm_s390_inject_airq(kvm, adapter);
2284 }
2285
2286 static int flic_ais_mode_set_all(struct kvm *kvm, struct kvm_device_attr *attr)
2287 {
2288 struct kvm_s390_float_interrupt *fi = &kvm->arch.float_int;
2289 struct kvm_s390_ais_all ais;
2290
2291 if (!test_kvm_facility(kvm, 72))
2292 return -ENOTSUPP;
2293
2294 if (copy_from_user(&ais, (void __user *)attr->addr, sizeof(ais)))
2295 return -EFAULT;
2296
2297 mutex_lock(&fi->ais_lock);
2298 fi->simm = ais.simm;
2299 fi->nimm = ais.nimm;
2300 mutex_unlock(&fi->ais_lock);
2301
2302 return 0;
2303 }
2304
2305 static int flic_set_attr(struct kvm_device *dev, struct kvm_device_attr *attr)
2306 {
2307 int r = 0;
2308 unsigned int i;
2309 struct kvm_vcpu *vcpu;
2310
2311 switch (attr->group) {
2312 case KVM_DEV_FLIC_ENQUEUE:
2313 r = enqueue_floating_irq(dev, attr);
2314 break;
2315 case KVM_DEV_FLIC_CLEAR_IRQS:
2316 kvm_s390_clear_float_irqs(dev->kvm);
2317 break;
2318 case KVM_DEV_FLIC_APF_ENABLE:
2319 dev->kvm->arch.gmap->pfault_enabled = 1;
2320 break;
2321 case KVM_DEV_FLIC_APF_DISABLE_WAIT:
2322 dev->kvm->arch.gmap->pfault_enabled = 0;
2323 /*
2324 * Make sure no async faults are in transition when
2325 * clearing the queues. So we don't need to worry
2326 * about late coming workers.
2327 */
2328 synchronize_srcu(&dev->kvm->srcu);
2329 kvm_for_each_vcpu(i, vcpu, dev->kvm)
2330 kvm_clear_async_pf_completion_queue(vcpu);
2331 break;
2332 case KVM_DEV_FLIC_ADAPTER_REGISTER:
2333 r = register_io_adapter(dev, attr);
2334 break;
2335 case KVM_DEV_FLIC_ADAPTER_MODIFY:
2336 r = modify_io_adapter(dev, attr);
2337 break;
2338 case KVM_DEV_FLIC_CLEAR_IO_IRQ:
2339 r = clear_io_irq(dev->kvm, attr);
2340 break;
2341 case KVM_DEV_FLIC_AISM:
2342 r = modify_ais_mode(dev->kvm, attr);
2343 break;
2344 case KVM_DEV_FLIC_AIRQ_INJECT:
2345 r = flic_inject_airq(dev->kvm, attr);
2346 break;
2347 case KVM_DEV_FLIC_AISM_ALL:
2348 r = flic_ais_mode_set_all(dev->kvm, attr);
2349 break;
2350 default:
2351 r = -EINVAL;
2352 }
2353
2354 return r;
2355 }
2356
2357 static int flic_has_attr(struct kvm_device *dev,
2358 struct kvm_device_attr *attr)
2359 {
2360 switch (attr->group) {
2361 case KVM_DEV_FLIC_GET_ALL_IRQS:
2362 case KVM_DEV_FLIC_ENQUEUE:
2363 case KVM_DEV_FLIC_CLEAR_IRQS:
2364 case KVM_DEV_FLIC_APF_ENABLE:
2365 case KVM_DEV_FLIC_APF_DISABLE_WAIT:
2366 case KVM_DEV_FLIC_ADAPTER_REGISTER:
2367 case KVM_DEV_FLIC_ADAPTER_MODIFY:
2368 case KVM_DEV_FLIC_CLEAR_IO_IRQ:
2369 case KVM_DEV_FLIC_AISM:
2370 case KVM_DEV_FLIC_AIRQ_INJECT:
2371 case KVM_DEV_FLIC_AISM_ALL:
2372 return 0;
2373 }
2374 return -ENXIO;
2375 }
2376
2377 static int flic_create(struct kvm_device *dev, u32 type)
2378 {
2379 if (!dev)
2380 return -EINVAL;
2381 if (dev->kvm->arch.flic)
2382 return -EINVAL;
2383 dev->kvm->arch.flic = dev;
2384 return 0;
2385 }
2386
2387 static void flic_destroy(struct kvm_device *dev)
2388 {
2389 dev->kvm->arch.flic = NULL;
2390 kfree(dev);
2391 }
2392
2393 /* s390 floating irq controller (flic) */
2394 struct kvm_device_ops kvm_flic_ops = {
2395 .name = "kvm-flic",
2396 .get_attr = flic_get_attr,
2397 .set_attr = flic_set_attr,
2398 .has_attr = flic_has_attr,
2399 .create = flic_create,
2400 .destroy = flic_destroy,
2401 };
2402
2403 static unsigned long get_ind_bit(__u64 addr, unsigned long bit_nr, bool swap)
2404 {
2405 unsigned long bit;
2406
2407 bit = bit_nr + (addr % PAGE_SIZE) * 8;
2408
2409 return swap ? (bit ^ (BITS_PER_LONG - 1)) : bit;
2410 }
2411
2412 static struct s390_map_info *get_map_info(struct s390_io_adapter *adapter,
2413 u64 addr)
2414 {
2415 struct s390_map_info *map;
2416
2417 if (!adapter)
2418 return NULL;
2419
2420 list_for_each_entry(map, &adapter->maps, list) {
2421 if (map->guest_addr == addr)
2422 return map;
2423 }
2424 return NULL;
2425 }
2426
2427 static int adapter_indicators_set(struct kvm *kvm,
2428 struct s390_io_adapter *adapter,
2429 struct kvm_s390_adapter_int *adapter_int)
2430 {
2431 unsigned long bit;
2432 int summary_set, idx;
2433 struct s390_map_info *info;
2434 void *map;
2435
2436 info = get_map_info(adapter, adapter_int->ind_addr);
2437 if (!info)
2438 return -1;
2439 map = page_address(info->page);
2440 bit = get_ind_bit(info->addr, adapter_int->ind_offset, adapter->swap);
2441 set_bit(bit, map);
2442 idx = srcu_read_lock(&kvm->srcu);
2443 mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
2444 set_page_dirty_lock(info->page);
2445 info = get_map_info(adapter, adapter_int->summary_addr);
2446 if (!info) {
2447 srcu_read_unlock(&kvm->srcu, idx);
2448 return -1;
2449 }
2450 map = page_address(info->page);
2451 bit = get_ind_bit(info->addr, adapter_int->summary_offset,
2452 adapter->swap);
2453 summary_set = test_and_set_bit(bit, map);
2454 mark_page_dirty(kvm, info->guest_addr >> PAGE_SHIFT);
2455 set_page_dirty_lock(info->page);
2456 srcu_read_unlock(&kvm->srcu, idx);
2457 return summary_set ? 0 : 1;
2458 }
2459
2460 /*
2461 * < 0 - not injected due to error
2462 * = 0 - coalesced, summary indicator already active
2463 * > 0 - injected interrupt
2464 */
2465 static int set_adapter_int(struct kvm_kernel_irq_routing_entry *e,
2466 struct kvm *kvm, int irq_source_id, int level,
2467 bool line_status)
2468 {
2469 int ret;
2470 struct s390_io_adapter *adapter;
2471
2472 /* We're only interested in the 0->1 transition. */
2473 if (!level)
2474 return 0;
2475 adapter = get_io_adapter(kvm, e->adapter.adapter_id);
2476 if (!adapter)
2477 return -1;
2478 down_read(&adapter->maps_lock);
2479 ret = adapter_indicators_set(kvm, adapter, &e->adapter);
2480 up_read(&adapter->maps_lock);
2481 if ((ret > 0) && !adapter->masked) {
2482 ret = kvm_s390_inject_airq(kvm, adapter);
2483 if (ret == 0)
2484 ret = 1;
2485 }
2486 return ret;
2487 }
2488
2489 /*
2490 * Inject the machine check to the guest.
2491 */
2492 void kvm_s390_reinject_machine_check(struct kvm_vcpu *vcpu,
2493 struct mcck_volatile_info *mcck_info)
2494 {
2495 struct kvm_s390_interrupt_info inti;
2496 struct kvm_s390_irq irq;
2497 struct kvm_s390_mchk_info *mchk;
2498 union mci mci;
2499 __u64 cr14 = 0; /* upper bits are not used */
2500 int rc;
2501
2502 mci.val = mcck_info->mcic;
2503 if (mci.sr)
2504 cr14 |= CR14_RECOVERY_SUBMASK;
2505 if (mci.dg)
2506 cr14 |= CR14_DEGRADATION_SUBMASK;
2507 if (mci.w)
2508 cr14 |= CR14_WARNING_SUBMASK;
2509
2510 mchk = mci.ck ? &inti.mchk : &irq.u.mchk;
2511 mchk->cr14 = cr14;
2512 mchk->mcic = mcck_info->mcic;
2513 mchk->ext_damage_code = mcck_info->ext_damage_code;
2514 mchk->failing_storage_address = mcck_info->failing_storage_address;
2515 if (mci.ck) {
2516 /* Inject the floating machine check */
2517 inti.type = KVM_S390_MCHK;
2518 rc = __inject_vm(vcpu->kvm, &inti);
2519 } else {
2520 /* Inject the machine check to specified vcpu */
2521 irq.type = KVM_S390_MCHK;
2522 rc = kvm_s390_inject_vcpu(vcpu, &irq);
2523 }
2524 WARN_ON_ONCE(rc);
2525 }
2526
2527 int kvm_set_routing_entry(struct kvm *kvm,
2528 struct kvm_kernel_irq_routing_entry *e,
2529 const struct kvm_irq_routing_entry *ue)
2530 {
2531 int ret;
2532
2533 switch (ue->type) {
2534 case KVM_IRQ_ROUTING_S390_ADAPTER:
2535 e->set = set_adapter_int;
2536 e->adapter.summary_addr = ue->u.adapter.summary_addr;
2537 e->adapter.ind_addr = ue->u.adapter.ind_addr;
2538 e->adapter.summary_offset = ue->u.adapter.summary_offset;
2539 e->adapter.ind_offset = ue->u.adapter.ind_offset;
2540 e->adapter.adapter_id = ue->u.adapter.adapter_id;
2541 ret = 0;
2542 break;
2543 default:
2544 ret = -EINVAL;
2545 }
2546
2547 return ret;
2548 }
2549
2550 int kvm_set_msi(struct kvm_kernel_irq_routing_entry *e, struct kvm *kvm,
2551 int irq_source_id, int level, bool line_status)
2552 {
2553 return -EINVAL;
2554 }
2555
2556 int kvm_s390_set_irq_state(struct kvm_vcpu *vcpu, void __user *irqstate, int len)
2557 {
2558 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2559 struct kvm_s390_irq *buf;
2560 int r = 0;
2561 int n;
2562
2563 buf = vmalloc(len);
2564 if (!buf)
2565 return -ENOMEM;
2566
2567 if (copy_from_user((void *) buf, irqstate, len)) {
2568 r = -EFAULT;
2569 goto out_free;
2570 }
2571
2572 /*
2573 * Don't allow setting the interrupt state
2574 * when there are already interrupts pending
2575 */
2576 spin_lock(&li->lock);
2577 if (li->pending_irqs) {
2578 r = -EBUSY;
2579 goto out_unlock;
2580 }
2581
2582 for (n = 0; n < len / sizeof(*buf); n++) {
2583 r = do_inject_vcpu(vcpu, &buf[n]);
2584 if (r)
2585 break;
2586 }
2587
2588 out_unlock:
2589 spin_unlock(&li->lock);
2590 out_free:
2591 vfree(buf);
2592
2593 return r;
2594 }
2595
2596 static void store_local_irq(struct kvm_s390_local_interrupt *li,
2597 struct kvm_s390_irq *irq,
2598 unsigned long irq_type)
2599 {
2600 switch (irq_type) {
2601 case IRQ_PEND_MCHK_EX:
2602 case IRQ_PEND_MCHK_REP:
2603 irq->type = KVM_S390_MCHK;
2604 irq->u.mchk = li->irq.mchk;
2605 break;
2606 case IRQ_PEND_PROG:
2607 irq->type = KVM_S390_PROGRAM_INT;
2608 irq->u.pgm = li->irq.pgm;
2609 break;
2610 case IRQ_PEND_PFAULT_INIT:
2611 irq->type = KVM_S390_INT_PFAULT_INIT;
2612 irq->u.ext = li->irq.ext;
2613 break;
2614 case IRQ_PEND_EXT_EXTERNAL:
2615 irq->type = KVM_S390_INT_EXTERNAL_CALL;
2616 irq->u.extcall = li->irq.extcall;
2617 break;
2618 case IRQ_PEND_EXT_CLOCK_COMP:
2619 irq->type = KVM_S390_INT_CLOCK_COMP;
2620 break;
2621 case IRQ_PEND_EXT_CPU_TIMER:
2622 irq->type = KVM_S390_INT_CPU_TIMER;
2623 break;
2624 case IRQ_PEND_SIGP_STOP:
2625 irq->type = KVM_S390_SIGP_STOP;
2626 irq->u.stop = li->irq.stop;
2627 break;
2628 case IRQ_PEND_RESTART:
2629 irq->type = KVM_S390_RESTART;
2630 break;
2631 case IRQ_PEND_SET_PREFIX:
2632 irq->type = KVM_S390_SIGP_SET_PREFIX;
2633 irq->u.prefix = li->irq.prefix;
2634 break;
2635 }
2636 }
2637
2638 int kvm_s390_get_irq_state(struct kvm_vcpu *vcpu, __u8 __user *buf, int len)
2639 {
2640 int scn;
2641 unsigned long sigp_emerg_pending[BITS_TO_LONGS(KVM_MAX_VCPUS)];
2642 struct kvm_s390_local_interrupt *li = &vcpu->arch.local_int;
2643 unsigned long pending_irqs;
2644 struct kvm_s390_irq irq;
2645 unsigned long irq_type;
2646 int cpuaddr;
2647 int n = 0;
2648
2649 spin_lock(&li->lock);
2650 pending_irqs = li->pending_irqs;
2651 memcpy(&sigp_emerg_pending, &li->sigp_emerg_pending,
2652 sizeof(sigp_emerg_pending));
2653 spin_unlock(&li->lock);
2654
2655 for_each_set_bit(irq_type, &pending_irqs, IRQ_PEND_COUNT) {
2656 memset(&irq, 0, sizeof(irq));
2657 if (irq_type == IRQ_PEND_EXT_EMERGENCY)
2658 continue;
2659 if (n + sizeof(irq) > len)
2660 return -ENOBUFS;
2661 store_local_irq(&vcpu->arch.local_int, &irq, irq_type);
2662 if (copy_to_user(&buf[n], &irq, sizeof(irq)))
2663 return -EFAULT;
2664 n += sizeof(irq);
2665 }
2666
2667 if (test_bit(IRQ_PEND_EXT_EMERGENCY, &pending_irqs)) {
2668 for_each_set_bit(cpuaddr, sigp_emerg_pending, KVM_MAX_VCPUS) {
2669 memset(&irq, 0, sizeof(irq));
2670 if (n + sizeof(irq) > len)
2671 return -ENOBUFS;
2672 irq.type = KVM_S390_INT_EMERGENCY;
2673 irq.u.emerg.code = cpuaddr;
2674 if (copy_to_user(&buf[n], &irq, sizeof(irq)))
2675 return -EFAULT;
2676 n += sizeof(irq);
2677 }
2678 }
2679
2680 if (sca_ext_call_pending(vcpu, &scn)) {
2681 if (n + sizeof(irq) > len)
2682 return -ENOBUFS;
2683 memset(&irq, 0, sizeof(irq));
2684 irq.type = KVM_S390_INT_EXTERNAL_CALL;
2685 irq.u.extcall.code = scn;
2686 if (copy_to_user(&buf[n], &irq, sizeof(irq)))
2687 return -EFAULT;
2688 n += sizeof(irq);
2689 }
2690
2691 return n;
2692 }