]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/s390/kvm/kvm-s390.c
KVM: s390: handle access registers in the run ioctl not in vcpu_put/load
[mirror_ubuntu-artful-kernel.git] / arch / s390 / kvm / kvm-s390.c
1 /*
2 * hosting zSeries kernel virtual machines
3 *
4 * Copyright IBM Corp. 2008, 2009
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License (version 2 only)
8 * as published by the Free Software Foundation.
9 *
10 * Author(s): Carsten Otte <cotte@de.ibm.com>
11 * Christian Borntraeger <borntraeger@de.ibm.com>
12 * Heiko Carstens <heiko.carstens@de.ibm.com>
13 * Christian Ehrhardt <ehrhardt@de.ibm.com>
14 * Jason J. Herne <jjherne@us.ibm.com>
15 */
16
17 #include <linux/compiler.h>
18 #include <linux/err.h>
19 #include <linux/fs.h>
20 #include <linux/hrtimer.h>
21 #include <linux/init.h>
22 #include <linux/kvm.h>
23 #include <linux/kvm_host.h>
24 #include <linux/mman.h>
25 #include <linux/module.h>
26 #include <linux/random.h>
27 #include <linux/slab.h>
28 #include <linux/timer.h>
29 #include <linux/vmalloc.h>
30 #include <linux/bitmap.h>
31 #include <asm/asm-offsets.h>
32 #include <asm/lowcore.h>
33 #include <asm/stp.h>
34 #include <asm/pgtable.h>
35 #include <asm/gmap.h>
36 #include <asm/nmi.h>
37 #include <asm/switch_to.h>
38 #include <asm/isc.h>
39 #include <asm/sclp.h>
40 #include <asm/cpacf.h>
41 #include <asm/timex.h>
42 #include "kvm-s390.h"
43 #include "gaccess.h"
44
45 #define KMSG_COMPONENT "kvm-s390"
46 #undef pr_fmt
47 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
48
49 #define CREATE_TRACE_POINTS
50 #include "trace.h"
51 #include "trace-s390.h"
52
53 #define MEM_OP_MAX_SIZE 65536 /* Maximum transfer size for KVM_S390_MEM_OP */
54 #define LOCAL_IRQS 32
55 #define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
56 (KVM_MAX_VCPUS + LOCAL_IRQS))
57
58 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
59
60 struct kvm_stats_debugfs_item debugfs_entries[] = {
61 { "userspace_handled", VCPU_STAT(exit_userspace) },
62 { "exit_null", VCPU_STAT(exit_null) },
63 { "exit_validity", VCPU_STAT(exit_validity) },
64 { "exit_stop_request", VCPU_STAT(exit_stop_request) },
65 { "exit_external_request", VCPU_STAT(exit_external_request) },
66 { "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
67 { "exit_instruction", VCPU_STAT(exit_instruction) },
68 { "exit_pei", VCPU_STAT(exit_pei) },
69 { "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
70 { "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
71 { "exit_operation_exception", VCPU_STAT(exit_operation_exception) },
72 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
73 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
74 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
75 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
76 { "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
77 { "instruction_lctl", VCPU_STAT(instruction_lctl) },
78 { "instruction_stctl", VCPU_STAT(instruction_stctl) },
79 { "instruction_stctg", VCPU_STAT(instruction_stctg) },
80 { "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
81 { "deliver_external_call", VCPU_STAT(deliver_external_call) },
82 { "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
83 { "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
84 { "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
85 { "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
86 { "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
87 { "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
88 { "exit_wait_state", VCPU_STAT(exit_wait_state) },
89 { "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
90 { "instruction_stidp", VCPU_STAT(instruction_stidp) },
91 { "instruction_spx", VCPU_STAT(instruction_spx) },
92 { "instruction_stpx", VCPU_STAT(instruction_stpx) },
93 { "instruction_stap", VCPU_STAT(instruction_stap) },
94 { "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
95 { "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
96 { "instruction_stsch", VCPU_STAT(instruction_stsch) },
97 { "instruction_chsc", VCPU_STAT(instruction_chsc) },
98 { "instruction_essa", VCPU_STAT(instruction_essa) },
99 { "instruction_stsi", VCPU_STAT(instruction_stsi) },
100 { "instruction_stfl", VCPU_STAT(instruction_stfl) },
101 { "instruction_tprot", VCPU_STAT(instruction_tprot) },
102 { "instruction_sthyi", VCPU_STAT(instruction_sthyi) },
103 { "instruction_sie", VCPU_STAT(instruction_sie) },
104 { "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
105 { "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
106 { "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
107 { "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
108 { "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
109 { "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
110 { "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
111 { "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
112 { "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
113 { "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
114 { "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
115 { "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
116 { "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
117 { "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
118 { "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
119 { "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
120 { "diagnose_10", VCPU_STAT(diagnose_10) },
121 { "diagnose_44", VCPU_STAT(diagnose_44) },
122 { "diagnose_9c", VCPU_STAT(diagnose_9c) },
123 { "diagnose_258", VCPU_STAT(diagnose_258) },
124 { "diagnose_308", VCPU_STAT(diagnose_308) },
125 { "diagnose_500", VCPU_STAT(diagnose_500) },
126 { NULL }
127 };
128
129 /* allow nested virtualization in KVM (if enabled by user space) */
130 static int nested;
131 module_param(nested, int, S_IRUGO);
132 MODULE_PARM_DESC(nested, "Nested virtualization support");
133
134 /* upper facilities limit for kvm */
135 unsigned long kvm_s390_fac_list_mask[16] = { FACILITIES_KVM };
136
137 unsigned long kvm_s390_fac_list_mask_size(void)
138 {
139 BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
140 return ARRAY_SIZE(kvm_s390_fac_list_mask);
141 }
142
143 /* available cpu features supported by kvm */
144 static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
145 /* available subfunctions indicated via query / "test bit" */
146 static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc;
147
148 static struct gmap_notifier gmap_notifier;
149 static struct gmap_notifier vsie_gmap_notifier;
150 debug_info_t *kvm_s390_dbf;
151
152 /* Section: not file related */
153 int kvm_arch_hardware_enable(void)
154 {
155 /* every s390 is virtualization enabled ;-) */
156 return 0;
157 }
158
159 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
160 unsigned long end);
161
162 /*
163 * This callback is executed during stop_machine(). All CPUs are therefore
164 * temporarily stopped. In order not to change guest behavior, we have to
165 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
166 * so a CPU won't be stopped while calculating with the epoch.
167 */
168 static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
169 void *v)
170 {
171 struct kvm *kvm;
172 struct kvm_vcpu *vcpu;
173 int i;
174 unsigned long long *delta = v;
175
176 list_for_each_entry(kvm, &vm_list, vm_list) {
177 kvm->arch.epoch -= *delta;
178 kvm_for_each_vcpu(i, vcpu, kvm) {
179 vcpu->arch.sie_block->epoch -= *delta;
180 if (vcpu->arch.cputm_enabled)
181 vcpu->arch.cputm_start += *delta;
182 if (vcpu->arch.vsie_block)
183 vcpu->arch.vsie_block->epoch -= *delta;
184 }
185 }
186 return NOTIFY_OK;
187 }
188
189 static struct notifier_block kvm_clock_notifier = {
190 .notifier_call = kvm_clock_sync,
191 };
192
193 int kvm_arch_hardware_setup(void)
194 {
195 gmap_notifier.notifier_call = kvm_gmap_notifier;
196 gmap_register_pte_notifier(&gmap_notifier);
197 vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier;
198 gmap_register_pte_notifier(&vsie_gmap_notifier);
199 atomic_notifier_chain_register(&s390_epoch_delta_notifier,
200 &kvm_clock_notifier);
201 return 0;
202 }
203
204 void kvm_arch_hardware_unsetup(void)
205 {
206 gmap_unregister_pte_notifier(&gmap_notifier);
207 gmap_unregister_pte_notifier(&vsie_gmap_notifier);
208 atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
209 &kvm_clock_notifier);
210 }
211
212 static void allow_cpu_feat(unsigned long nr)
213 {
214 set_bit_inv(nr, kvm_s390_available_cpu_feat);
215 }
216
217 static inline int plo_test_bit(unsigned char nr)
218 {
219 register unsigned long r0 asm("0") = (unsigned long) nr | 0x100;
220 int cc = 3; /* subfunction not available */
221
222 asm volatile(
223 /* Parameter registers are ignored for "test bit" */
224 " plo 0,0,0,0(0)\n"
225 " ipm %0\n"
226 " srl %0,28\n"
227 : "=d" (cc)
228 : "d" (r0)
229 : "cc");
230 return cc == 0;
231 }
232
233 static void kvm_s390_cpu_feat_init(void)
234 {
235 int i;
236
237 for (i = 0; i < 256; ++i) {
238 if (plo_test_bit(i))
239 kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7);
240 }
241
242 if (test_facility(28)) /* TOD-clock steering */
243 ptff(kvm_s390_available_subfunc.ptff,
244 sizeof(kvm_s390_available_subfunc.ptff),
245 PTFF_QAF);
246
247 if (test_facility(17)) { /* MSA */
248 __cpacf_query(CPACF_KMAC, (cpacf_mask_t *)
249 kvm_s390_available_subfunc.kmac);
250 __cpacf_query(CPACF_KMC, (cpacf_mask_t *)
251 kvm_s390_available_subfunc.kmc);
252 __cpacf_query(CPACF_KM, (cpacf_mask_t *)
253 kvm_s390_available_subfunc.km);
254 __cpacf_query(CPACF_KIMD, (cpacf_mask_t *)
255 kvm_s390_available_subfunc.kimd);
256 __cpacf_query(CPACF_KLMD, (cpacf_mask_t *)
257 kvm_s390_available_subfunc.klmd);
258 }
259 if (test_facility(76)) /* MSA3 */
260 __cpacf_query(CPACF_PCKMO, (cpacf_mask_t *)
261 kvm_s390_available_subfunc.pckmo);
262 if (test_facility(77)) { /* MSA4 */
263 __cpacf_query(CPACF_KMCTR, (cpacf_mask_t *)
264 kvm_s390_available_subfunc.kmctr);
265 __cpacf_query(CPACF_KMF, (cpacf_mask_t *)
266 kvm_s390_available_subfunc.kmf);
267 __cpacf_query(CPACF_KMO, (cpacf_mask_t *)
268 kvm_s390_available_subfunc.kmo);
269 __cpacf_query(CPACF_PCC, (cpacf_mask_t *)
270 kvm_s390_available_subfunc.pcc);
271 }
272 if (test_facility(57)) /* MSA5 */
273 __cpacf_query(CPACF_PPNO, (cpacf_mask_t *)
274 kvm_s390_available_subfunc.ppno);
275
276 if (MACHINE_HAS_ESOP)
277 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
278 /*
279 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow),
280 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing).
281 */
282 if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao ||
283 !test_facility(3) || !nested)
284 return;
285 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2);
286 if (sclp.has_64bscao)
287 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO);
288 if (sclp.has_siif)
289 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF);
290 if (sclp.has_gpere)
291 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE);
292 if (sclp.has_gsls)
293 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS);
294 if (sclp.has_ib)
295 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB);
296 if (sclp.has_cei)
297 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI);
298 if (sclp.has_ibs)
299 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS);
300 /*
301 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make
302 * all skey handling functions read/set the skey from the PGSTE
303 * instead of the real storage key.
304 *
305 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make
306 * pages being detected as preserved although they are resident.
307 *
308 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will
309 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY.
310 *
311 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and
312 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be
313 * correctly shadowed. We can do that for the PGSTE but not for PTE.I.
314 *
315 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We
316 * cannot easily shadow the SCA because of the ipte lock.
317 */
318 }
319
320 int kvm_arch_init(void *opaque)
321 {
322 kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
323 if (!kvm_s390_dbf)
324 return -ENOMEM;
325
326 if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
327 debug_unregister(kvm_s390_dbf);
328 return -ENOMEM;
329 }
330
331 kvm_s390_cpu_feat_init();
332
333 /* Register floating interrupt controller interface. */
334 return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
335 }
336
337 void kvm_arch_exit(void)
338 {
339 debug_unregister(kvm_s390_dbf);
340 }
341
342 /* Section: device related */
343 long kvm_arch_dev_ioctl(struct file *filp,
344 unsigned int ioctl, unsigned long arg)
345 {
346 if (ioctl == KVM_S390_ENABLE_SIE)
347 return s390_enable_sie();
348 return -EINVAL;
349 }
350
351 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
352 {
353 int r;
354
355 switch (ext) {
356 case KVM_CAP_S390_PSW:
357 case KVM_CAP_S390_GMAP:
358 case KVM_CAP_SYNC_MMU:
359 #ifdef CONFIG_KVM_S390_UCONTROL
360 case KVM_CAP_S390_UCONTROL:
361 #endif
362 case KVM_CAP_ASYNC_PF:
363 case KVM_CAP_SYNC_REGS:
364 case KVM_CAP_ONE_REG:
365 case KVM_CAP_ENABLE_CAP:
366 case KVM_CAP_S390_CSS_SUPPORT:
367 case KVM_CAP_IOEVENTFD:
368 case KVM_CAP_DEVICE_CTRL:
369 case KVM_CAP_ENABLE_CAP_VM:
370 case KVM_CAP_S390_IRQCHIP:
371 case KVM_CAP_VM_ATTRIBUTES:
372 case KVM_CAP_MP_STATE:
373 case KVM_CAP_S390_INJECT_IRQ:
374 case KVM_CAP_S390_USER_SIGP:
375 case KVM_CAP_S390_USER_STSI:
376 case KVM_CAP_S390_SKEYS:
377 case KVM_CAP_S390_IRQ_STATE:
378 case KVM_CAP_S390_USER_INSTR0:
379 r = 1;
380 break;
381 case KVM_CAP_S390_MEM_OP:
382 r = MEM_OP_MAX_SIZE;
383 break;
384 case KVM_CAP_NR_VCPUS:
385 case KVM_CAP_MAX_VCPUS:
386 r = KVM_S390_BSCA_CPU_SLOTS;
387 if (!kvm_s390_use_sca_entries())
388 r = KVM_MAX_VCPUS;
389 else if (sclp.has_esca && sclp.has_64bscao)
390 r = KVM_S390_ESCA_CPU_SLOTS;
391 break;
392 case KVM_CAP_NR_MEMSLOTS:
393 r = KVM_USER_MEM_SLOTS;
394 break;
395 case KVM_CAP_S390_COW:
396 r = MACHINE_HAS_ESOP;
397 break;
398 case KVM_CAP_S390_VECTOR_REGISTERS:
399 r = MACHINE_HAS_VX;
400 break;
401 case KVM_CAP_S390_RI:
402 r = test_facility(64);
403 break;
404 default:
405 r = 0;
406 }
407 return r;
408 }
409
410 static void kvm_s390_sync_dirty_log(struct kvm *kvm,
411 struct kvm_memory_slot *memslot)
412 {
413 gfn_t cur_gfn, last_gfn;
414 unsigned long address;
415 struct gmap *gmap = kvm->arch.gmap;
416
417 /* Loop over all guest pages */
418 last_gfn = memslot->base_gfn + memslot->npages;
419 for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
420 address = gfn_to_hva_memslot(memslot, cur_gfn);
421
422 if (test_and_clear_guest_dirty(gmap->mm, address))
423 mark_page_dirty(kvm, cur_gfn);
424 if (fatal_signal_pending(current))
425 return;
426 cond_resched();
427 }
428 }
429
430 /* Section: vm related */
431 static void sca_del_vcpu(struct kvm_vcpu *vcpu);
432
433 /*
434 * Get (and clear) the dirty memory log for a memory slot.
435 */
436 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
437 struct kvm_dirty_log *log)
438 {
439 int r;
440 unsigned long n;
441 struct kvm_memslots *slots;
442 struct kvm_memory_slot *memslot;
443 int is_dirty = 0;
444
445 mutex_lock(&kvm->slots_lock);
446
447 r = -EINVAL;
448 if (log->slot >= KVM_USER_MEM_SLOTS)
449 goto out;
450
451 slots = kvm_memslots(kvm);
452 memslot = id_to_memslot(slots, log->slot);
453 r = -ENOENT;
454 if (!memslot->dirty_bitmap)
455 goto out;
456
457 kvm_s390_sync_dirty_log(kvm, memslot);
458 r = kvm_get_dirty_log(kvm, log, &is_dirty);
459 if (r)
460 goto out;
461
462 /* Clear the dirty log */
463 if (is_dirty) {
464 n = kvm_dirty_bitmap_bytes(memslot);
465 memset(memslot->dirty_bitmap, 0, n);
466 }
467 r = 0;
468 out:
469 mutex_unlock(&kvm->slots_lock);
470 return r;
471 }
472
473 static void icpt_operexc_on_all_vcpus(struct kvm *kvm)
474 {
475 unsigned int i;
476 struct kvm_vcpu *vcpu;
477
478 kvm_for_each_vcpu(i, vcpu, kvm) {
479 kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu);
480 }
481 }
482
483 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
484 {
485 int r;
486
487 if (cap->flags)
488 return -EINVAL;
489
490 switch (cap->cap) {
491 case KVM_CAP_S390_IRQCHIP:
492 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
493 kvm->arch.use_irqchip = 1;
494 r = 0;
495 break;
496 case KVM_CAP_S390_USER_SIGP:
497 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
498 kvm->arch.user_sigp = 1;
499 r = 0;
500 break;
501 case KVM_CAP_S390_VECTOR_REGISTERS:
502 mutex_lock(&kvm->lock);
503 if (kvm->created_vcpus) {
504 r = -EBUSY;
505 } else if (MACHINE_HAS_VX) {
506 set_kvm_facility(kvm->arch.model.fac_mask, 129);
507 set_kvm_facility(kvm->arch.model.fac_list, 129);
508 r = 0;
509 } else
510 r = -EINVAL;
511 mutex_unlock(&kvm->lock);
512 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
513 r ? "(not available)" : "(success)");
514 break;
515 case KVM_CAP_S390_RI:
516 r = -EINVAL;
517 mutex_lock(&kvm->lock);
518 if (kvm->created_vcpus) {
519 r = -EBUSY;
520 } else if (test_facility(64)) {
521 set_kvm_facility(kvm->arch.model.fac_mask, 64);
522 set_kvm_facility(kvm->arch.model.fac_list, 64);
523 r = 0;
524 }
525 mutex_unlock(&kvm->lock);
526 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
527 r ? "(not available)" : "(success)");
528 break;
529 case KVM_CAP_S390_USER_STSI:
530 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
531 kvm->arch.user_stsi = 1;
532 r = 0;
533 break;
534 case KVM_CAP_S390_USER_INSTR0:
535 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0");
536 kvm->arch.user_instr0 = 1;
537 icpt_operexc_on_all_vcpus(kvm);
538 r = 0;
539 break;
540 default:
541 r = -EINVAL;
542 break;
543 }
544 return r;
545 }
546
547 static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
548 {
549 int ret;
550
551 switch (attr->attr) {
552 case KVM_S390_VM_MEM_LIMIT_SIZE:
553 ret = 0;
554 VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
555 kvm->arch.mem_limit);
556 if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
557 ret = -EFAULT;
558 break;
559 default:
560 ret = -ENXIO;
561 break;
562 }
563 return ret;
564 }
565
566 static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
567 {
568 int ret;
569 unsigned int idx;
570 switch (attr->attr) {
571 case KVM_S390_VM_MEM_ENABLE_CMMA:
572 ret = -ENXIO;
573 if (!sclp.has_cmma)
574 break;
575
576 ret = -EBUSY;
577 VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
578 mutex_lock(&kvm->lock);
579 if (!kvm->created_vcpus) {
580 kvm->arch.use_cmma = 1;
581 ret = 0;
582 }
583 mutex_unlock(&kvm->lock);
584 break;
585 case KVM_S390_VM_MEM_CLR_CMMA:
586 ret = -ENXIO;
587 if (!sclp.has_cmma)
588 break;
589 ret = -EINVAL;
590 if (!kvm->arch.use_cmma)
591 break;
592
593 VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
594 mutex_lock(&kvm->lock);
595 idx = srcu_read_lock(&kvm->srcu);
596 s390_reset_cmma(kvm->arch.gmap->mm);
597 srcu_read_unlock(&kvm->srcu, idx);
598 mutex_unlock(&kvm->lock);
599 ret = 0;
600 break;
601 case KVM_S390_VM_MEM_LIMIT_SIZE: {
602 unsigned long new_limit;
603
604 if (kvm_is_ucontrol(kvm))
605 return -EINVAL;
606
607 if (get_user(new_limit, (u64 __user *)attr->addr))
608 return -EFAULT;
609
610 if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
611 new_limit > kvm->arch.mem_limit)
612 return -E2BIG;
613
614 if (!new_limit)
615 return -EINVAL;
616
617 /* gmap_create takes last usable address */
618 if (new_limit != KVM_S390_NO_MEM_LIMIT)
619 new_limit -= 1;
620
621 ret = -EBUSY;
622 mutex_lock(&kvm->lock);
623 if (!kvm->created_vcpus) {
624 /* gmap_create will round the limit up */
625 struct gmap *new = gmap_create(current->mm, new_limit);
626
627 if (!new) {
628 ret = -ENOMEM;
629 } else {
630 gmap_remove(kvm->arch.gmap);
631 new->private = kvm;
632 kvm->arch.gmap = new;
633 ret = 0;
634 }
635 }
636 mutex_unlock(&kvm->lock);
637 VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
638 VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
639 (void *) kvm->arch.gmap->asce);
640 break;
641 }
642 default:
643 ret = -ENXIO;
644 break;
645 }
646 return ret;
647 }
648
649 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);
650
651 static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
652 {
653 struct kvm_vcpu *vcpu;
654 int i;
655
656 if (!test_kvm_facility(kvm, 76))
657 return -EINVAL;
658
659 mutex_lock(&kvm->lock);
660 switch (attr->attr) {
661 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
662 get_random_bytes(
663 kvm->arch.crypto.crycb->aes_wrapping_key_mask,
664 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
665 kvm->arch.crypto.aes_kw = 1;
666 VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
667 break;
668 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
669 get_random_bytes(
670 kvm->arch.crypto.crycb->dea_wrapping_key_mask,
671 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
672 kvm->arch.crypto.dea_kw = 1;
673 VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
674 break;
675 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
676 kvm->arch.crypto.aes_kw = 0;
677 memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
678 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
679 VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
680 break;
681 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
682 kvm->arch.crypto.dea_kw = 0;
683 memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
684 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
685 VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
686 break;
687 default:
688 mutex_unlock(&kvm->lock);
689 return -ENXIO;
690 }
691
692 kvm_for_each_vcpu(i, vcpu, kvm) {
693 kvm_s390_vcpu_crypto_setup(vcpu);
694 exit_sie(vcpu);
695 }
696 mutex_unlock(&kvm->lock);
697 return 0;
698 }
699
700 static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
701 {
702 u8 gtod_high;
703
704 if (copy_from_user(&gtod_high, (void __user *)attr->addr,
705 sizeof(gtod_high)))
706 return -EFAULT;
707
708 if (gtod_high != 0)
709 return -EINVAL;
710 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
711
712 return 0;
713 }
714
715 static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
716 {
717 u64 gtod;
718
719 if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
720 return -EFAULT;
721
722 kvm_s390_set_tod_clock(kvm, gtod);
723 VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod);
724 return 0;
725 }
726
727 static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
728 {
729 int ret;
730
731 if (attr->flags)
732 return -EINVAL;
733
734 switch (attr->attr) {
735 case KVM_S390_VM_TOD_HIGH:
736 ret = kvm_s390_set_tod_high(kvm, attr);
737 break;
738 case KVM_S390_VM_TOD_LOW:
739 ret = kvm_s390_set_tod_low(kvm, attr);
740 break;
741 default:
742 ret = -ENXIO;
743 break;
744 }
745 return ret;
746 }
747
748 static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
749 {
750 u8 gtod_high = 0;
751
752 if (copy_to_user((void __user *)attr->addr, &gtod_high,
753 sizeof(gtod_high)))
754 return -EFAULT;
755 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
756
757 return 0;
758 }
759
760 static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
761 {
762 u64 gtod;
763
764 gtod = kvm_s390_get_tod_clock_fast(kvm);
765 if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
766 return -EFAULT;
767 VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
768
769 return 0;
770 }
771
772 static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
773 {
774 int ret;
775
776 if (attr->flags)
777 return -EINVAL;
778
779 switch (attr->attr) {
780 case KVM_S390_VM_TOD_HIGH:
781 ret = kvm_s390_get_tod_high(kvm, attr);
782 break;
783 case KVM_S390_VM_TOD_LOW:
784 ret = kvm_s390_get_tod_low(kvm, attr);
785 break;
786 default:
787 ret = -ENXIO;
788 break;
789 }
790 return ret;
791 }
792
793 static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
794 {
795 struct kvm_s390_vm_cpu_processor *proc;
796 u16 lowest_ibc, unblocked_ibc;
797 int ret = 0;
798
799 mutex_lock(&kvm->lock);
800 if (kvm->created_vcpus) {
801 ret = -EBUSY;
802 goto out;
803 }
804 proc = kzalloc(sizeof(*proc), GFP_KERNEL);
805 if (!proc) {
806 ret = -ENOMEM;
807 goto out;
808 }
809 if (!copy_from_user(proc, (void __user *)attr->addr,
810 sizeof(*proc))) {
811 kvm->arch.model.cpuid = proc->cpuid;
812 lowest_ibc = sclp.ibc >> 16 & 0xfff;
813 unblocked_ibc = sclp.ibc & 0xfff;
814 if (lowest_ibc && proc->ibc) {
815 if (proc->ibc > unblocked_ibc)
816 kvm->arch.model.ibc = unblocked_ibc;
817 else if (proc->ibc < lowest_ibc)
818 kvm->arch.model.ibc = lowest_ibc;
819 else
820 kvm->arch.model.ibc = proc->ibc;
821 }
822 memcpy(kvm->arch.model.fac_list, proc->fac_list,
823 S390_ARCH_FAC_LIST_SIZE_BYTE);
824 } else
825 ret = -EFAULT;
826 kfree(proc);
827 out:
828 mutex_unlock(&kvm->lock);
829 return ret;
830 }
831
832 static int kvm_s390_set_processor_feat(struct kvm *kvm,
833 struct kvm_device_attr *attr)
834 {
835 struct kvm_s390_vm_cpu_feat data;
836 int ret = -EBUSY;
837
838 if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
839 return -EFAULT;
840 if (!bitmap_subset((unsigned long *) data.feat,
841 kvm_s390_available_cpu_feat,
842 KVM_S390_VM_CPU_FEAT_NR_BITS))
843 return -EINVAL;
844
845 mutex_lock(&kvm->lock);
846 if (!atomic_read(&kvm->online_vcpus)) {
847 bitmap_copy(kvm->arch.cpu_feat, (unsigned long *) data.feat,
848 KVM_S390_VM_CPU_FEAT_NR_BITS);
849 ret = 0;
850 }
851 mutex_unlock(&kvm->lock);
852 return ret;
853 }
854
855 static int kvm_s390_set_processor_subfunc(struct kvm *kvm,
856 struct kvm_device_attr *attr)
857 {
858 /*
859 * Once supported by kernel + hw, we have to store the subfunctions
860 * in kvm->arch and remember that user space configured them.
861 */
862 return -ENXIO;
863 }
864
865 static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
866 {
867 int ret = -ENXIO;
868
869 switch (attr->attr) {
870 case KVM_S390_VM_CPU_PROCESSOR:
871 ret = kvm_s390_set_processor(kvm, attr);
872 break;
873 case KVM_S390_VM_CPU_PROCESSOR_FEAT:
874 ret = kvm_s390_set_processor_feat(kvm, attr);
875 break;
876 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
877 ret = kvm_s390_set_processor_subfunc(kvm, attr);
878 break;
879 }
880 return ret;
881 }
882
883 static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
884 {
885 struct kvm_s390_vm_cpu_processor *proc;
886 int ret = 0;
887
888 proc = kzalloc(sizeof(*proc), GFP_KERNEL);
889 if (!proc) {
890 ret = -ENOMEM;
891 goto out;
892 }
893 proc->cpuid = kvm->arch.model.cpuid;
894 proc->ibc = kvm->arch.model.ibc;
895 memcpy(&proc->fac_list, kvm->arch.model.fac_list,
896 S390_ARCH_FAC_LIST_SIZE_BYTE);
897 if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
898 ret = -EFAULT;
899 kfree(proc);
900 out:
901 return ret;
902 }
903
904 static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
905 {
906 struct kvm_s390_vm_cpu_machine *mach;
907 int ret = 0;
908
909 mach = kzalloc(sizeof(*mach), GFP_KERNEL);
910 if (!mach) {
911 ret = -ENOMEM;
912 goto out;
913 }
914 get_cpu_id((struct cpuid *) &mach->cpuid);
915 mach->ibc = sclp.ibc;
916 memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
917 S390_ARCH_FAC_LIST_SIZE_BYTE);
918 memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
919 S390_ARCH_FAC_LIST_SIZE_BYTE);
920 if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
921 ret = -EFAULT;
922 kfree(mach);
923 out:
924 return ret;
925 }
926
927 static int kvm_s390_get_processor_feat(struct kvm *kvm,
928 struct kvm_device_attr *attr)
929 {
930 struct kvm_s390_vm_cpu_feat data;
931
932 bitmap_copy((unsigned long *) data.feat, kvm->arch.cpu_feat,
933 KVM_S390_VM_CPU_FEAT_NR_BITS);
934 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
935 return -EFAULT;
936 return 0;
937 }
938
939 static int kvm_s390_get_machine_feat(struct kvm *kvm,
940 struct kvm_device_attr *attr)
941 {
942 struct kvm_s390_vm_cpu_feat data;
943
944 bitmap_copy((unsigned long *) data.feat,
945 kvm_s390_available_cpu_feat,
946 KVM_S390_VM_CPU_FEAT_NR_BITS);
947 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
948 return -EFAULT;
949 return 0;
950 }
951
952 static int kvm_s390_get_processor_subfunc(struct kvm *kvm,
953 struct kvm_device_attr *attr)
954 {
955 /*
956 * Once we can actually configure subfunctions (kernel + hw support),
957 * we have to check if they were already set by user space, if so copy
958 * them from kvm->arch.
959 */
960 return -ENXIO;
961 }
962
963 static int kvm_s390_get_machine_subfunc(struct kvm *kvm,
964 struct kvm_device_attr *attr)
965 {
966 if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc,
967 sizeof(struct kvm_s390_vm_cpu_subfunc)))
968 return -EFAULT;
969 return 0;
970 }
971 static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
972 {
973 int ret = -ENXIO;
974
975 switch (attr->attr) {
976 case KVM_S390_VM_CPU_PROCESSOR:
977 ret = kvm_s390_get_processor(kvm, attr);
978 break;
979 case KVM_S390_VM_CPU_MACHINE:
980 ret = kvm_s390_get_machine(kvm, attr);
981 break;
982 case KVM_S390_VM_CPU_PROCESSOR_FEAT:
983 ret = kvm_s390_get_processor_feat(kvm, attr);
984 break;
985 case KVM_S390_VM_CPU_MACHINE_FEAT:
986 ret = kvm_s390_get_machine_feat(kvm, attr);
987 break;
988 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
989 ret = kvm_s390_get_processor_subfunc(kvm, attr);
990 break;
991 case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
992 ret = kvm_s390_get_machine_subfunc(kvm, attr);
993 break;
994 }
995 return ret;
996 }
997
998 static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
999 {
1000 int ret;
1001
1002 switch (attr->group) {
1003 case KVM_S390_VM_MEM_CTRL:
1004 ret = kvm_s390_set_mem_control(kvm, attr);
1005 break;
1006 case KVM_S390_VM_TOD:
1007 ret = kvm_s390_set_tod(kvm, attr);
1008 break;
1009 case KVM_S390_VM_CPU_MODEL:
1010 ret = kvm_s390_set_cpu_model(kvm, attr);
1011 break;
1012 case KVM_S390_VM_CRYPTO:
1013 ret = kvm_s390_vm_set_crypto(kvm, attr);
1014 break;
1015 default:
1016 ret = -ENXIO;
1017 break;
1018 }
1019
1020 return ret;
1021 }
1022
1023 static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1024 {
1025 int ret;
1026
1027 switch (attr->group) {
1028 case KVM_S390_VM_MEM_CTRL:
1029 ret = kvm_s390_get_mem_control(kvm, attr);
1030 break;
1031 case KVM_S390_VM_TOD:
1032 ret = kvm_s390_get_tod(kvm, attr);
1033 break;
1034 case KVM_S390_VM_CPU_MODEL:
1035 ret = kvm_s390_get_cpu_model(kvm, attr);
1036 break;
1037 default:
1038 ret = -ENXIO;
1039 break;
1040 }
1041
1042 return ret;
1043 }
1044
1045 static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1046 {
1047 int ret;
1048
1049 switch (attr->group) {
1050 case KVM_S390_VM_MEM_CTRL:
1051 switch (attr->attr) {
1052 case KVM_S390_VM_MEM_ENABLE_CMMA:
1053 case KVM_S390_VM_MEM_CLR_CMMA:
1054 ret = sclp.has_cmma ? 0 : -ENXIO;
1055 break;
1056 case KVM_S390_VM_MEM_LIMIT_SIZE:
1057 ret = 0;
1058 break;
1059 default:
1060 ret = -ENXIO;
1061 break;
1062 }
1063 break;
1064 case KVM_S390_VM_TOD:
1065 switch (attr->attr) {
1066 case KVM_S390_VM_TOD_LOW:
1067 case KVM_S390_VM_TOD_HIGH:
1068 ret = 0;
1069 break;
1070 default:
1071 ret = -ENXIO;
1072 break;
1073 }
1074 break;
1075 case KVM_S390_VM_CPU_MODEL:
1076 switch (attr->attr) {
1077 case KVM_S390_VM_CPU_PROCESSOR:
1078 case KVM_S390_VM_CPU_MACHINE:
1079 case KVM_S390_VM_CPU_PROCESSOR_FEAT:
1080 case KVM_S390_VM_CPU_MACHINE_FEAT:
1081 case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
1082 ret = 0;
1083 break;
1084 /* configuring subfunctions is not supported yet */
1085 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1086 default:
1087 ret = -ENXIO;
1088 break;
1089 }
1090 break;
1091 case KVM_S390_VM_CRYPTO:
1092 switch (attr->attr) {
1093 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
1094 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
1095 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
1096 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
1097 ret = 0;
1098 break;
1099 default:
1100 ret = -ENXIO;
1101 break;
1102 }
1103 break;
1104 default:
1105 ret = -ENXIO;
1106 break;
1107 }
1108
1109 return ret;
1110 }
1111
1112 static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
1113 {
1114 uint8_t *keys;
1115 uint64_t hva;
1116 int i, r = 0;
1117
1118 if (args->flags != 0)
1119 return -EINVAL;
1120
1121 /* Is this guest using storage keys? */
1122 if (!mm_use_skey(current->mm))
1123 return KVM_S390_GET_SKEYS_NONE;
1124
1125 /* Enforce sane limit on memory allocation */
1126 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
1127 return -EINVAL;
1128
1129 keys = kmalloc_array(args->count, sizeof(uint8_t),
1130 GFP_KERNEL | __GFP_NOWARN);
1131 if (!keys)
1132 keys = vmalloc(sizeof(uint8_t) * args->count);
1133 if (!keys)
1134 return -ENOMEM;
1135
1136 down_read(&current->mm->mmap_sem);
1137 for (i = 0; i < args->count; i++) {
1138 hva = gfn_to_hva(kvm, args->start_gfn + i);
1139 if (kvm_is_error_hva(hva)) {
1140 r = -EFAULT;
1141 break;
1142 }
1143
1144 r = get_guest_storage_key(current->mm, hva, &keys[i]);
1145 if (r)
1146 break;
1147 }
1148 up_read(&current->mm->mmap_sem);
1149
1150 if (!r) {
1151 r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
1152 sizeof(uint8_t) * args->count);
1153 if (r)
1154 r = -EFAULT;
1155 }
1156
1157 kvfree(keys);
1158 return r;
1159 }
1160
1161 static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
1162 {
1163 uint8_t *keys;
1164 uint64_t hva;
1165 int i, r = 0;
1166
1167 if (args->flags != 0)
1168 return -EINVAL;
1169
1170 /* Enforce sane limit on memory allocation */
1171 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
1172 return -EINVAL;
1173
1174 keys = kmalloc_array(args->count, sizeof(uint8_t),
1175 GFP_KERNEL | __GFP_NOWARN);
1176 if (!keys)
1177 keys = vmalloc(sizeof(uint8_t) * args->count);
1178 if (!keys)
1179 return -ENOMEM;
1180
1181 r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
1182 sizeof(uint8_t) * args->count);
1183 if (r) {
1184 r = -EFAULT;
1185 goto out;
1186 }
1187
1188 /* Enable storage key handling for the guest */
1189 r = s390_enable_skey();
1190 if (r)
1191 goto out;
1192
1193 down_read(&current->mm->mmap_sem);
1194 for (i = 0; i < args->count; i++) {
1195 hva = gfn_to_hva(kvm, args->start_gfn + i);
1196 if (kvm_is_error_hva(hva)) {
1197 r = -EFAULT;
1198 break;
1199 }
1200
1201 /* Lowest order bit is reserved */
1202 if (keys[i] & 0x01) {
1203 r = -EINVAL;
1204 break;
1205 }
1206
1207 r = set_guest_storage_key(current->mm, hva, keys[i], 0);
1208 if (r)
1209 break;
1210 }
1211 up_read(&current->mm->mmap_sem);
1212 out:
1213 kvfree(keys);
1214 return r;
1215 }
1216
1217 long kvm_arch_vm_ioctl(struct file *filp,
1218 unsigned int ioctl, unsigned long arg)
1219 {
1220 struct kvm *kvm = filp->private_data;
1221 void __user *argp = (void __user *)arg;
1222 struct kvm_device_attr attr;
1223 int r;
1224
1225 switch (ioctl) {
1226 case KVM_S390_INTERRUPT: {
1227 struct kvm_s390_interrupt s390int;
1228
1229 r = -EFAULT;
1230 if (copy_from_user(&s390int, argp, sizeof(s390int)))
1231 break;
1232 r = kvm_s390_inject_vm(kvm, &s390int);
1233 break;
1234 }
1235 case KVM_ENABLE_CAP: {
1236 struct kvm_enable_cap cap;
1237 r = -EFAULT;
1238 if (copy_from_user(&cap, argp, sizeof(cap)))
1239 break;
1240 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
1241 break;
1242 }
1243 case KVM_CREATE_IRQCHIP: {
1244 struct kvm_irq_routing_entry routing;
1245
1246 r = -EINVAL;
1247 if (kvm->arch.use_irqchip) {
1248 /* Set up dummy routing. */
1249 memset(&routing, 0, sizeof(routing));
1250 r = kvm_set_irq_routing(kvm, &routing, 0, 0);
1251 }
1252 break;
1253 }
1254 case KVM_SET_DEVICE_ATTR: {
1255 r = -EFAULT;
1256 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
1257 break;
1258 r = kvm_s390_vm_set_attr(kvm, &attr);
1259 break;
1260 }
1261 case KVM_GET_DEVICE_ATTR: {
1262 r = -EFAULT;
1263 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
1264 break;
1265 r = kvm_s390_vm_get_attr(kvm, &attr);
1266 break;
1267 }
1268 case KVM_HAS_DEVICE_ATTR: {
1269 r = -EFAULT;
1270 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
1271 break;
1272 r = kvm_s390_vm_has_attr(kvm, &attr);
1273 break;
1274 }
1275 case KVM_S390_GET_SKEYS: {
1276 struct kvm_s390_skeys args;
1277
1278 r = -EFAULT;
1279 if (copy_from_user(&args, argp,
1280 sizeof(struct kvm_s390_skeys)))
1281 break;
1282 r = kvm_s390_get_skeys(kvm, &args);
1283 break;
1284 }
1285 case KVM_S390_SET_SKEYS: {
1286 struct kvm_s390_skeys args;
1287
1288 r = -EFAULT;
1289 if (copy_from_user(&args, argp,
1290 sizeof(struct kvm_s390_skeys)))
1291 break;
1292 r = kvm_s390_set_skeys(kvm, &args);
1293 break;
1294 }
1295 default:
1296 r = -ENOTTY;
1297 }
1298
1299 return r;
1300 }
1301
1302 static int kvm_s390_query_ap_config(u8 *config)
1303 {
1304 u32 fcn_code = 0x04000000UL;
1305 u32 cc = 0;
1306
1307 memset(config, 0, 128);
1308 asm volatile(
1309 "lgr 0,%1\n"
1310 "lgr 2,%2\n"
1311 ".long 0xb2af0000\n" /* PQAP(QCI) */
1312 "0: ipm %0\n"
1313 "srl %0,28\n"
1314 "1:\n"
1315 EX_TABLE(0b, 1b)
1316 : "+r" (cc)
1317 : "r" (fcn_code), "r" (config)
1318 : "cc", "0", "2", "memory"
1319 );
1320
1321 return cc;
1322 }
1323
1324 static int kvm_s390_apxa_installed(void)
1325 {
1326 u8 config[128];
1327 int cc;
1328
1329 if (test_facility(12)) {
1330 cc = kvm_s390_query_ap_config(config);
1331
1332 if (cc)
1333 pr_err("PQAP(QCI) failed with cc=%d", cc);
1334 else
1335 return config[0] & 0x40;
1336 }
1337
1338 return 0;
1339 }
1340
1341 static void kvm_s390_set_crycb_format(struct kvm *kvm)
1342 {
1343 kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;
1344
1345 if (kvm_s390_apxa_installed())
1346 kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
1347 else
1348 kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
1349 }
1350
1351 static u64 kvm_s390_get_initial_cpuid(void)
1352 {
1353 struct cpuid cpuid;
1354
1355 get_cpu_id(&cpuid);
1356 cpuid.version = 0xff;
1357 return *((u64 *) &cpuid);
1358 }
1359
1360 static void kvm_s390_crypto_init(struct kvm *kvm)
1361 {
1362 if (!test_kvm_facility(kvm, 76))
1363 return;
1364
1365 kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
1366 kvm_s390_set_crycb_format(kvm);
1367
1368 /* Enable AES/DEA protected key functions by default */
1369 kvm->arch.crypto.aes_kw = 1;
1370 kvm->arch.crypto.dea_kw = 1;
1371 get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
1372 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
1373 get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
1374 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1375 }
1376
1377 static void sca_dispose(struct kvm *kvm)
1378 {
1379 if (kvm->arch.use_esca)
1380 free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
1381 else
1382 free_page((unsigned long)(kvm->arch.sca));
1383 kvm->arch.sca = NULL;
1384 }
1385
1386 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1387 {
1388 gfp_t alloc_flags = GFP_KERNEL;
1389 int i, rc;
1390 char debug_name[16];
1391 static unsigned long sca_offset;
1392
1393 rc = -EINVAL;
1394 #ifdef CONFIG_KVM_S390_UCONTROL
1395 if (type & ~KVM_VM_S390_UCONTROL)
1396 goto out_err;
1397 if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
1398 goto out_err;
1399 #else
1400 if (type)
1401 goto out_err;
1402 #endif
1403
1404 rc = s390_enable_sie();
1405 if (rc)
1406 goto out_err;
1407
1408 rc = -ENOMEM;
1409
1410 ratelimit_state_init(&kvm->arch.sthyi_limit, 5 * HZ, 500);
1411
1412 kvm->arch.use_esca = 0; /* start with basic SCA */
1413 if (!sclp.has_64bscao)
1414 alloc_flags |= GFP_DMA;
1415 rwlock_init(&kvm->arch.sca_lock);
1416 kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags);
1417 if (!kvm->arch.sca)
1418 goto out_err;
1419 spin_lock(&kvm_lock);
1420 sca_offset += 16;
1421 if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
1422 sca_offset = 0;
1423 kvm->arch.sca = (struct bsca_block *)
1424 ((char *) kvm->arch.sca + sca_offset);
1425 spin_unlock(&kvm_lock);
1426
1427 sprintf(debug_name, "kvm-%u", current->pid);
1428
1429 kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1430 if (!kvm->arch.dbf)
1431 goto out_err;
1432
1433 kvm->arch.sie_page2 =
1434 (struct sie_page2 *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
1435 if (!kvm->arch.sie_page2)
1436 goto out_err;
1437
1438 /* Populate the facility mask initially. */
1439 memcpy(kvm->arch.model.fac_mask, S390_lowcore.stfle_fac_list,
1440 S390_ARCH_FAC_LIST_SIZE_BYTE);
1441 for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
1442 if (i < kvm_s390_fac_list_mask_size())
1443 kvm->arch.model.fac_mask[i] &= kvm_s390_fac_list_mask[i];
1444 else
1445 kvm->arch.model.fac_mask[i] = 0UL;
1446 }
1447
1448 /* Populate the facility list initially. */
1449 kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
1450 memcpy(kvm->arch.model.fac_list, kvm->arch.model.fac_mask,
1451 S390_ARCH_FAC_LIST_SIZE_BYTE);
1452
1453 set_kvm_facility(kvm->arch.model.fac_mask, 74);
1454 set_kvm_facility(kvm->arch.model.fac_list, 74);
1455
1456 kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
1457 kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1458
1459 kvm_s390_crypto_init(kvm);
1460
1461 spin_lock_init(&kvm->arch.float_int.lock);
1462 for (i = 0; i < FIRQ_LIST_COUNT; i++)
1463 INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1464 init_waitqueue_head(&kvm->arch.ipte_wq);
1465 mutex_init(&kvm->arch.ipte_mutex);
1466
1467 debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1468 VM_EVENT(kvm, 3, "vm created with type %lu", type);
1469
1470 if (type & KVM_VM_S390_UCONTROL) {
1471 kvm->arch.gmap = NULL;
1472 kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
1473 } else {
1474 if (sclp.hamax == U64_MAX)
1475 kvm->arch.mem_limit = TASK_MAX_SIZE;
1476 else
1477 kvm->arch.mem_limit = min_t(unsigned long, TASK_MAX_SIZE,
1478 sclp.hamax + 1);
1479 kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1);
1480 if (!kvm->arch.gmap)
1481 goto out_err;
1482 kvm->arch.gmap->private = kvm;
1483 kvm->arch.gmap->pfault_enabled = 0;
1484 }
1485
1486 kvm->arch.css_support = 0;
1487 kvm->arch.use_irqchip = 0;
1488 kvm->arch.epoch = 0;
1489
1490 spin_lock_init(&kvm->arch.start_stop_lock);
1491 kvm_s390_vsie_init(kvm);
1492 KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
1493
1494 return 0;
1495 out_err:
1496 free_page((unsigned long)kvm->arch.sie_page2);
1497 debug_unregister(kvm->arch.dbf);
1498 sca_dispose(kvm);
1499 KVM_EVENT(3, "creation of vm failed: %d", rc);
1500 return rc;
1501 }
1502
1503 bool kvm_arch_has_vcpu_debugfs(void)
1504 {
1505 return false;
1506 }
1507
1508 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
1509 {
1510 return 0;
1511 }
1512
1513 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
1514 {
1515 VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1516 trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1517 kvm_s390_clear_local_irqs(vcpu);
1518 kvm_clear_async_pf_completion_queue(vcpu);
1519 if (!kvm_is_ucontrol(vcpu->kvm))
1520 sca_del_vcpu(vcpu);
1521
1522 if (kvm_is_ucontrol(vcpu->kvm))
1523 gmap_remove(vcpu->arch.gmap);
1524
1525 if (vcpu->kvm->arch.use_cmma)
1526 kvm_s390_vcpu_unsetup_cmma(vcpu);
1527 free_page((unsigned long)(vcpu->arch.sie_block));
1528
1529 kvm_vcpu_uninit(vcpu);
1530 kmem_cache_free(kvm_vcpu_cache, vcpu);
1531 }
1532
1533 static void kvm_free_vcpus(struct kvm *kvm)
1534 {
1535 unsigned int i;
1536 struct kvm_vcpu *vcpu;
1537
1538 kvm_for_each_vcpu(i, vcpu, kvm)
1539 kvm_arch_vcpu_destroy(vcpu);
1540
1541 mutex_lock(&kvm->lock);
1542 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
1543 kvm->vcpus[i] = NULL;
1544
1545 atomic_set(&kvm->online_vcpus, 0);
1546 mutex_unlock(&kvm->lock);
1547 }
1548
1549 void kvm_arch_destroy_vm(struct kvm *kvm)
1550 {
1551 kvm_free_vcpus(kvm);
1552 sca_dispose(kvm);
1553 debug_unregister(kvm->arch.dbf);
1554 free_page((unsigned long)kvm->arch.sie_page2);
1555 if (!kvm_is_ucontrol(kvm))
1556 gmap_remove(kvm->arch.gmap);
1557 kvm_s390_destroy_adapters(kvm);
1558 kvm_s390_clear_float_irqs(kvm);
1559 kvm_s390_vsie_destroy(kvm);
1560 KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
1561 }
1562
1563 /* Section: vcpu related */
1564 static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
1565 {
1566 vcpu->arch.gmap = gmap_create(current->mm, -1UL);
1567 if (!vcpu->arch.gmap)
1568 return -ENOMEM;
1569 vcpu->arch.gmap->private = vcpu->kvm;
1570
1571 return 0;
1572 }
1573
1574 static void sca_del_vcpu(struct kvm_vcpu *vcpu)
1575 {
1576 if (!kvm_s390_use_sca_entries())
1577 return;
1578 read_lock(&vcpu->kvm->arch.sca_lock);
1579 if (vcpu->kvm->arch.use_esca) {
1580 struct esca_block *sca = vcpu->kvm->arch.sca;
1581
1582 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1583 sca->cpu[vcpu->vcpu_id].sda = 0;
1584 } else {
1585 struct bsca_block *sca = vcpu->kvm->arch.sca;
1586
1587 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1588 sca->cpu[vcpu->vcpu_id].sda = 0;
1589 }
1590 read_unlock(&vcpu->kvm->arch.sca_lock);
1591 }
1592
1593 static void sca_add_vcpu(struct kvm_vcpu *vcpu)
1594 {
1595 if (!kvm_s390_use_sca_entries()) {
1596 struct bsca_block *sca = vcpu->kvm->arch.sca;
1597
1598 /* we still need the basic sca for the ipte control */
1599 vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
1600 vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
1601 }
1602 read_lock(&vcpu->kvm->arch.sca_lock);
1603 if (vcpu->kvm->arch.use_esca) {
1604 struct esca_block *sca = vcpu->kvm->arch.sca;
1605
1606 sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1607 vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
1608 vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
1609 vcpu->arch.sie_block->ecb2 |= 0x04U;
1610 set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
1611 } else {
1612 struct bsca_block *sca = vcpu->kvm->arch.sca;
1613
1614 sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
1615 vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
1616 vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
1617 set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
1618 }
1619 read_unlock(&vcpu->kvm->arch.sca_lock);
1620 }
1621
1622 /* Basic SCA to Extended SCA data copy routines */
1623 static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
1624 {
1625 d->sda = s->sda;
1626 d->sigp_ctrl.c = s->sigp_ctrl.c;
1627 d->sigp_ctrl.scn = s->sigp_ctrl.scn;
1628 }
1629
1630 static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
1631 {
1632 int i;
1633
1634 d->ipte_control = s->ipte_control;
1635 d->mcn[0] = s->mcn;
1636 for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
1637 sca_copy_entry(&d->cpu[i], &s->cpu[i]);
1638 }
1639
1640 static int sca_switch_to_extended(struct kvm *kvm)
1641 {
1642 struct bsca_block *old_sca = kvm->arch.sca;
1643 struct esca_block *new_sca;
1644 struct kvm_vcpu *vcpu;
1645 unsigned int vcpu_idx;
1646 u32 scaol, scaoh;
1647
1648 new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO);
1649 if (!new_sca)
1650 return -ENOMEM;
1651
1652 scaoh = (u32)((u64)(new_sca) >> 32);
1653 scaol = (u32)(u64)(new_sca) & ~0x3fU;
1654
1655 kvm_s390_vcpu_block_all(kvm);
1656 write_lock(&kvm->arch.sca_lock);
1657
1658 sca_copy_b_to_e(new_sca, old_sca);
1659
1660 kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
1661 vcpu->arch.sie_block->scaoh = scaoh;
1662 vcpu->arch.sie_block->scaol = scaol;
1663 vcpu->arch.sie_block->ecb2 |= 0x04U;
1664 }
1665 kvm->arch.sca = new_sca;
1666 kvm->arch.use_esca = 1;
1667
1668 write_unlock(&kvm->arch.sca_lock);
1669 kvm_s390_vcpu_unblock_all(kvm);
1670
1671 free_page((unsigned long)old_sca);
1672
1673 VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
1674 old_sca, kvm->arch.sca);
1675 return 0;
1676 }
1677
1678 static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
1679 {
1680 int rc;
1681
1682 if (!kvm_s390_use_sca_entries()) {
1683 if (id < KVM_MAX_VCPUS)
1684 return true;
1685 return false;
1686 }
1687 if (id < KVM_S390_BSCA_CPU_SLOTS)
1688 return true;
1689 if (!sclp.has_esca || !sclp.has_64bscao)
1690 return false;
1691
1692 mutex_lock(&kvm->lock);
1693 rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
1694 mutex_unlock(&kvm->lock);
1695
1696 return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
1697 }
1698
1699 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1700 {
1701 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
1702 kvm_clear_async_pf_completion_queue(vcpu);
1703 vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
1704 KVM_SYNC_GPRS |
1705 KVM_SYNC_ACRS |
1706 KVM_SYNC_CRS |
1707 KVM_SYNC_ARCH0 |
1708 KVM_SYNC_PFAULT;
1709 kvm_s390_set_prefix(vcpu, 0);
1710 if (test_kvm_facility(vcpu->kvm, 64))
1711 vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
1712 /* fprs can be synchronized via vrs, even if the guest has no vx. With
1713 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format.
1714 */
1715 if (MACHINE_HAS_VX)
1716 vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1717 else
1718 vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
1719
1720 if (kvm_is_ucontrol(vcpu->kvm))
1721 return __kvm_ucontrol_vcpu_init(vcpu);
1722
1723 return 0;
1724 }
1725
1726 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
1727 static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
1728 {
1729 WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
1730 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1731 vcpu->arch.cputm_start = get_tod_clock_fast();
1732 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1733 }
1734
1735 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
1736 static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
1737 {
1738 WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
1739 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1740 vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
1741 vcpu->arch.cputm_start = 0;
1742 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1743 }
1744
1745 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
1746 static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
1747 {
1748 WARN_ON_ONCE(vcpu->arch.cputm_enabled);
1749 vcpu->arch.cputm_enabled = true;
1750 __start_cpu_timer_accounting(vcpu);
1751 }
1752
1753 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
1754 static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
1755 {
1756 WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
1757 __stop_cpu_timer_accounting(vcpu);
1758 vcpu->arch.cputm_enabled = false;
1759 }
1760
1761 static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
1762 {
1763 preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1764 __enable_cpu_timer_accounting(vcpu);
1765 preempt_enable();
1766 }
1767
1768 static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
1769 {
1770 preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1771 __disable_cpu_timer_accounting(vcpu);
1772 preempt_enable();
1773 }
1774
1775 /* set the cpu timer - may only be called from the VCPU thread itself */
1776 void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
1777 {
1778 preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1779 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
1780 if (vcpu->arch.cputm_enabled)
1781 vcpu->arch.cputm_start = get_tod_clock_fast();
1782 vcpu->arch.sie_block->cputm = cputm;
1783 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
1784 preempt_enable();
1785 }
1786
1787 /* update and get the cpu timer - can also be called from other VCPU threads */
1788 __u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
1789 {
1790 unsigned int seq;
1791 __u64 value;
1792
1793 if (unlikely(!vcpu->arch.cputm_enabled))
1794 return vcpu->arch.sie_block->cputm;
1795
1796 preempt_disable(); /* protect from TOD sync and vcpu_load/put */
1797 do {
1798 seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
1799 /*
1800 * If the writer would ever execute a read in the critical
1801 * section, e.g. in irq context, we have a deadlock.
1802 */
1803 WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
1804 value = vcpu->arch.sie_block->cputm;
1805 /* if cputm_start is 0, accounting is being started/stopped */
1806 if (likely(vcpu->arch.cputm_start))
1807 value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
1808 } while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
1809 preempt_enable();
1810 return value;
1811 }
1812
1813 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1814 {
1815 /* Save host register state */
1816 save_fpu_regs();
1817 vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
1818 vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
1819
1820 if (MACHINE_HAS_VX)
1821 current->thread.fpu.regs = vcpu->run->s.regs.vrs;
1822 else
1823 current->thread.fpu.regs = vcpu->run->s.regs.fprs;
1824 current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
1825 if (test_fp_ctl(current->thread.fpu.fpc))
1826 /* User space provided an invalid FPC, let's clear it */
1827 current->thread.fpu.fpc = 0;
1828
1829 gmap_enable(vcpu->arch.enabled_gmap);
1830 atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1831 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1832 __start_cpu_timer_accounting(vcpu);
1833 vcpu->cpu = cpu;
1834 }
1835
1836 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1837 {
1838 vcpu->cpu = -1;
1839 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
1840 __stop_cpu_timer_accounting(vcpu);
1841 atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1842 vcpu->arch.enabled_gmap = gmap_get_enabled();
1843 gmap_disable(vcpu->arch.enabled_gmap);
1844
1845 /* Save guest register state */
1846 save_fpu_regs();
1847 vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
1848
1849 /* Restore host register state */
1850 current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
1851 current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;
1852 }
1853
1854 static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
1855 {
1856 /* this equals initial cpu reset in pop, but we don't switch to ESA */
1857 vcpu->arch.sie_block->gpsw.mask = 0UL;
1858 vcpu->arch.sie_block->gpsw.addr = 0UL;
1859 kvm_s390_set_prefix(vcpu, 0);
1860 kvm_s390_set_cpu_timer(vcpu, 0);
1861 vcpu->arch.sie_block->ckc = 0UL;
1862 vcpu->arch.sie_block->todpr = 0;
1863 memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
1864 vcpu->arch.sie_block->gcr[0] = 0xE0UL;
1865 vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
1866 /* make sure the new fpc will be lazily loaded */
1867 save_fpu_regs();
1868 current->thread.fpu.fpc = 0;
1869 vcpu->arch.sie_block->gbea = 1;
1870 vcpu->arch.sie_block->pp = 0;
1871 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
1872 kvm_clear_async_pf_completion_queue(vcpu);
1873 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
1874 kvm_s390_vcpu_stop(vcpu);
1875 kvm_s390_clear_local_irqs(vcpu);
1876 }
1877
1878 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1879 {
1880 mutex_lock(&vcpu->kvm->lock);
1881 preempt_disable();
1882 vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
1883 preempt_enable();
1884 mutex_unlock(&vcpu->kvm->lock);
1885 if (!kvm_is_ucontrol(vcpu->kvm)) {
1886 vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1887 sca_add_vcpu(vcpu);
1888 }
1889 if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0)
1890 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
1891 /* make vcpu_load load the right gmap on the first trigger */
1892 vcpu->arch.enabled_gmap = vcpu->arch.gmap;
1893 }
1894
1895 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
1896 {
1897 if (!test_kvm_facility(vcpu->kvm, 76))
1898 return;
1899
1900 vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);
1901
1902 if (vcpu->kvm->arch.crypto.aes_kw)
1903 vcpu->arch.sie_block->ecb3 |= ECB3_AES;
1904 if (vcpu->kvm->arch.crypto.dea_kw)
1905 vcpu->arch.sie_block->ecb3 |= ECB3_DEA;
1906
1907 vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
1908 }
1909
1910 void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
1911 {
1912 free_page(vcpu->arch.sie_block->cbrlo);
1913 vcpu->arch.sie_block->cbrlo = 0;
1914 }
1915
1916 int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
1917 {
1918 vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
1919 if (!vcpu->arch.sie_block->cbrlo)
1920 return -ENOMEM;
1921
1922 vcpu->arch.sie_block->ecb2 |= 0x80;
1923 vcpu->arch.sie_block->ecb2 &= ~0x08;
1924 return 0;
1925 }
1926
1927 static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
1928 {
1929 struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;
1930
1931 vcpu->arch.sie_block->ibc = model->ibc;
1932 if (test_kvm_facility(vcpu->kvm, 7))
1933 vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list;
1934 }
1935
1936 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1937 {
1938 int rc = 0;
1939
1940 atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
1941 CPUSTAT_SM |
1942 CPUSTAT_STOPPED);
1943
1944 if (test_kvm_facility(vcpu->kvm, 78))
1945 atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
1946 else if (test_kvm_facility(vcpu->kvm, 8))
1947 atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);
1948
1949 kvm_s390_vcpu_setup_model(vcpu);
1950
1951 /* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */
1952 if (MACHINE_HAS_ESOP)
1953 vcpu->arch.sie_block->ecb |= 0x02;
1954 if (test_kvm_facility(vcpu->kvm, 9))
1955 vcpu->arch.sie_block->ecb |= 0x04;
1956 if (test_kvm_facility(vcpu->kvm, 73))
1957 vcpu->arch.sie_block->ecb |= 0x10;
1958
1959 if (test_kvm_facility(vcpu->kvm, 8) && sclp.has_pfmfi)
1960 vcpu->arch.sie_block->ecb2 |= 0x08;
1961 vcpu->arch.sie_block->eca = 0x1002000U;
1962 if (sclp.has_cei)
1963 vcpu->arch.sie_block->eca |= 0x80000000U;
1964 if (sclp.has_ib)
1965 vcpu->arch.sie_block->eca |= 0x40000000U;
1966 if (sclp.has_siif)
1967 vcpu->arch.sie_block->eca |= 1;
1968 if (sclp.has_sigpif)
1969 vcpu->arch.sie_block->eca |= 0x10000000U;
1970 if (test_kvm_facility(vcpu->kvm, 129)) {
1971 vcpu->arch.sie_block->eca |= 0x00020000;
1972 vcpu->arch.sie_block->ecd |= 0x20000000;
1973 }
1974 vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb;
1975 vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
1976
1977 if (vcpu->kvm->arch.use_cmma) {
1978 rc = kvm_s390_vcpu_setup_cmma(vcpu);
1979 if (rc)
1980 return rc;
1981 }
1982 hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1983 vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
1984
1985 kvm_s390_vcpu_crypto_setup(vcpu);
1986
1987 return rc;
1988 }
1989
1990 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
1991 unsigned int id)
1992 {
1993 struct kvm_vcpu *vcpu;
1994 struct sie_page *sie_page;
1995 int rc = -EINVAL;
1996
1997 if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
1998 goto out;
1999
2000 rc = -ENOMEM;
2001
2002 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2003 if (!vcpu)
2004 goto out;
2005
2006 sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
2007 if (!sie_page)
2008 goto out_free_cpu;
2009
2010 vcpu->arch.sie_block = &sie_page->sie_block;
2011 vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;
2012
2013 /* the real guest size will always be smaller than msl */
2014 vcpu->arch.sie_block->mso = 0;
2015 vcpu->arch.sie_block->msl = sclp.hamax;
2016
2017 vcpu->arch.sie_block->icpua = id;
2018 spin_lock_init(&vcpu->arch.local_int.lock);
2019 vcpu->arch.local_int.float_int = &kvm->arch.float_int;
2020 vcpu->arch.local_int.wq = &vcpu->wq;
2021 vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
2022 seqcount_init(&vcpu->arch.cputm_seqcount);
2023
2024 rc = kvm_vcpu_init(vcpu, kvm, id);
2025 if (rc)
2026 goto out_free_sie_block;
2027 VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu,
2028 vcpu->arch.sie_block);
2029 trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
2030
2031 return vcpu;
2032 out_free_sie_block:
2033 free_page((unsigned long)(vcpu->arch.sie_block));
2034 out_free_cpu:
2035 kmem_cache_free(kvm_vcpu_cache, vcpu);
2036 out:
2037 return ERR_PTR(rc);
2038 }
2039
2040 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
2041 {
2042 return kvm_s390_vcpu_has_irq(vcpu, 0);
2043 }
2044
2045 void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
2046 {
2047 atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
2048 exit_sie(vcpu);
2049 }
2050
2051 void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
2052 {
2053 atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
2054 }
2055
2056 static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
2057 {
2058 atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
2059 exit_sie(vcpu);
2060 }
2061
2062 static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
2063 {
2064 atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
2065 }
2066
2067 /*
2068 * Kick a guest cpu out of SIE and wait until SIE is not running.
2069 * If the CPU is not running (e.g. waiting as idle) the function will
2070 * return immediately. */
2071 void exit_sie(struct kvm_vcpu *vcpu)
2072 {
2073 atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
2074 while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
2075 cpu_relax();
2076 }
2077
2078 /* Kick a guest cpu out of SIE to process a request synchronously */
2079 void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
2080 {
2081 kvm_make_request(req, vcpu);
2082 kvm_s390_vcpu_request(vcpu);
2083 }
2084
2085 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
2086 unsigned long end)
2087 {
2088 struct kvm *kvm = gmap->private;
2089 struct kvm_vcpu *vcpu;
2090 unsigned long prefix;
2091 int i;
2092
2093 if (gmap_is_shadow(gmap))
2094 return;
2095 if (start >= 1UL << 31)
2096 /* We are only interested in prefix pages */
2097 return;
2098 kvm_for_each_vcpu(i, vcpu, kvm) {
2099 /* match against both prefix pages */
2100 prefix = kvm_s390_get_prefix(vcpu);
2101 if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) {
2102 VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx",
2103 start, end);
2104 kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
2105 }
2106 }
2107 }
2108
2109 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
2110 {
2111 /* kvm common code refers to this, but never calls it */
2112 BUG();
2113 return 0;
2114 }
2115
2116 static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
2117 struct kvm_one_reg *reg)
2118 {
2119 int r = -EINVAL;
2120
2121 switch (reg->id) {
2122 case KVM_REG_S390_TODPR:
2123 r = put_user(vcpu->arch.sie_block->todpr,
2124 (u32 __user *)reg->addr);
2125 break;
2126 case KVM_REG_S390_EPOCHDIFF:
2127 r = put_user(vcpu->arch.sie_block->epoch,
2128 (u64 __user *)reg->addr);
2129 break;
2130 case KVM_REG_S390_CPU_TIMER:
2131 r = put_user(kvm_s390_get_cpu_timer(vcpu),
2132 (u64 __user *)reg->addr);
2133 break;
2134 case KVM_REG_S390_CLOCK_COMP:
2135 r = put_user(vcpu->arch.sie_block->ckc,
2136 (u64 __user *)reg->addr);
2137 break;
2138 case KVM_REG_S390_PFTOKEN:
2139 r = put_user(vcpu->arch.pfault_token,
2140 (u64 __user *)reg->addr);
2141 break;
2142 case KVM_REG_S390_PFCOMPARE:
2143 r = put_user(vcpu->arch.pfault_compare,
2144 (u64 __user *)reg->addr);
2145 break;
2146 case KVM_REG_S390_PFSELECT:
2147 r = put_user(vcpu->arch.pfault_select,
2148 (u64 __user *)reg->addr);
2149 break;
2150 case KVM_REG_S390_PP:
2151 r = put_user(vcpu->arch.sie_block->pp,
2152 (u64 __user *)reg->addr);
2153 break;
2154 case KVM_REG_S390_GBEA:
2155 r = put_user(vcpu->arch.sie_block->gbea,
2156 (u64 __user *)reg->addr);
2157 break;
2158 default:
2159 break;
2160 }
2161
2162 return r;
2163 }
2164
2165 static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
2166 struct kvm_one_reg *reg)
2167 {
2168 int r = -EINVAL;
2169 __u64 val;
2170
2171 switch (reg->id) {
2172 case KVM_REG_S390_TODPR:
2173 r = get_user(vcpu->arch.sie_block->todpr,
2174 (u32 __user *)reg->addr);
2175 break;
2176 case KVM_REG_S390_EPOCHDIFF:
2177 r = get_user(vcpu->arch.sie_block->epoch,
2178 (u64 __user *)reg->addr);
2179 break;
2180 case KVM_REG_S390_CPU_TIMER:
2181 r = get_user(val, (u64 __user *)reg->addr);
2182 if (!r)
2183 kvm_s390_set_cpu_timer(vcpu, val);
2184 break;
2185 case KVM_REG_S390_CLOCK_COMP:
2186 r = get_user(vcpu->arch.sie_block->ckc,
2187 (u64 __user *)reg->addr);
2188 break;
2189 case KVM_REG_S390_PFTOKEN:
2190 r = get_user(vcpu->arch.pfault_token,
2191 (u64 __user *)reg->addr);
2192 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
2193 kvm_clear_async_pf_completion_queue(vcpu);
2194 break;
2195 case KVM_REG_S390_PFCOMPARE:
2196 r = get_user(vcpu->arch.pfault_compare,
2197 (u64 __user *)reg->addr);
2198 break;
2199 case KVM_REG_S390_PFSELECT:
2200 r = get_user(vcpu->arch.pfault_select,
2201 (u64 __user *)reg->addr);
2202 break;
2203 case KVM_REG_S390_PP:
2204 r = get_user(vcpu->arch.sie_block->pp,
2205 (u64 __user *)reg->addr);
2206 break;
2207 case KVM_REG_S390_GBEA:
2208 r = get_user(vcpu->arch.sie_block->gbea,
2209 (u64 __user *)reg->addr);
2210 break;
2211 default:
2212 break;
2213 }
2214
2215 return r;
2216 }
2217
2218 static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
2219 {
2220 kvm_s390_vcpu_initial_reset(vcpu);
2221 return 0;
2222 }
2223
2224 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
2225 {
2226 memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
2227 return 0;
2228 }
2229
2230 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
2231 {
2232 memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
2233 return 0;
2234 }
2235
2236 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
2237 struct kvm_sregs *sregs)
2238 {
2239 memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
2240 memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
2241 return 0;
2242 }
2243
2244 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
2245 struct kvm_sregs *sregs)
2246 {
2247 memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
2248 memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
2249 return 0;
2250 }
2251
2252 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2253 {
2254 /* make sure the new values will be lazily loaded */
2255 save_fpu_regs();
2256 if (test_fp_ctl(fpu->fpc))
2257 return -EINVAL;
2258 current->thread.fpu.fpc = fpu->fpc;
2259 if (MACHINE_HAS_VX)
2260 convert_fp_to_vx((__vector128 *) vcpu->run->s.regs.vrs,
2261 (freg_t *) fpu->fprs);
2262 else
2263 memcpy(vcpu->run->s.regs.fprs, &fpu->fprs, sizeof(fpu->fprs));
2264 return 0;
2265 }
2266
2267 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2268 {
2269 /* make sure we have the latest values */
2270 save_fpu_regs();
2271 if (MACHINE_HAS_VX)
2272 convert_vx_to_fp((freg_t *) fpu->fprs,
2273 (__vector128 *) vcpu->run->s.regs.vrs);
2274 else
2275 memcpy(fpu->fprs, vcpu->run->s.regs.fprs, sizeof(fpu->fprs));
2276 fpu->fpc = current->thread.fpu.fpc;
2277 return 0;
2278 }
2279
2280 static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
2281 {
2282 int rc = 0;
2283
2284 if (!is_vcpu_stopped(vcpu))
2285 rc = -EBUSY;
2286 else {
2287 vcpu->run->psw_mask = psw.mask;
2288 vcpu->run->psw_addr = psw.addr;
2289 }
2290 return rc;
2291 }
2292
2293 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2294 struct kvm_translation *tr)
2295 {
2296 return -EINVAL; /* not implemented yet */
2297 }
2298
2299 #define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
2300 KVM_GUESTDBG_USE_HW_BP | \
2301 KVM_GUESTDBG_ENABLE)
2302
2303 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
2304 struct kvm_guest_debug *dbg)
2305 {
2306 int rc = 0;
2307
2308 vcpu->guest_debug = 0;
2309 kvm_s390_clear_bp_data(vcpu);
2310
2311 if (dbg->control & ~VALID_GUESTDBG_FLAGS)
2312 return -EINVAL;
2313 if (!sclp.has_gpere)
2314 return -EINVAL;
2315
2316 if (dbg->control & KVM_GUESTDBG_ENABLE) {
2317 vcpu->guest_debug = dbg->control;
2318 /* enforce guest PER */
2319 atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2320
2321 if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
2322 rc = kvm_s390_import_bp_data(vcpu, dbg);
2323 } else {
2324 atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2325 vcpu->arch.guestdbg.last_bp = 0;
2326 }
2327
2328 if (rc) {
2329 vcpu->guest_debug = 0;
2330 kvm_s390_clear_bp_data(vcpu);
2331 atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2332 }
2333
2334 return rc;
2335 }
2336
2337 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
2338 struct kvm_mp_state *mp_state)
2339 {
2340 /* CHECK_STOP and LOAD are not supported yet */
2341 return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
2342 KVM_MP_STATE_OPERATING;
2343 }
2344
2345 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
2346 struct kvm_mp_state *mp_state)
2347 {
2348 int rc = 0;
2349
2350 /* user space knows about this interface - let it control the state */
2351 vcpu->kvm->arch.user_cpu_state_ctrl = 1;
2352
2353 switch (mp_state->mp_state) {
2354 case KVM_MP_STATE_STOPPED:
2355 kvm_s390_vcpu_stop(vcpu);
2356 break;
2357 case KVM_MP_STATE_OPERATING:
2358 kvm_s390_vcpu_start(vcpu);
2359 break;
2360 case KVM_MP_STATE_LOAD:
2361 case KVM_MP_STATE_CHECK_STOP:
2362 /* fall through - CHECK_STOP and LOAD are not supported yet */
2363 default:
2364 rc = -ENXIO;
2365 }
2366
2367 return rc;
2368 }
2369
2370 static bool ibs_enabled(struct kvm_vcpu *vcpu)
2371 {
2372 return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
2373 }
2374
2375 static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
2376 {
2377 retry:
2378 kvm_s390_vcpu_request_handled(vcpu);
2379 if (!vcpu->requests)
2380 return 0;
2381 /*
2382 * We use MMU_RELOAD just to re-arm the ipte notifier for the
2383 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock.
2384 * This ensures that the ipte instruction for this request has
2385 * already finished. We might race against a second unmapper that
2386 * wants to set the blocking bit. Lets just retry the request loop.
2387 */
2388 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
2389 int rc;
2390 rc = gmap_mprotect_notify(vcpu->arch.gmap,
2391 kvm_s390_get_prefix(vcpu),
2392 PAGE_SIZE * 2, PROT_WRITE);
2393 if (rc) {
2394 kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
2395 return rc;
2396 }
2397 goto retry;
2398 }
2399
2400 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
2401 vcpu->arch.sie_block->ihcpu = 0xffff;
2402 goto retry;
2403 }
2404
2405 if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
2406 if (!ibs_enabled(vcpu)) {
2407 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
2408 atomic_or(CPUSTAT_IBS,
2409 &vcpu->arch.sie_block->cpuflags);
2410 }
2411 goto retry;
2412 }
2413
2414 if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
2415 if (ibs_enabled(vcpu)) {
2416 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
2417 atomic_andnot(CPUSTAT_IBS,
2418 &vcpu->arch.sie_block->cpuflags);
2419 }
2420 goto retry;
2421 }
2422
2423 if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) {
2424 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
2425 goto retry;
2426 }
2427
2428 /* nothing to do, just clear the request */
2429 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
2430
2431 return 0;
2432 }
2433
2434 void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod)
2435 {
2436 struct kvm_vcpu *vcpu;
2437 int i;
2438
2439 mutex_lock(&kvm->lock);
2440 preempt_disable();
2441 kvm->arch.epoch = tod - get_tod_clock();
2442 kvm_s390_vcpu_block_all(kvm);
2443 kvm_for_each_vcpu(i, vcpu, kvm)
2444 vcpu->arch.sie_block->epoch = kvm->arch.epoch;
2445 kvm_s390_vcpu_unblock_all(kvm);
2446 preempt_enable();
2447 mutex_unlock(&kvm->lock);
2448 }
2449
2450 /**
2451 * kvm_arch_fault_in_page - fault-in guest page if necessary
2452 * @vcpu: The corresponding virtual cpu
2453 * @gpa: Guest physical address
2454 * @writable: Whether the page should be writable or not
2455 *
2456 * Make sure that a guest page has been faulted-in on the host.
2457 *
2458 * Return: Zero on success, negative error code otherwise.
2459 */
2460 long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
2461 {
2462 return gmap_fault(vcpu->arch.gmap, gpa,
2463 writable ? FAULT_FLAG_WRITE : 0);
2464 }
2465
2466 static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
2467 unsigned long token)
2468 {
2469 struct kvm_s390_interrupt inti;
2470 struct kvm_s390_irq irq;
2471
2472 if (start_token) {
2473 irq.u.ext.ext_params2 = token;
2474 irq.type = KVM_S390_INT_PFAULT_INIT;
2475 WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
2476 } else {
2477 inti.type = KVM_S390_INT_PFAULT_DONE;
2478 inti.parm64 = token;
2479 WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
2480 }
2481 }
2482
2483 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
2484 struct kvm_async_pf *work)
2485 {
2486 trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
2487 __kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
2488 }
2489
2490 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
2491 struct kvm_async_pf *work)
2492 {
2493 trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
2494 __kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
2495 }
2496
2497 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
2498 struct kvm_async_pf *work)
2499 {
2500 /* s390 will always inject the page directly */
2501 }
2502
2503 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
2504 {
2505 /*
2506 * s390 will always inject the page directly,
2507 * but we still want check_async_completion to cleanup
2508 */
2509 return true;
2510 }
2511
2512 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
2513 {
2514 hva_t hva;
2515 struct kvm_arch_async_pf arch;
2516 int rc;
2517
2518 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
2519 return 0;
2520 if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
2521 vcpu->arch.pfault_compare)
2522 return 0;
2523 if (psw_extint_disabled(vcpu))
2524 return 0;
2525 if (kvm_s390_vcpu_has_irq(vcpu, 0))
2526 return 0;
2527 if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
2528 return 0;
2529 if (!vcpu->arch.gmap->pfault_enabled)
2530 return 0;
2531
2532 hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
2533 hva += current->thread.gmap_addr & ~PAGE_MASK;
2534 if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
2535 return 0;
2536
2537 rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
2538 return rc;
2539 }
2540
2541 static int vcpu_pre_run(struct kvm_vcpu *vcpu)
2542 {
2543 int rc, cpuflags;
2544
2545 /*
2546 * On s390 notifications for arriving pages will be delivered directly
2547 * to the guest but the house keeping for completed pfaults is
2548 * handled outside the worker.
2549 */
2550 kvm_check_async_pf_completion(vcpu);
2551
2552 vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
2553 vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
2554
2555 if (need_resched())
2556 schedule();
2557
2558 if (test_cpu_flag(CIF_MCCK_PENDING))
2559 s390_handle_mcck();
2560
2561 if (!kvm_is_ucontrol(vcpu->kvm)) {
2562 rc = kvm_s390_deliver_pending_interrupts(vcpu);
2563 if (rc)
2564 return rc;
2565 }
2566
2567 rc = kvm_s390_handle_requests(vcpu);
2568 if (rc)
2569 return rc;
2570
2571 if (guestdbg_enabled(vcpu)) {
2572 kvm_s390_backup_guest_per_regs(vcpu);
2573 kvm_s390_patch_guest_per_regs(vcpu);
2574 }
2575
2576 vcpu->arch.sie_block->icptcode = 0;
2577 cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
2578 VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
2579 trace_kvm_s390_sie_enter(vcpu, cpuflags);
2580
2581 return 0;
2582 }
2583
2584 static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
2585 {
2586 struct kvm_s390_pgm_info pgm_info = {
2587 .code = PGM_ADDRESSING,
2588 };
2589 u8 opcode, ilen;
2590 int rc;
2591
2592 VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
2593 trace_kvm_s390_sie_fault(vcpu);
2594
2595 /*
2596 * We want to inject an addressing exception, which is defined as a
2597 * suppressing or terminating exception. However, since we came here
2598 * by a DAT access exception, the PSW still points to the faulting
2599 * instruction since DAT exceptions are nullifying. So we've got
2600 * to look up the current opcode to get the length of the instruction
2601 * to be able to forward the PSW.
2602 */
2603 rc = read_guest_instr(vcpu, &opcode, 1);
2604 ilen = insn_length(opcode);
2605 if (rc < 0) {
2606 return rc;
2607 } else if (rc) {
2608 /* Instruction-Fetching Exceptions - we can't detect the ilen.
2609 * Forward by arbitrary ilc, injection will take care of
2610 * nullification if necessary.
2611 */
2612 pgm_info = vcpu->arch.pgm;
2613 ilen = 4;
2614 }
2615 pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
2616 kvm_s390_forward_psw(vcpu, ilen);
2617 return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
2618 }
2619
2620 static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
2621 {
2622 VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
2623 vcpu->arch.sie_block->icptcode);
2624 trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);
2625
2626 if (guestdbg_enabled(vcpu))
2627 kvm_s390_restore_guest_per_regs(vcpu);
2628
2629 vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
2630 vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
2631
2632 if (vcpu->arch.sie_block->icptcode > 0) {
2633 int rc = kvm_handle_sie_intercept(vcpu);
2634
2635 if (rc != -EOPNOTSUPP)
2636 return rc;
2637 vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
2638 vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
2639 vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
2640 vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
2641 return -EREMOTE;
2642 } else if (exit_reason != -EFAULT) {
2643 vcpu->stat.exit_null++;
2644 return 0;
2645 } else if (kvm_is_ucontrol(vcpu->kvm)) {
2646 vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
2647 vcpu->run->s390_ucontrol.trans_exc_code =
2648 current->thread.gmap_addr;
2649 vcpu->run->s390_ucontrol.pgm_code = 0x10;
2650 return -EREMOTE;
2651 } else if (current->thread.gmap_pfault) {
2652 trace_kvm_s390_major_guest_pfault(vcpu);
2653 current->thread.gmap_pfault = 0;
2654 if (kvm_arch_setup_async_pf(vcpu))
2655 return 0;
2656 return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
2657 }
2658 return vcpu_post_run_fault_in_sie(vcpu);
2659 }
2660
2661 static int __vcpu_run(struct kvm_vcpu *vcpu)
2662 {
2663 int rc, exit_reason;
2664
2665 /*
2666 * We try to hold kvm->srcu during most of vcpu_run (except when run-
2667 * ning the guest), so that memslots (and other stuff) are protected
2668 */
2669 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2670
2671 do {
2672 rc = vcpu_pre_run(vcpu);
2673 if (rc)
2674 break;
2675
2676 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2677 /*
2678 * As PF_VCPU will be used in fault handler, between
2679 * guest_enter and guest_exit should be no uaccess.
2680 */
2681 local_irq_disable();
2682 guest_enter_irqoff();
2683 __disable_cpu_timer_accounting(vcpu);
2684 local_irq_enable();
2685 exit_reason = sie64a(vcpu->arch.sie_block,
2686 vcpu->run->s.regs.gprs);
2687 local_irq_disable();
2688 __enable_cpu_timer_accounting(vcpu);
2689 guest_exit_irqoff();
2690 local_irq_enable();
2691 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2692
2693 rc = vcpu_post_run(vcpu, exit_reason);
2694 } while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2695
2696 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2697 return rc;
2698 }
2699
2700 static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2701 {
2702 vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
2703 vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
2704 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
2705 kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
2706 if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
2707 memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2708 /* some control register changes require a tlb flush */
2709 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2710 }
2711 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
2712 kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
2713 vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
2714 vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
2715 vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
2716 vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
2717 }
2718 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
2719 vcpu->arch.pfault_token = kvm_run->s.regs.pft;
2720 vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
2721 vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2722 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
2723 kvm_clear_async_pf_completion_queue(vcpu);
2724 }
2725 /*
2726 * If userspace sets the riccb (e.g. after migration) to a valid state,
2727 * we should enable RI here instead of doing the lazy enablement.
2728 */
2729 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_RICCB) &&
2730 test_kvm_facility(vcpu->kvm, 64)) {
2731 struct runtime_instr_cb *riccb =
2732 (struct runtime_instr_cb *) &kvm_run->s.regs.riccb;
2733
2734 if (riccb->valid)
2735 vcpu->arch.sie_block->ecb3 |= 0x01;
2736 }
2737 save_access_regs(vcpu->arch.host_acrs);
2738 restore_access_regs(vcpu->run->s.regs.acrs);
2739
2740 kvm_run->kvm_dirty_regs = 0;
2741 }
2742
2743 static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2744 {
2745 kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
2746 kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
2747 kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
2748 memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
2749 kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
2750 kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
2751 kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
2752 kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
2753 kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
2754 kvm_run->s.regs.pft = vcpu->arch.pfault_token;
2755 kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
2756 kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
2757 save_access_regs(vcpu->run->s.regs.acrs);
2758 restore_access_regs(vcpu->arch.host_acrs);
2759 }
2760
2761 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2762 {
2763 int rc;
2764 sigset_t sigsaved;
2765
2766 if (guestdbg_exit_pending(vcpu)) {
2767 kvm_s390_prepare_debug_exit(vcpu);
2768 return 0;
2769 }
2770
2771 if (vcpu->sigset_active)
2772 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
2773
2774 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
2775 kvm_s390_vcpu_start(vcpu);
2776 } else if (is_vcpu_stopped(vcpu)) {
2777 pr_err_ratelimited("can't run stopped vcpu %d\n",
2778 vcpu->vcpu_id);
2779 return -EINVAL;
2780 }
2781
2782 sync_regs(vcpu, kvm_run);
2783 enable_cpu_timer_accounting(vcpu);
2784
2785 might_fault();
2786 rc = __vcpu_run(vcpu);
2787
2788 if (signal_pending(current) && !rc) {
2789 kvm_run->exit_reason = KVM_EXIT_INTR;
2790 rc = -EINTR;
2791 }
2792
2793 if (guestdbg_exit_pending(vcpu) && !rc) {
2794 kvm_s390_prepare_debug_exit(vcpu);
2795 rc = 0;
2796 }
2797
2798 if (rc == -EREMOTE) {
2799 /* userspace support is needed, kvm_run has been prepared */
2800 rc = 0;
2801 }
2802
2803 disable_cpu_timer_accounting(vcpu);
2804 store_regs(vcpu, kvm_run);
2805
2806 if (vcpu->sigset_active)
2807 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2808
2809 vcpu->stat.exit_userspace++;
2810 return rc;
2811 }
2812
2813 /*
2814 * store status at address
2815 * we use have two special cases:
2816 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
2817 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
2818 */
2819 int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2820 {
2821 unsigned char archmode = 1;
2822 freg_t fprs[NUM_FPRS];
2823 unsigned int px;
2824 u64 clkcomp, cputm;
2825 int rc;
2826
2827 px = kvm_s390_get_prefix(vcpu);
2828 if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
2829 if (write_guest_abs(vcpu, 163, &archmode, 1))
2830 return -EFAULT;
2831 gpa = 0;
2832 } else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
2833 if (write_guest_real(vcpu, 163, &archmode, 1))
2834 return -EFAULT;
2835 gpa = px;
2836 } else
2837 gpa -= __LC_FPREGS_SAVE_AREA;
2838
2839 /* manually convert vector registers if necessary */
2840 if (MACHINE_HAS_VX) {
2841 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
2842 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
2843 fprs, 128);
2844 } else {
2845 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
2846 vcpu->run->s.regs.fprs, 128);
2847 }
2848 rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
2849 vcpu->run->s.regs.gprs, 128);
2850 rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
2851 &vcpu->arch.sie_block->gpsw, 16);
2852 rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
2853 &px, 4);
2854 rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
2855 &vcpu->run->s.regs.fpc, 4);
2856 rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
2857 &vcpu->arch.sie_block->todpr, 4);
2858 cputm = kvm_s390_get_cpu_timer(vcpu);
2859 rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
2860 &cputm, 8);
2861 clkcomp = vcpu->arch.sie_block->ckc >> 8;
2862 rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
2863 &clkcomp, 8);
2864 rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
2865 &vcpu->run->s.regs.acrs, 64);
2866 rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
2867 &vcpu->arch.sie_block->gcr, 128);
2868 return rc ? -EFAULT : 0;
2869 }
2870
2871 int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
2872 {
2873 /*
2874 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
2875 * switch in the run ioctl. Let's update our copies before we save
2876 * it into the save area
2877 */
2878 save_fpu_regs();
2879 vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
2880 save_access_regs(vcpu->run->s.regs.acrs);
2881
2882 return kvm_s390_store_status_unloaded(vcpu, addr);
2883 }
2884
2885 static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
2886 {
2887 kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2888 kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2889 }
2890
2891 static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
2892 {
2893 unsigned int i;
2894 struct kvm_vcpu *vcpu;
2895
2896 kvm_for_each_vcpu(i, vcpu, kvm) {
2897 __disable_ibs_on_vcpu(vcpu);
2898 }
2899 }
2900
2901 static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
2902 {
2903 if (!sclp.has_ibs)
2904 return;
2905 kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2906 kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2907 }
2908
2909 void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
2910 {
2911 int i, online_vcpus, started_vcpus = 0;
2912
2913 if (!is_vcpu_stopped(vcpu))
2914 return;
2915
2916 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2917 /* Only one cpu at a time may enter/leave the STOPPED state. */
2918 spin_lock(&vcpu->kvm->arch.start_stop_lock);
2919 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);
2920
2921 for (i = 0; i < online_vcpus; i++) {
2922 if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
2923 started_vcpus++;
2924 }
2925
2926 if (started_vcpus == 0) {
2927 /* we're the only active VCPU -> speed it up */
2928 __enable_ibs_on_vcpu(vcpu);
2929 } else if (started_vcpus == 1) {
2930 /*
2931 * As we are starting a second VCPU, we have to disable
2932 * the IBS facility on all VCPUs to remove potentially
2933 * oustanding ENABLE requests.
2934 */
2935 __disable_ibs_on_all_vcpus(vcpu->kvm);
2936 }
2937
2938 atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2939 /*
2940 * Another VCPU might have used IBS while we were offline.
2941 * Let's play safe and flush the VCPU at startup.
2942 */
2943 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2944 spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2945 return;
2946 }
2947
2948 void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
2949 {
2950 int i, online_vcpus, started_vcpus = 0;
2951 struct kvm_vcpu *started_vcpu = NULL;
2952
2953 if (is_vcpu_stopped(vcpu))
2954 return;
2955
2956 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2957 /* Only one cpu at a time may enter/leave the STOPPED state. */
2958 spin_lock(&vcpu->kvm->arch.start_stop_lock);
2959 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);
2960
2961 /* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2962 kvm_s390_clear_stop_irq(vcpu);
2963
2964 atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2965 __disable_ibs_on_vcpu(vcpu);
2966
2967 for (i = 0; i < online_vcpus; i++) {
2968 if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
2969 started_vcpus++;
2970 started_vcpu = vcpu->kvm->vcpus[i];
2971 }
2972 }
2973
2974 if (started_vcpus == 1) {
2975 /*
2976 * As we only have one VCPU left, we want to enable the
2977 * IBS facility for that VCPU to speed it up.
2978 */
2979 __enable_ibs_on_vcpu(started_vcpu);
2980 }
2981
2982 spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2983 return;
2984 }
2985
2986 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
2987 struct kvm_enable_cap *cap)
2988 {
2989 int r;
2990
2991 if (cap->flags)
2992 return -EINVAL;
2993
2994 switch (cap->cap) {
2995 case KVM_CAP_S390_CSS_SUPPORT:
2996 if (!vcpu->kvm->arch.css_support) {
2997 vcpu->kvm->arch.css_support = 1;
2998 VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
2999 trace_kvm_s390_enable_css(vcpu->kvm);
3000 }
3001 r = 0;
3002 break;
3003 default:
3004 r = -EINVAL;
3005 break;
3006 }
3007 return r;
3008 }
3009
3010 static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
3011 struct kvm_s390_mem_op *mop)
3012 {
3013 void __user *uaddr = (void __user *)mop->buf;
3014 void *tmpbuf = NULL;
3015 int r, srcu_idx;
3016 const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
3017 | KVM_S390_MEMOP_F_CHECK_ONLY;
3018
3019 if (mop->flags & ~supported_flags)
3020 return -EINVAL;
3021
3022 if (mop->size > MEM_OP_MAX_SIZE)
3023 return -E2BIG;
3024
3025 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
3026 tmpbuf = vmalloc(mop->size);
3027 if (!tmpbuf)
3028 return -ENOMEM;
3029 }
3030
3031 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
3032
3033 switch (mop->op) {
3034 case KVM_S390_MEMOP_LOGICAL_READ:
3035 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
3036 r = check_gva_range(vcpu, mop->gaddr, mop->ar,
3037 mop->size, GACC_FETCH);
3038 break;
3039 }
3040 r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
3041 if (r == 0) {
3042 if (copy_to_user(uaddr, tmpbuf, mop->size))
3043 r = -EFAULT;
3044 }
3045 break;
3046 case KVM_S390_MEMOP_LOGICAL_WRITE:
3047 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
3048 r = check_gva_range(vcpu, mop->gaddr, mop->ar,
3049 mop->size, GACC_STORE);
3050 break;
3051 }
3052 if (copy_from_user(tmpbuf, uaddr, mop->size)) {
3053 r = -EFAULT;
3054 break;
3055 }
3056 r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
3057 break;
3058 default:
3059 r = -EINVAL;
3060 }
3061
3062 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
3063
3064 if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
3065 kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);
3066
3067 vfree(tmpbuf);
3068 return r;
3069 }
3070
3071 long kvm_arch_vcpu_ioctl(struct file *filp,
3072 unsigned int ioctl, unsigned long arg)
3073 {
3074 struct kvm_vcpu *vcpu = filp->private_data;
3075 void __user *argp = (void __user *)arg;
3076 int idx;
3077 long r;
3078
3079 switch (ioctl) {
3080 case KVM_S390_IRQ: {
3081 struct kvm_s390_irq s390irq;
3082
3083 r = -EFAULT;
3084 if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
3085 break;
3086 r = kvm_s390_inject_vcpu(vcpu, &s390irq);
3087 break;
3088 }
3089 case KVM_S390_INTERRUPT: {
3090 struct kvm_s390_interrupt s390int;
3091 struct kvm_s390_irq s390irq;
3092
3093 r = -EFAULT;
3094 if (copy_from_user(&s390int, argp, sizeof(s390int)))
3095 break;
3096 if (s390int_to_s390irq(&s390int, &s390irq))
3097 return -EINVAL;
3098 r = kvm_s390_inject_vcpu(vcpu, &s390irq);
3099 break;
3100 }
3101 case KVM_S390_STORE_STATUS:
3102 idx = srcu_read_lock(&vcpu->kvm->srcu);
3103 r = kvm_s390_vcpu_store_status(vcpu, arg);
3104 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3105 break;
3106 case KVM_S390_SET_INITIAL_PSW: {
3107 psw_t psw;
3108
3109 r = -EFAULT;
3110 if (copy_from_user(&psw, argp, sizeof(psw)))
3111 break;
3112 r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
3113 break;
3114 }
3115 case KVM_S390_INITIAL_RESET:
3116 r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
3117 break;
3118 case KVM_SET_ONE_REG:
3119 case KVM_GET_ONE_REG: {
3120 struct kvm_one_reg reg;
3121 r = -EFAULT;
3122 if (copy_from_user(&reg, argp, sizeof(reg)))
3123 break;
3124 if (ioctl == KVM_SET_ONE_REG)
3125 r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
3126 else
3127 r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
3128 break;
3129 }
3130 #ifdef CONFIG_KVM_S390_UCONTROL
3131 case KVM_S390_UCAS_MAP: {
3132 struct kvm_s390_ucas_mapping ucasmap;
3133
3134 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
3135 r = -EFAULT;
3136 break;
3137 }
3138
3139 if (!kvm_is_ucontrol(vcpu->kvm)) {
3140 r = -EINVAL;
3141 break;
3142 }
3143
3144 r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
3145 ucasmap.vcpu_addr, ucasmap.length);
3146 break;
3147 }
3148 case KVM_S390_UCAS_UNMAP: {
3149 struct kvm_s390_ucas_mapping ucasmap;
3150
3151 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
3152 r = -EFAULT;
3153 break;
3154 }
3155
3156 if (!kvm_is_ucontrol(vcpu->kvm)) {
3157 r = -EINVAL;
3158 break;
3159 }
3160
3161 r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
3162 ucasmap.length);
3163 break;
3164 }
3165 #endif
3166 case KVM_S390_VCPU_FAULT: {
3167 r = gmap_fault(vcpu->arch.gmap, arg, 0);
3168 break;
3169 }
3170 case KVM_ENABLE_CAP:
3171 {
3172 struct kvm_enable_cap cap;
3173 r = -EFAULT;
3174 if (copy_from_user(&cap, argp, sizeof(cap)))
3175 break;
3176 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3177 break;
3178 }
3179 case KVM_S390_MEM_OP: {
3180 struct kvm_s390_mem_op mem_op;
3181
3182 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
3183 r = kvm_s390_guest_mem_op(vcpu, &mem_op);
3184 else
3185 r = -EFAULT;
3186 break;
3187 }
3188 case KVM_S390_SET_IRQ_STATE: {
3189 struct kvm_s390_irq_state irq_state;
3190
3191 r = -EFAULT;
3192 if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
3193 break;
3194 if (irq_state.len > VCPU_IRQS_MAX_BUF ||
3195 irq_state.len == 0 ||
3196 irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
3197 r = -EINVAL;
3198 break;
3199 }
3200 r = kvm_s390_set_irq_state(vcpu,
3201 (void __user *) irq_state.buf,
3202 irq_state.len);
3203 break;
3204 }
3205 case KVM_S390_GET_IRQ_STATE: {
3206 struct kvm_s390_irq_state irq_state;
3207
3208 r = -EFAULT;
3209 if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
3210 break;
3211 if (irq_state.len == 0) {
3212 r = -EINVAL;
3213 break;
3214 }
3215 r = kvm_s390_get_irq_state(vcpu,
3216 (__u8 __user *) irq_state.buf,
3217 irq_state.len);
3218 break;
3219 }
3220 default:
3221 r = -ENOTTY;
3222 }
3223 return r;
3224 }
3225
3226 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3227 {
3228 #ifdef CONFIG_KVM_S390_UCONTROL
3229 if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
3230 && (kvm_is_ucontrol(vcpu->kvm))) {
3231 vmf->page = virt_to_page(vcpu->arch.sie_block);
3232 get_page(vmf->page);
3233 return 0;
3234 }
3235 #endif
3236 return VM_FAULT_SIGBUS;
3237 }
3238
3239 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
3240 unsigned long npages)
3241 {
3242 return 0;
3243 }
3244
3245 /* Section: memory related */
3246 int kvm_arch_prepare_memory_region(struct kvm *kvm,
3247 struct kvm_memory_slot *memslot,
3248 const struct kvm_userspace_memory_region *mem,
3249 enum kvm_mr_change change)
3250 {
3251 /* A few sanity checks. We can have memory slots which have to be
3252 located/ended at a segment boundary (1MB). The memory in userland is
3253 ok to be fragmented into various different vmas. It is okay to mmap()
3254 and munmap() stuff in this slot after doing this call at any time */
3255
3256 if (mem->userspace_addr & 0xffffful)
3257 return -EINVAL;
3258
3259 if (mem->memory_size & 0xffffful)
3260 return -EINVAL;
3261
3262 if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit)
3263 return -EINVAL;
3264
3265 return 0;
3266 }
3267
3268 void kvm_arch_commit_memory_region(struct kvm *kvm,
3269 const struct kvm_userspace_memory_region *mem,
3270 const struct kvm_memory_slot *old,
3271 const struct kvm_memory_slot *new,
3272 enum kvm_mr_change change)
3273 {
3274 int rc;
3275
3276 /* If the basics of the memslot do not change, we do not want
3277 * to update the gmap. Every update causes several unnecessary
3278 * segment translation exceptions. This is usually handled just
3279 * fine by the normal fault handler + gmap, but it will also
3280 * cause faults on the prefix page of running guest CPUs.
3281 */
3282 if (old->userspace_addr == mem->userspace_addr &&
3283 old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
3284 old->npages * PAGE_SIZE == mem->memory_size)
3285 return;
3286
3287 rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
3288 mem->guest_phys_addr, mem->memory_size);
3289 if (rc)
3290 pr_warn("failed to commit memory region\n");
3291 return;
3292 }
3293
3294 static inline unsigned long nonhyp_mask(int i)
3295 {
3296 unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30;
3297
3298 return 0x0000ffffffffffffUL >> (nonhyp_fai << 4);
3299 }
3300
3301 void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu)
3302 {
3303 vcpu->valid_wakeup = false;
3304 }
3305
3306 static int __init kvm_s390_init(void)
3307 {
3308 int i;
3309
3310 if (!sclp.has_sief2) {
3311 pr_info("SIE not available\n");
3312 return -ENODEV;
3313 }
3314
3315 for (i = 0; i < 16; i++)
3316 kvm_s390_fac_list_mask[i] |=
3317 S390_lowcore.stfle_fac_list[i] & nonhyp_mask(i);
3318
3319 return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
3320 }
3321
3322 static void __exit kvm_s390_exit(void)
3323 {
3324 kvm_exit();
3325 }
3326
3327 module_init(kvm_s390_init);
3328 module_exit(kvm_s390_exit);
3329
3330 /*
3331 * Enable autoloading of the kvm module.
3332 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
3333 * since x86 takes a different approach.
3334 */
3335 #include <linux/miscdevice.h>
3336 MODULE_ALIAS_MISCDEV(KVM_MINOR);
3337 MODULE_ALIAS("devname:kvm");