]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/s390/kvm/kvm-s390.c
Merge tag 'iwlwifi-for-kalle-2015-12-16' of https://git.kernel.org/pub/scm/linux...
[mirror_ubuntu-hirsute-kernel.git] / arch / s390 / kvm / kvm-s390.c
1 /*
2 * hosting zSeries kernel virtual machines
3 *
4 * Copyright IBM Corp. 2008, 2009
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License (version 2 only)
8 * as published by the Free Software Foundation.
9 *
10 * Author(s): Carsten Otte <cotte@de.ibm.com>
11 * Christian Borntraeger <borntraeger@de.ibm.com>
12 * Heiko Carstens <heiko.carstens@de.ibm.com>
13 * Christian Ehrhardt <ehrhardt@de.ibm.com>
14 * Jason J. Herne <jjherne@us.ibm.com>
15 */
16
17 #include <linux/compiler.h>
18 #include <linux/err.h>
19 #include <linux/fs.h>
20 #include <linux/hrtimer.h>
21 #include <linux/init.h>
22 #include <linux/kvm.h>
23 #include <linux/kvm_host.h>
24 #include <linux/module.h>
25 #include <linux/random.h>
26 #include <linux/slab.h>
27 #include <linux/timer.h>
28 #include <linux/vmalloc.h>
29 #include <asm/asm-offsets.h>
30 #include <asm/lowcore.h>
31 #include <asm/etr.h>
32 #include <asm/pgtable.h>
33 #include <asm/nmi.h>
34 #include <asm/switch_to.h>
35 #include <asm/isc.h>
36 #include <asm/sclp.h>
37 #include "kvm-s390.h"
38 #include "gaccess.h"
39
40 #define KMSG_COMPONENT "kvm-s390"
41 #undef pr_fmt
42 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
43
44 #define CREATE_TRACE_POINTS
45 #include "trace.h"
46 #include "trace-s390.h"
47
48 #define MEM_OP_MAX_SIZE 65536 /* Maximum transfer size for KVM_S390_MEM_OP */
49 #define LOCAL_IRQS 32
50 #define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
51 (KVM_MAX_VCPUS + LOCAL_IRQS))
52
53 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
54
55 struct kvm_stats_debugfs_item debugfs_entries[] = {
56 { "userspace_handled", VCPU_STAT(exit_userspace) },
57 { "exit_null", VCPU_STAT(exit_null) },
58 { "exit_validity", VCPU_STAT(exit_validity) },
59 { "exit_stop_request", VCPU_STAT(exit_stop_request) },
60 { "exit_external_request", VCPU_STAT(exit_external_request) },
61 { "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
62 { "exit_instruction", VCPU_STAT(exit_instruction) },
63 { "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
64 { "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
65 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
66 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
67 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
68 { "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
69 { "instruction_lctl", VCPU_STAT(instruction_lctl) },
70 { "instruction_stctl", VCPU_STAT(instruction_stctl) },
71 { "instruction_stctg", VCPU_STAT(instruction_stctg) },
72 { "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
73 { "deliver_external_call", VCPU_STAT(deliver_external_call) },
74 { "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
75 { "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
76 { "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
77 { "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
78 { "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
79 { "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
80 { "exit_wait_state", VCPU_STAT(exit_wait_state) },
81 { "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
82 { "instruction_stidp", VCPU_STAT(instruction_stidp) },
83 { "instruction_spx", VCPU_STAT(instruction_spx) },
84 { "instruction_stpx", VCPU_STAT(instruction_stpx) },
85 { "instruction_stap", VCPU_STAT(instruction_stap) },
86 { "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
87 { "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
88 { "instruction_stsch", VCPU_STAT(instruction_stsch) },
89 { "instruction_chsc", VCPU_STAT(instruction_chsc) },
90 { "instruction_essa", VCPU_STAT(instruction_essa) },
91 { "instruction_stsi", VCPU_STAT(instruction_stsi) },
92 { "instruction_stfl", VCPU_STAT(instruction_stfl) },
93 { "instruction_tprot", VCPU_STAT(instruction_tprot) },
94 { "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
95 { "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
96 { "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
97 { "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
98 { "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
99 { "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
100 { "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
101 { "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
102 { "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
103 { "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
104 { "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
105 { "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
106 { "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
107 { "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
108 { "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
109 { "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
110 { "diagnose_10", VCPU_STAT(diagnose_10) },
111 { "diagnose_44", VCPU_STAT(diagnose_44) },
112 { "diagnose_9c", VCPU_STAT(diagnose_9c) },
113 { "diagnose_258", VCPU_STAT(diagnose_258) },
114 { "diagnose_308", VCPU_STAT(diagnose_308) },
115 { "diagnose_500", VCPU_STAT(diagnose_500) },
116 { NULL }
117 };
118
119 /* upper facilities limit for kvm */
120 unsigned long kvm_s390_fac_list_mask[] = {
121 0xffe6fffbfcfdfc40UL,
122 0x005e800000000000UL,
123 };
124
125 unsigned long kvm_s390_fac_list_mask_size(void)
126 {
127 BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
128 return ARRAY_SIZE(kvm_s390_fac_list_mask);
129 }
130
131 static struct gmap_notifier gmap_notifier;
132 debug_info_t *kvm_s390_dbf;
133
134 /* Section: not file related */
135 int kvm_arch_hardware_enable(void)
136 {
137 /* every s390 is virtualization enabled ;-) */
138 return 0;
139 }
140
141 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address);
142
143 /*
144 * This callback is executed during stop_machine(). All CPUs are therefore
145 * temporarily stopped. In order not to change guest behavior, we have to
146 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
147 * so a CPU won't be stopped while calculating with the epoch.
148 */
149 static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
150 void *v)
151 {
152 struct kvm *kvm;
153 struct kvm_vcpu *vcpu;
154 int i;
155 unsigned long long *delta = v;
156
157 list_for_each_entry(kvm, &vm_list, vm_list) {
158 kvm->arch.epoch -= *delta;
159 kvm_for_each_vcpu(i, vcpu, kvm) {
160 vcpu->arch.sie_block->epoch -= *delta;
161 }
162 }
163 return NOTIFY_OK;
164 }
165
166 static struct notifier_block kvm_clock_notifier = {
167 .notifier_call = kvm_clock_sync,
168 };
169
170 int kvm_arch_hardware_setup(void)
171 {
172 gmap_notifier.notifier_call = kvm_gmap_notifier;
173 gmap_register_ipte_notifier(&gmap_notifier);
174 atomic_notifier_chain_register(&s390_epoch_delta_notifier,
175 &kvm_clock_notifier);
176 return 0;
177 }
178
179 void kvm_arch_hardware_unsetup(void)
180 {
181 gmap_unregister_ipte_notifier(&gmap_notifier);
182 atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
183 &kvm_clock_notifier);
184 }
185
186 int kvm_arch_init(void *opaque)
187 {
188 kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
189 if (!kvm_s390_dbf)
190 return -ENOMEM;
191
192 if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
193 debug_unregister(kvm_s390_dbf);
194 return -ENOMEM;
195 }
196
197 /* Register floating interrupt controller interface. */
198 return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
199 }
200
201 void kvm_arch_exit(void)
202 {
203 debug_unregister(kvm_s390_dbf);
204 }
205
206 /* Section: device related */
207 long kvm_arch_dev_ioctl(struct file *filp,
208 unsigned int ioctl, unsigned long arg)
209 {
210 if (ioctl == KVM_S390_ENABLE_SIE)
211 return s390_enable_sie();
212 return -EINVAL;
213 }
214
215 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
216 {
217 int r;
218
219 switch (ext) {
220 case KVM_CAP_S390_PSW:
221 case KVM_CAP_S390_GMAP:
222 case KVM_CAP_SYNC_MMU:
223 #ifdef CONFIG_KVM_S390_UCONTROL
224 case KVM_CAP_S390_UCONTROL:
225 #endif
226 case KVM_CAP_ASYNC_PF:
227 case KVM_CAP_SYNC_REGS:
228 case KVM_CAP_ONE_REG:
229 case KVM_CAP_ENABLE_CAP:
230 case KVM_CAP_S390_CSS_SUPPORT:
231 case KVM_CAP_IOEVENTFD:
232 case KVM_CAP_DEVICE_CTRL:
233 case KVM_CAP_ENABLE_CAP_VM:
234 case KVM_CAP_S390_IRQCHIP:
235 case KVM_CAP_VM_ATTRIBUTES:
236 case KVM_CAP_MP_STATE:
237 case KVM_CAP_S390_INJECT_IRQ:
238 case KVM_CAP_S390_USER_SIGP:
239 case KVM_CAP_S390_USER_STSI:
240 case KVM_CAP_S390_SKEYS:
241 case KVM_CAP_S390_IRQ_STATE:
242 r = 1;
243 break;
244 case KVM_CAP_S390_MEM_OP:
245 r = MEM_OP_MAX_SIZE;
246 break;
247 case KVM_CAP_NR_VCPUS:
248 case KVM_CAP_MAX_VCPUS:
249 r = KVM_MAX_VCPUS;
250 break;
251 case KVM_CAP_NR_MEMSLOTS:
252 r = KVM_USER_MEM_SLOTS;
253 break;
254 case KVM_CAP_S390_COW:
255 r = MACHINE_HAS_ESOP;
256 break;
257 case KVM_CAP_S390_VECTOR_REGISTERS:
258 r = MACHINE_HAS_VX;
259 break;
260 default:
261 r = 0;
262 }
263 return r;
264 }
265
266 static void kvm_s390_sync_dirty_log(struct kvm *kvm,
267 struct kvm_memory_slot *memslot)
268 {
269 gfn_t cur_gfn, last_gfn;
270 unsigned long address;
271 struct gmap *gmap = kvm->arch.gmap;
272
273 down_read(&gmap->mm->mmap_sem);
274 /* Loop over all guest pages */
275 last_gfn = memslot->base_gfn + memslot->npages;
276 for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
277 address = gfn_to_hva_memslot(memslot, cur_gfn);
278
279 if (gmap_test_and_clear_dirty(address, gmap))
280 mark_page_dirty(kvm, cur_gfn);
281 }
282 up_read(&gmap->mm->mmap_sem);
283 }
284
285 /* Section: vm related */
286 /*
287 * Get (and clear) the dirty memory log for a memory slot.
288 */
289 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
290 struct kvm_dirty_log *log)
291 {
292 int r;
293 unsigned long n;
294 struct kvm_memslots *slots;
295 struct kvm_memory_slot *memslot;
296 int is_dirty = 0;
297
298 mutex_lock(&kvm->slots_lock);
299
300 r = -EINVAL;
301 if (log->slot >= KVM_USER_MEM_SLOTS)
302 goto out;
303
304 slots = kvm_memslots(kvm);
305 memslot = id_to_memslot(slots, log->slot);
306 r = -ENOENT;
307 if (!memslot->dirty_bitmap)
308 goto out;
309
310 kvm_s390_sync_dirty_log(kvm, memslot);
311 r = kvm_get_dirty_log(kvm, log, &is_dirty);
312 if (r)
313 goto out;
314
315 /* Clear the dirty log */
316 if (is_dirty) {
317 n = kvm_dirty_bitmap_bytes(memslot);
318 memset(memslot->dirty_bitmap, 0, n);
319 }
320 r = 0;
321 out:
322 mutex_unlock(&kvm->slots_lock);
323 return r;
324 }
325
326 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
327 {
328 int r;
329
330 if (cap->flags)
331 return -EINVAL;
332
333 switch (cap->cap) {
334 case KVM_CAP_S390_IRQCHIP:
335 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
336 kvm->arch.use_irqchip = 1;
337 r = 0;
338 break;
339 case KVM_CAP_S390_USER_SIGP:
340 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
341 kvm->arch.user_sigp = 1;
342 r = 0;
343 break;
344 case KVM_CAP_S390_VECTOR_REGISTERS:
345 if (MACHINE_HAS_VX) {
346 set_kvm_facility(kvm->arch.model.fac->mask, 129);
347 set_kvm_facility(kvm->arch.model.fac->list, 129);
348 r = 0;
349 } else
350 r = -EINVAL;
351 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
352 r ? "(not available)" : "(success)");
353 break;
354 case KVM_CAP_S390_USER_STSI:
355 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
356 kvm->arch.user_stsi = 1;
357 r = 0;
358 break;
359 default:
360 r = -EINVAL;
361 break;
362 }
363 return r;
364 }
365
366 static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
367 {
368 int ret;
369
370 switch (attr->attr) {
371 case KVM_S390_VM_MEM_LIMIT_SIZE:
372 ret = 0;
373 VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
374 kvm->arch.gmap->asce_end);
375 if (put_user(kvm->arch.gmap->asce_end, (u64 __user *)attr->addr))
376 ret = -EFAULT;
377 break;
378 default:
379 ret = -ENXIO;
380 break;
381 }
382 return ret;
383 }
384
385 static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
386 {
387 int ret;
388 unsigned int idx;
389 switch (attr->attr) {
390 case KVM_S390_VM_MEM_ENABLE_CMMA:
391 /* enable CMMA only for z10 and later (EDAT_1) */
392 ret = -EINVAL;
393 if (!MACHINE_IS_LPAR || !MACHINE_HAS_EDAT1)
394 break;
395
396 ret = -EBUSY;
397 VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
398 mutex_lock(&kvm->lock);
399 if (atomic_read(&kvm->online_vcpus) == 0) {
400 kvm->arch.use_cmma = 1;
401 ret = 0;
402 }
403 mutex_unlock(&kvm->lock);
404 break;
405 case KVM_S390_VM_MEM_CLR_CMMA:
406 ret = -EINVAL;
407 if (!kvm->arch.use_cmma)
408 break;
409
410 VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
411 mutex_lock(&kvm->lock);
412 idx = srcu_read_lock(&kvm->srcu);
413 s390_reset_cmma(kvm->arch.gmap->mm);
414 srcu_read_unlock(&kvm->srcu, idx);
415 mutex_unlock(&kvm->lock);
416 ret = 0;
417 break;
418 case KVM_S390_VM_MEM_LIMIT_SIZE: {
419 unsigned long new_limit;
420
421 if (kvm_is_ucontrol(kvm))
422 return -EINVAL;
423
424 if (get_user(new_limit, (u64 __user *)attr->addr))
425 return -EFAULT;
426
427 if (new_limit > kvm->arch.gmap->asce_end)
428 return -E2BIG;
429
430 ret = -EBUSY;
431 mutex_lock(&kvm->lock);
432 if (atomic_read(&kvm->online_vcpus) == 0) {
433 /* gmap_alloc will round the limit up */
434 struct gmap *new = gmap_alloc(current->mm, new_limit);
435
436 if (!new) {
437 ret = -ENOMEM;
438 } else {
439 gmap_free(kvm->arch.gmap);
440 new->private = kvm;
441 kvm->arch.gmap = new;
442 ret = 0;
443 }
444 }
445 mutex_unlock(&kvm->lock);
446 VM_EVENT(kvm, 3, "SET: max guest memory: %lu bytes", new_limit);
447 break;
448 }
449 default:
450 ret = -ENXIO;
451 break;
452 }
453 return ret;
454 }
455
456 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);
457
458 static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
459 {
460 struct kvm_vcpu *vcpu;
461 int i;
462
463 if (!test_kvm_facility(kvm, 76))
464 return -EINVAL;
465
466 mutex_lock(&kvm->lock);
467 switch (attr->attr) {
468 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
469 get_random_bytes(
470 kvm->arch.crypto.crycb->aes_wrapping_key_mask,
471 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
472 kvm->arch.crypto.aes_kw = 1;
473 VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
474 break;
475 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
476 get_random_bytes(
477 kvm->arch.crypto.crycb->dea_wrapping_key_mask,
478 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
479 kvm->arch.crypto.dea_kw = 1;
480 VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
481 break;
482 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
483 kvm->arch.crypto.aes_kw = 0;
484 memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
485 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
486 VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
487 break;
488 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
489 kvm->arch.crypto.dea_kw = 0;
490 memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
491 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
492 VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
493 break;
494 default:
495 mutex_unlock(&kvm->lock);
496 return -ENXIO;
497 }
498
499 kvm_for_each_vcpu(i, vcpu, kvm) {
500 kvm_s390_vcpu_crypto_setup(vcpu);
501 exit_sie(vcpu);
502 }
503 mutex_unlock(&kvm->lock);
504 return 0;
505 }
506
507 static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
508 {
509 u8 gtod_high;
510
511 if (copy_from_user(&gtod_high, (void __user *)attr->addr,
512 sizeof(gtod_high)))
513 return -EFAULT;
514
515 if (gtod_high != 0)
516 return -EINVAL;
517 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
518
519 return 0;
520 }
521
522 static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
523 {
524 u64 gtod;
525
526 if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
527 return -EFAULT;
528
529 kvm_s390_set_tod_clock(kvm, gtod);
530 VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod);
531 return 0;
532 }
533
534 static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
535 {
536 int ret;
537
538 if (attr->flags)
539 return -EINVAL;
540
541 switch (attr->attr) {
542 case KVM_S390_VM_TOD_HIGH:
543 ret = kvm_s390_set_tod_high(kvm, attr);
544 break;
545 case KVM_S390_VM_TOD_LOW:
546 ret = kvm_s390_set_tod_low(kvm, attr);
547 break;
548 default:
549 ret = -ENXIO;
550 break;
551 }
552 return ret;
553 }
554
555 static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
556 {
557 u8 gtod_high = 0;
558
559 if (copy_to_user((void __user *)attr->addr, &gtod_high,
560 sizeof(gtod_high)))
561 return -EFAULT;
562 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
563
564 return 0;
565 }
566
567 static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
568 {
569 u64 gtod;
570
571 gtod = kvm_s390_get_tod_clock_fast(kvm);
572 if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
573 return -EFAULT;
574 VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
575
576 return 0;
577 }
578
579 static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
580 {
581 int ret;
582
583 if (attr->flags)
584 return -EINVAL;
585
586 switch (attr->attr) {
587 case KVM_S390_VM_TOD_HIGH:
588 ret = kvm_s390_get_tod_high(kvm, attr);
589 break;
590 case KVM_S390_VM_TOD_LOW:
591 ret = kvm_s390_get_tod_low(kvm, attr);
592 break;
593 default:
594 ret = -ENXIO;
595 break;
596 }
597 return ret;
598 }
599
600 static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
601 {
602 struct kvm_s390_vm_cpu_processor *proc;
603 int ret = 0;
604
605 mutex_lock(&kvm->lock);
606 if (atomic_read(&kvm->online_vcpus)) {
607 ret = -EBUSY;
608 goto out;
609 }
610 proc = kzalloc(sizeof(*proc), GFP_KERNEL);
611 if (!proc) {
612 ret = -ENOMEM;
613 goto out;
614 }
615 if (!copy_from_user(proc, (void __user *)attr->addr,
616 sizeof(*proc))) {
617 memcpy(&kvm->arch.model.cpu_id, &proc->cpuid,
618 sizeof(struct cpuid));
619 kvm->arch.model.ibc = proc->ibc;
620 memcpy(kvm->arch.model.fac->list, proc->fac_list,
621 S390_ARCH_FAC_LIST_SIZE_BYTE);
622 } else
623 ret = -EFAULT;
624 kfree(proc);
625 out:
626 mutex_unlock(&kvm->lock);
627 return ret;
628 }
629
630 static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
631 {
632 int ret = -ENXIO;
633
634 switch (attr->attr) {
635 case KVM_S390_VM_CPU_PROCESSOR:
636 ret = kvm_s390_set_processor(kvm, attr);
637 break;
638 }
639 return ret;
640 }
641
642 static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
643 {
644 struct kvm_s390_vm_cpu_processor *proc;
645 int ret = 0;
646
647 proc = kzalloc(sizeof(*proc), GFP_KERNEL);
648 if (!proc) {
649 ret = -ENOMEM;
650 goto out;
651 }
652 memcpy(&proc->cpuid, &kvm->arch.model.cpu_id, sizeof(struct cpuid));
653 proc->ibc = kvm->arch.model.ibc;
654 memcpy(&proc->fac_list, kvm->arch.model.fac->list, S390_ARCH_FAC_LIST_SIZE_BYTE);
655 if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
656 ret = -EFAULT;
657 kfree(proc);
658 out:
659 return ret;
660 }
661
662 static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
663 {
664 struct kvm_s390_vm_cpu_machine *mach;
665 int ret = 0;
666
667 mach = kzalloc(sizeof(*mach), GFP_KERNEL);
668 if (!mach) {
669 ret = -ENOMEM;
670 goto out;
671 }
672 get_cpu_id((struct cpuid *) &mach->cpuid);
673 mach->ibc = sclp.ibc;
674 memcpy(&mach->fac_mask, kvm->arch.model.fac->mask,
675 S390_ARCH_FAC_LIST_SIZE_BYTE);
676 memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
677 S390_ARCH_FAC_LIST_SIZE_BYTE);
678 if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
679 ret = -EFAULT;
680 kfree(mach);
681 out:
682 return ret;
683 }
684
685 static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
686 {
687 int ret = -ENXIO;
688
689 switch (attr->attr) {
690 case KVM_S390_VM_CPU_PROCESSOR:
691 ret = kvm_s390_get_processor(kvm, attr);
692 break;
693 case KVM_S390_VM_CPU_MACHINE:
694 ret = kvm_s390_get_machine(kvm, attr);
695 break;
696 }
697 return ret;
698 }
699
700 static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
701 {
702 int ret;
703
704 switch (attr->group) {
705 case KVM_S390_VM_MEM_CTRL:
706 ret = kvm_s390_set_mem_control(kvm, attr);
707 break;
708 case KVM_S390_VM_TOD:
709 ret = kvm_s390_set_tod(kvm, attr);
710 break;
711 case KVM_S390_VM_CPU_MODEL:
712 ret = kvm_s390_set_cpu_model(kvm, attr);
713 break;
714 case KVM_S390_VM_CRYPTO:
715 ret = kvm_s390_vm_set_crypto(kvm, attr);
716 break;
717 default:
718 ret = -ENXIO;
719 break;
720 }
721
722 return ret;
723 }
724
725 static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
726 {
727 int ret;
728
729 switch (attr->group) {
730 case KVM_S390_VM_MEM_CTRL:
731 ret = kvm_s390_get_mem_control(kvm, attr);
732 break;
733 case KVM_S390_VM_TOD:
734 ret = kvm_s390_get_tod(kvm, attr);
735 break;
736 case KVM_S390_VM_CPU_MODEL:
737 ret = kvm_s390_get_cpu_model(kvm, attr);
738 break;
739 default:
740 ret = -ENXIO;
741 break;
742 }
743
744 return ret;
745 }
746
747 static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
748 {
749 int ret;
750
751 switch (attr->group) {
752 case KVM_S390_VM_MEM_CTRL:
753 switch (attr->attr) {
754 case KVM_S390_VM_MEM_ENABLE_CMMA:
755 case KVM_S390_VM_MEM_CLR_CMMA:
756 case KVM_S390_VM_MEM_LIMIT_SIZE:
757 ret = 0;
758 break;
759 default:
760 ret = -ENXIO;
761 break;
762 }
763 break;
764 case KVM_S390_VM_TOD:
765 switch (attr->attr) {
766 case KVM_S390_VM_TOD_LOW:
767 case KVM_S390_VM_TOD_HIGH:
768 ret = 0;
769 break;
770 default:
771 ret = -ENXIO;
772 break;
773 }
774 break;
775 case KVM_S390_VM_CPU_MODEL:
776 switch (attr->attr) {
777 case KVM_S390_VM_CPU_PROCESSOR:
778 case KVM_S390_VM_CPU_MACHINE:
779 ret = 0;
780 break;
781 default:
782 ret = -ENXIO;
783 break;
784 }
785 break;
786 case KVM_S390_VM_CRYPTO:
787 switch (attr->attr) {
788 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
789 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
790 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
791 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
792 ret = 0;
793 break;
794 default:
795 ret = -ENXIO;
796 break;
797 }
798 break;
799 default:
800 ret = -ENXIO;
801 break;
802 }
803
804 return ret;
805 }
806
807 static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
808 {
809 uint8_t *keys;
810 uint64_t hva;
811 unsigned long curkey;
812 int i, r = 0;
813
814 if (args->flags != 0)
815 return -EINVAL;
816
817 /* Is this guest using storage keys? */
818 if (!mm_use_skey(current->mm))
819 return KVM_S390_GET_SKEYS_NONE;
820
821 /* Enforce sane limit on memory allocation */
822 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
823 return -EINVAL;
824
825 keys = kmalloc_array(args->count, sizeof(uint8_t),
826 GFP_KERNEL | __GFP_NOWARN);
827 if (!keys)
828 keys = vmalloc(sizeof(uint8_t) * args->count);
829 if (!keys)
830 return -ENOMEM;
831
832 for (i = 0; i < args->count; i++) {
833 hva = gfn_to_hva(kvm, args->start_gfn + i);
834 if (kvm_is_error_hva(hva)) {
835 r = -EFAULT;
836 goto out;
837 }
838
839 curkey = get_guest_storage_key(current->mm, hva);
840 if (IS_ERR_VALUE(curkey)) {
841 r = curkey;
842 goto out;
843 }
844 keys[i] = curkey;
845 }
846
847 r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
848 sizeof(uint8_t) * args->count);
849 if (r)
850 r = -EFAULT;
851 out:
852 kvfree(keys);
853 return r;
854 }
855
856 static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
857 {
858 uint8_t *keys;
859 uint64_t hva;
860 int i, r = 0;
861
862 if (args->flags != 0)
863 return -EINVAL;
864
865 /* Enforce sane limit on memory allocation */
866 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
867 return -EINVAL;
868
869 keys = kmalloc_array(args->count, sizeof(uint8_t),
870 GFP_KERNEL | __GFP_NOWARN);
871 if (!keys)
872 keys = vmalloc(sizeof(uint8_t) * args->count);
873 if (!keys)
874 return -ENOMEM;
875
876 r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
877 sizeof(uint8_t) * args->count);
878 if (r) {
879 r = -EFAULT;
880 goto out;
881 }
882
883 /* Enable storage key handling for the guest */
884 r = s390_enable_skey();
885 if (r)
886 goto out;
887
888 for (i = 0; i < args->count; i++) {
889 hva = gfn_to_hva(kvm, args->start_gfn + i);
890 if (kvm_is_error_hva(hva)) {
891 r = -EFAULT;
892 goto out;
893 }
894
895 /* Lowest order bit is reserved */
896 if (keys[i] & 0x01) {
897 r = -EINVAL;
898 goto out;
899 }
900
901 r = set_guest_storage_key(current->mm, hva,
902 (unsigned long)keys[i], 0);
903 if (r)
904 goto out;
905 }
906 out:
907 kvfree(keys);
908 return r;
909 }
910
911 long kvm_arch_vm_ioctl(struct file *filp,
912 unsigned int ioctl, unsigned long arg)
913 {
914 struct kvm *kvm = filp->private_data;
915 void __user *argp = (void __user *)arg;
916 struct kvm_device_attr attr;
917 int r;
918
919 switch (ioctl) {
920 case KVM_S390_INTERRUPT: {
921 struct kvm_s390_interrupt s390int;
922
923 r = -EFAULT;
924 if (copy_from_user(&s390int, argp, sizeof(s390int)))
925 break;
926 r = kvm_s390_inject_vm(kvm, &s390int);
927 break;
928 }
929 case KVM_ENABLE_CAP: {
930 struct kvm_enable_cap cap;
931 r = -EFAULT;
932 if (copy_from_user(&cap, argp, sizeof(cap)))
933 break;
934 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
935 break;
936 }
937 case KVM_CREATE_IRQCHIP: {
938 struct kvm_irq_routing_entry routing;
939
940 r = -EINVAL;
941 if (kvm->arch.use_irqchip) {
942 /* Set up dummy routing. */
943 memset(&routing, 0, sizeof(routing));
944 r = kvm_set_irq_routing(kvm, &routing, 0, 0);
945 }
946 break;
947 }
948 case KVM_SET_DEVICE_ATTR: {
949 r = -EFAULT;
950 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
951 break;
952 r = kvm_s390_vm_set_attr(kvm, &attr);
953 break;
954 }
955 case KVM_GET_DEVICE_ATTR: {
956 r = -EFAULT;
957 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
958 break;
959 r = kvm_s390_vm_get_attr(kvm, &attr);
960 break;
961 }
962 case KVM_HAS_DEVICE_ATTR: {
963 r = -EFAULT;
964 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
965 break;
966 r = kvm_s390_vm_has_attr(kvm, &attr);
967 break;
968 }
969 case KVM_S390_GET_SKEYS: {
970 struct kvm_s390_skeys args;
971
972 r = -EFAULT;
973 if (copy_from_user(&args, argp,
974 sizeof(struct kvm_s390_skeys)))
975 break;
976 r = kvm_s390_get_skeys(kvm, &args);
977 break;
978 }
979 case KVM_S390_SET_SKEYS: {
980 struct kvm_s390_skeys args;
981
982 r = -EFAULT;
983 if (copy_from_user(&args, argp,
984 sizeof(struct kvm_s390_skeys)))
985 break;
986 r = kvm_s390_set_skeys(kvm, &args);
987 break;
988 }
989 default:
990 r = -ENOTTY;
991 }
992
993 return r;
994 }
995
996 static int kvm_s390_query_ap_config(u8 *config)
997 {
998 u32 fcn_code = 0x04000000UL;
999 u32 cc = 0;
1000
1001 memset(config, 0, 128);
1002 asm volatile(
1003 "lgr 0,%1\n"
1004 "lgr 2,%2\n"
1005 ".long 0xb2af0000\n" /* PQAP(QCI) */
1006 "0: ipm %0\n"
1007 "srl %0,28\n"
1008 "1:\n"
1009 EX_TABLE(0b, 1b)
1010 : "+r" (cc)
1011 : "r" (fcn_code), "r" (config)
1012 : "cc", "0", "2", "memory"
1013 );
1014
1015 return cc;
1016 }
1017
1018 static int kvm_s390_apxa_installed(void)
1019 {
1020 u8 config[128];
1021 int cc;
1022
1023 if (test_facility(2) && test_facility(12)) {
1024 cc = kvm_s390_query_ap_config(config);
1025
1026 if (cc)
1027 pr_err("PQAP(QCI) failed with cc=%d", cc);
1028 else
1029 return config[0] & 0x40;
1030 }
1031
1032 return 0;
1033 }
1034
1035 static void kvm_s390_set_crycb_format(struct kvm *kvm)
1036 {
1037 kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;
1038
1039 if (kvm_s390_apxa_installed())
1040 kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
1041 else
1042 kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
1043 }
1044
1045 static void kvm_s390_get_cpu_id(struct cpuid *cpu_id)
1046 {
1047 get_cpu_id(cpu_id);
1048 cpu_id->version = 0xff;
1049 }
1050
1051 static int kvm_s390_crypto_init(struct kvm *kvm)
1052 {
1053 if (!test_kvm_facility(kvm, 76))
1054 return 0;
1055
1056 kvm->arch.crypto.crycb = kzalloc(sizeof(*kvm->arch.crypto.crycb),
1057 GFP_KERNEL | GFP_DMA);
1058 if (!kvm->arch.crypto.crycb)
1059 return -ENOMEM;
1060
1061 kvm_s390_set_crycb_format(kvm);
1062
1063 /* Enable AES/DEA protected key functions by default */
1064 kvm->arch.crypto.aes_kw = 1;
1065 kvm->arch.crypto.dea_kw = 1;
1066 get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
1067 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
1068 get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
1069 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1070
1071 return 0;
1072 }
1073
1074 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1075 {
1076 int i, rc;
1077 char debug_name[16];
1078 static unsigned long sca_offset;
1079
1080 rc = -EINVAL;
1081 #ifdef CONFIG_KVM_S390_UCONTROL
1082 if (type & ~KVM_VM_S390_UCONTROL)
1083 goto out_err;
1084 if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
1085 goto out_err;
1086 #else
1087 if (type)
1088 goto out_err;
1089 #endif
1090
1091 rc = s390_enable_sie();
1092 if (rc)
1093 goto out_err;
1094
1095 rc = -ENOMEM;
1096
1097 kvm->arch.sca = (struct sca_block *) get_zeroed_page(GFP_KERNEL);
1098 if (!kvm->arch.sca)
1099 goto out_err;
1100 spin_lock(&kvm_lock);
1101 sca_offset += 16;
1102 if (sca_offset + sizeof(struct sca_block) > PAGE_SIZE)
1103 sca_offset = 0;
1104 kvm->arch.sca = (struct sca_block *) ((char *) kvm->arch.sca + sca_offset);
1105 spin_unlock(&kvm_lock);
1106
1107 sprintf(debug_name, "kvm-%u", current->pid);
1108
1109 kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1110 if (!kvm->arch.dbf)
1111 goto out_err;
1112
1113 /*
1114 * The architectural maximum amount of facilities is 16 kbit. To store
1115 * this amount, 2 kbyte of memory is required. Thus we need a full
1116 * page to hold the guest facility list (arch.model.fac->list) and the
1117 * facility mask (arch.model.fac->mask). Its address size has to be
1118 * 31 bits and word aligned.
1119 */
1120 kvm->arch.model.fac =
1121 (struct kvm_s390_fac *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
1122 if (!kvm->arch.model.fac)
1123 goto out_err;
1124
1125 /* Populate the facility mask initially. */
1126 memcpy(kvm->arch.model.fac->mask, S390_lowcore.stfle_fac_list,
1127 S390_ARCH_FAC_LIST_SIZE_BYTE);
1128 for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
1129 if (i < kvm_s390_fac_list_mask_size())
1130 kvm->arch.model.fac->mask[i] &= kvm_s390_fac_list_mask[i];
1131 else
1132 kvm->arch.model.fac->mask[i] = 0UL;
1133 }
1134
1135 /* Populate the facility list initially. */
1136 memcpy(kvm->arch.model.fac->list, kvm->arch.model.fac->mask,
1137 S390_ARCH_FAC_LIST_SIZE_BYTE);
1138
1139 kvm_s390_get_cpu_id(&kvm->arch.model.cpu_id);
1140 kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1141
1142 if (kvm_s390_crypto_init(kvm) < 0)
1143 goto out_err;
1144
1145 spin_lock_init(&kvm->arch.float_int.lock);
1146 for (i = 0; i < FIRQ_LIST_COUNT; i++)
1147 INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1148 init_waitqueue_head(&kvm->arch.ipte_wq);
1149 mutex_init(&kvm->arch.ipte_mutex);
1150
1151 debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1152 VM_EVENT(kvm, 3, "vm created with type %lu", type);
1153
1154 if (type & KVM_VM_S390_UCONTROL) {
1155 kvm->arch.gmap = NULL;
1156 } else {
1157 kvm->arch.gmap = gmap_alloc(current->mm, (1UL << 44) - 1);
1158 if (!kvm->arch.gmap)
1159 goto out_err;
1160 kvm->arch.gmap->private = kvm;
1161 kvm->arch.gmap->pfault_enabled = 0;
1162 }
1163
1164 kvm->arch.css_support = 0;
1165 kvm->arch.use_irqchip = 0;
1166 kvm->arch.epoch = 0;
1167
1168 spin_lock_init(&kvm->arch.start_stop_lock);
1169 KVM_EVENT(3, "vm 0x%p created by pid %u", kvm, current->pid);
1170
1171 return 0;
1172 out_err:
1173 kfree(kvm->arch.crypto.crycb);
1174 free_page((unsigned long)kvm->arch.model.fac);
1175 debug_unregister(kvm->arch.dbf);
1176 free_page((unsigned long)(kvm->arch.sca));
1177 KVM_EVENT(3, "creation of vm failed: %d", rc);
1178 return rc;
1179 }
1180
1181 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
1182 {
1183 VCPU_EVENT(vcpu, 3, "%s", "free cpu");
1184 trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
1185 kvm_s390_clear_local_irqs(vcpu);
1186 kvm_clear_async_pf_completion_queue(vcpu);
1187 if (!kvm_is_ucontrol(vcpu->kvm)) {
1188 clear_bit(63 - vcpu->vcpu_id,
1189 (unsigned long *) &vcpu->kvm->arch.sca->mcn);
1190 if (vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sda ==
1191 (__u64) vcpu->arch.sie_block)
1192 vcpu->kvm->arch.sca->cpu[vcpu->vcpu_id].sda = 0;
1193 }
1194 smp_mb();
1195
1196 if (kvm_is_ucontrol(vcpu->kvm))
1197 gmap_free(vcpu->arch.gmap);
1198
1199 if (vcpu->kvm->arch.use_cmma)
1200 kvm_s390_vcpu_unsetup_cmma(vcpu);
1201 free_page((unsigned long)(vcpu->arch.sie_block));
1202
1203 kvm_vcpu_uninit(vcpu);
1204 kmem_cache_free(kvm_vcpu_cache, vcpu);
1205 }
1206
1207 static void kvm_free_vcpus(struct kvm *kvm)
1208 {
1209 unsigned int i;
1210 struct kvm_vcpu *vcpu;
1211
1212 kvm_for_each_vcpu(i, vcpu, kvm)
1213 kvm_arch_vcpu_destroy(vcpu);
1214
1215 mutex_lock(&kvm->lock);
1216 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
1217 kvm->vcpus[i] = NULL;
1218
1219 atomic_set(&kvm->online_vcpus, 0);
1220 mutex_unlock(&kvm->lock);
1221 }
1222
1223 void kvm_arch_destroy_vm(struct kvm *kvm)
1224 {
1225 kvm_free_vcpus(kvm);
1226 free_page((unsigned long)kvm->arch.model.fac);
1227 free_page((unsigned long)(kvm->arch.sca));
1228 debug_unregister(kvm->arch.dbf);
1229 kfree(kvm->arch.crypto.crycb);
1230 if (!kvm_is_ucontrol(kvm))
1231 gmap_free(kvm->arch.gmap);
1232 kvm_s390_destroy_adapters(kvm);
1233 kvm_s390_clear_float_irqs(kvm);
1234 KVM_EVENT(3, "vm 0x%p destroyed", kvm);
1235 }
1236
1237 /* Section: vcpu related */
1238 static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
1239 {
1240 vcpu->arch.gmap = gmap_alloc(current->mm, -1UL);
1241 if (!vcpu->arch.gmap)
1242 return -ENOMEM;
1243 vcpu->arch.gmap->private = vcpu->kvm;
1244
1245 return 0;
1246 }
1247
1248 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
1249 {
1250 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
1251 kvm_clear_async_pf_completion_queue(vcpu);
1252 vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
1253 KVM_SYNC_GPRS |
1254 KVM_SYNC_ACRS |
1255 KVM_SYNC_CRS |
1256 KVM_SYNC_ARCH0 |
1257 KVM_SYNC_PFAULT;
1258 if (test_kvm_facility(vcpu->kvm, 129))
1259 vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
1260
1261 if (kvm_is_ucontrol(vcpu->kvm))
1262 return __kvm_ucontrol_vcpu_init(vcpu);
1263
1264 return 0;
1265 }
1266
1267 /*
1268 * Backs up the current FP/VX register save area on a particular
1269 * destination. Used to switch between different register save
1270 * areas.
1271 */
1272 static inline void save_fpu_to(struct fpu *dst)
1273 {
1274 dst->fpc = current->thread.fpu.fpc;
1275 dst->regs = current->thread.fpu.regs;
1276 }
1277
1278 /*
1279 * Switches the FP/VX register save area from which to lazy
1280 * restore register contents.
1281 */
1282 static inline void load_fpu_from(struct fpu *from)
1283 {
1284 current->thread.fpu.fpc = from->fpc;
1285 current->thread.fpu.regs = from->regs;
1286 }
1287
1288 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
1289 {
1290 /* Save host register state */
1291 save_fpu_regs();
1292 save_fpu_to(&vcpu->arch.host_fpregs);
1293
1294 if (test_kvm_facility(vcpu->kvm, 129)) {
1295 current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
1296 /*
1297 * Use the register save area in the SIE-control block
1298 * for register restore and save in kvm_arch_vcpu_put()
1299 */
1300 current->thread.fpu.vxrs =
1301 (__vector128 *)&vcpu->run->s.regs.vrs;
1302 } else
1303 load_fpu_from(&vcpu->arch.guest_fpregs);
1304
1305 if (test_fp_ctl(current->thread.fpu.fpc))
1306 /* User space provided an invalid FPC, let's clear it */
1307 current->thread.fpu.fpc = 0;
1308
1309 save_access_regs(vcpu->arch.host_acrs);
1310 restore_access_regs(vcpu->run->s.regs.acrs);
1311 gmap_enable(vcpu->arch.gmap);
1312 atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1313 }
1314
1315 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
1316 {
1317 atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
1318 gmap_disable(vcpu->arch.gmap);
1319
1320 save_fpu_regs();
1321
1322 if (test_kvm_facility(vcpu->kvm, 129))
1323 /*
1324 * kvm_arch_vcpu_load() set up the register save area to
1325 * the &vcpu->run->s.regs.vrs and, thus, the vector registers
1326 * are already saved. Only the floating-point control must be
1327 * copied.
1328 */
1329 vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
1330 else
1331 save_fpu_to(&vcpu->arch.guest_fpregs);
1332 load_fpu_from(&vcpu->arch.host_fpregs);
1333
1334 save_access_regs(vcpu->run->s.regs.acrs);
1335 restore_access_regs(vcpu->arch.host_acrs);
1336 }
1337
1338 static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
1339 {
1340 /* this equals initial cpu reset in pop, but we don't switch to ESA */
1341 vcpu->arch.sie_block->gpsw.mask = 0UL;
1342 vcpu->arch.sie_block->gpsw.addr = 0UL;
1343 kvm_s390_set_prefix(vcpu, 0);
1344 vcpu->arch.sie_block->cputm = 0UL;
1345 vcpu->arch.sie_block->ckc = 0UL;
1346 vcpu->arch.sie_block->todpr = 0;
1347 memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
1348 vcpu->arch.sie_block->gcr[0] = 0xE0UL;
1349 vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
1350 vcpu->arch.guest_fpregs.fpc = 0;
1351 asm volatile("lfpc %0" : : "Q" (vcpu->arch.guest_fpregs.fpc));
1352 vcpu->arch.sie_block->gbea = 1;
1353 vcpu->arch.sie_block->pp = 0;
1354 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
1355 kvm_clear_async_pf_completion_queue(vcpu);
1356 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
1357 kvm_s390_vcpu_stop(vcpu);
1358 kvm_s390_clear_local_irqs(vcpu);
1359 }
1360
1361 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
1362 {
1363 mutex_lock(&vcpu->kvm->lock);
1364 preempt_disable();
1365 vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
1366 preempt_enable();
1367 mutex_unlock(&vcpu->kvm->lock);
1368 if (!kvm_is_ucontrol(vcpu->kvm))
1369 vcpu->arch.gmap = vcpu->kvm->arch.gmap;
1370 }
1371
1372 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
1373 {
1374 if (!test_kvm_facility(vcpu->kvm, 76))
1375 return;
1376
1377 vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);
1378
1379 if (vcpu->kvm->arch.crypto.aes_kw)
1380 vcpu->arch.sie_block->ecb3 |= ECB3_AES;
1381 if (vcpu->kvm->arch.crypto.dea_kw)
1382 vcpu->arch.sie_block->ecb3 |= ECB3_DEA;
1383
1384 vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
1385 }
1386
1387 void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
1388 {
1389 free_page(vcpu->arch.sie_block->cbrlo);
1390 vcpu->arch.sie_block->cbrlo = 0;
1391 }
1392
1393 int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
1394 {
1395 vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
1396 if (!vcpu->arch.sie_block->cbrlo)
1397 return -ENOMEM;
1398
1399 vcpu->arch.sie_block->ecb2 |= 0x80;
1400 vcpu->arch.sie_block->ecb2 &= ~0x08;
1401 return 0;
1402 }
1403
1404 static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
1405 {
1406 struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;
1407
1408 vcpu->arch.cpu_id = model->cpu_id;
1409 vcpu->arch.sie_block->ibc = model->ibc;
1410 vcpu->arch.sie_block->fac = (int) (long) model->fac->list;
1411 }
1412
1413 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
1414 {
1415 int rc = 0;
1416
1417 atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
1418 CPUSTAT_SM |
1419 CPUSTAT_STOPPED);
1420
1421 if (test_kvm_facility(vcpu->kvm, 78))
1422 atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
1423 else if (test_kvm_facility(vcpu->kvm, 8))
1424 atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);
1425
1426 kvm_s390_vcpu_setup_model(vcpu);
1427
1428 vcpu->arch.sie_block->ecb = 6;
1429 if (test_kvm_facility(vcpu->kvm, 50) && test_kvm_facility(vcpu->kvm, 73))
1430 vcpu->arch.sie_block->ecb |= 0x10;
1431
1432 vcpu->arch.sie_block->ecb2 = 8;
1433 vcpu->arch.sie_block->eca = 0xC1002000U;
1434 if (sclp.has_siif)
1435 vcpu->arch.sie_block->eca |= 1;
1436 if (sclp.has_sigpif)
1437 vcpu->arch.sie_block->eca |= 0x10000000U;
1438 if (test_kvm_facility(vcpu->kvm, 129)) {
1439 vcpu->arch.sie_block->eca |= 0x00020000;
1440 vcpu->arch.sie_block->ecd |= 0x20000000;
1441 }
1442 vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
1443
1444 if (vcpu->kvm->arch.use_cmma) {
1445 rc = kvm_s390_vcpu_setup_cmma(vcpu);
1446 if (rc)
1447 return rc;
1448 }
1449 hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1450 vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
1451
1452 kvm_s390_vcpu_crypto_setup(vcpu);
1453
1454 return rc;
1455 }
1456
1457 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
1458 unsigned int id)
1459 {
1460 struct kvm_vcpu *vcpu;
1461 struct sie_page *sie_page;
1462 int rc = -EINVAL;
1463
1464 if (id >= KVM_MAX_VCPUS)
1465 goto out;
1466
1467 rc = -ENOMEM;
1468
1469 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
1470 if (!vcpu)
1471 goto out;
1472
1473 sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
1474 if (!sie_page)
1475 goto out_free_cpu;
1476
1477 vcpu->arch.sie_block = &sie_page->sie_block;
1478 vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;
1479
1480 vcpu->arch.sie_block->icpua = id;
1481 if (!kvm_is_ucontrol(kvm)) {
1482 if (!kvm->arch.sca) {
1483 WARN_ON_ONCE(1);
1484 goto out_free_cpu;
1485 }
1486 if (!kvm->arch.sca->cpu[id].sda)
1487 kvm->arch.sca->cpu[id].sda =
1488 (__u64) vcpu->arch.sie_block;
1489 vcpu->arch.sie_block->scaoh =
1490 (__u32)(((__u64)kvm->arch.sca) >> 32);
1491 vcpu->arch.sie_block->scaol = (__u32)(__u64)kvm->arch.sca;
1492 set_bit(63 - id, (unsigned long *) &kvm->arch.sca->mcn);
1493 }
1494
1495 spin_lock_init(&vcpu->arch.local_int.lock);
1496 vcpu->arch.local_int.float_int = &kvm->arch.float_int;
1497 vcpu->arch.local_int.wq = &vcpu->wq;
1498 vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
1499
1500 /*
1501 * Allocate a save area for floating-point registers. If the vector
1502 * extension is available, register contents are saved in the SIE
1503 * control block. The allocated save area is still required in
1504 * particular places, for example, in kvm_s390_vcpu_store_status().
1505 */
1506 vcpu->arch.guest_fpregs.fprs = kzalloc(sizeof(freg_t) * __NUM_FPRS,
1507 GFP_KERNEL);
1508 if (!vcpu->arch.guest_fpregs.fprs) {
1509 rc = -ENOMEM;
1510 goto out_free_sie_block;
1511 }
1512
1513 rc = kvm_vcpu_init(vcpu, kvm, id);
1514 if (rc)
1515 goto out_free_sie_block;
1516 VM_EVENT(kvm, 3, "create cpu %d at %p, sie block at %p", id, vcpu,
1517 vcpu->arch.sie_block);
1518 trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
1519
1520 return vcpu;
1521 out_free_sie_block:
1522 free_page((unsigned long)(vcpu->arch.sie_block));
1523 out_free_cpu:
1524 kmem_cache_free(kvm_vcpu_cache, vcpu);
1525 out:
1526 return ERR_PTR(rc);
1527 }
1528
1529 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
1530 {
1531 return kvm_s390_vcpu_has_irq(vcpu, 0);
1532 }
1533
1534 void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
1535 {
1536 atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1537 exit_sie(vcpu);
1538 }
1539
1540 void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
1541 {
1542 atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
1543 }
1544
1545 static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
1546 {
1547 atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1548 exit_sie(vcpu);
1549 }
1550
1551 static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
1552 {
1553 atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
1554 }
1555
1556 /*
1557 * Kick a guest cpu out of SIE and wait until SIE is not running.
1558 * If the CPU is not running (e.g. waiting as idle) the function will
1559 * return immediately. */
1560 void exit_sie(struct kvm_vcpu *vcpu)
1561 {
1562 atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
1563 while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
1564 cpu_relax();
1565 }
1566
1567 /* Kick a guest cpu out of SIE to process a request synchronously */
1568 void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
1569 {
1570 kvm_make_request(req, vcpu);
1571 kvm_s390_vcpu_request(vcpu);
1572 }
1573
1574 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long address)
1575 {
1576 int i;
1577 struct kvm *kvm = gmap->private;
1578 struct kvm_vcpu *vcpu;
1579
1580 kvm_for_each_vcpu(i, vcpu, kvm) {
1581 /* match against both prefix pages */
1582 if (kvm_s390_get_prefix(vcpu) == (address & ~0x1000UL)) {
1583 VCPU_EVENT(vcpu, 2, "gmap notifier for %lx", address);
1584 kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
1585 }
1586 }
1587 }
1588
1589 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
1590 {
1591 /* kvm common code refers to this, but never calls it */
1592 BUG();
1593 return 0;
1594 }
1595
1596 static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
1597 struct kvm_one_reg *reg)
1598 {
1599 int r = -EINVAL;
1600
1601 switch (reg->id) {
1602 case KVM_REG_S390_TODPR:
1603 r = put_user(vcpu->arch.sie_block->todpr,
1604 (u32 __user *)reg->addr);
1605 break;
1606 case KVM_REG_S390_EPOCHDIFF:
1607 r = put_user(vcpu->arch.sie_block->epoch,
1608 (u64 __user *)reg->addr);
1609 break;
1610 case KVM_REG_S390_CPU_TIMER:
1611 r = put_user(vcpu->arch.sie_block->cputm,
1612 (u64 __user *)reg->addr);
1613 break;
1614 case KVM_REG_S390_CLOCK_COMP:
1615 r = put_user(vcpu->arch.sie_block->ckc,
1616 (u64 __user *)reg->addr);
1617 break;
1618 case KVM_REG_S390_PFTOKEN:
1619 r = put_user(vcpu->arch.pfault_token,
1620 (u64 __user *)reg->addr);
1621 break;
1622 case KVM_REG_S390_PFCOMPARE:
1623 r = put_user(vcpu->arch.pfault_compare,
1624 (u64 __user *)reg->addr);
1625 break;
1626 case KVM_REG_S390_PFSELECT:
1627 r = put_user(vcpu->arch.pfault_select,
1628 (u64 __user *)reg->addr);
1629 break;
1630 case KVM_REG_S390_PP:
1631 r = put_user(vcpu->arch.sie_block->pp,
1632 (u64 __user *)reg->addr);
1633 break;
1634 case KVM_REG_S390_GBEA:
1635 r = put_user(vcpu->arch.sie_block->gbea,
1636 (u64 __user *)reg->addr);
1637 break;
1638 default:
1639 break;
1640 }
1641
1642 return r;
1643 }
1644
1645 static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
1646 struct kvm_one_reg *reg)
1647 {
1648 int r = -EINVAL;
1649
1650 switch (reg->id) {
1651 case KVM_REG_S390_TODPR:
1652 r = get_user(vcpu->arch.sie_block->todpr,
1653 (u32 __user *)reg->addr);
1654 break;
1655 case KVM_REG_S390_EPOCHDIFF:
1656 r = get_user(vcpu->arch.sie_block->epoch,
1657 (u64 __user *)reg->addr);
1658 break;
1659 case KVM_REG_S390_CPU_TIMER:
1660 r = get_user(vcpu->arch.sie_block->cputm,
1661 (u64 __user *)reg->addr);
1662 break;
1663 case KVM_REG_S390_CLOCK_COMP:
1664 r = get_user(vcpu->arch.sie_block->ckc,
1665 (u64 __user *)reg->addr);
1666 break;
1667 case KVM_REG_S390_PFTOKEN:
1668 r = get_user(vcpu->arch.pfault_token,
1669 (u64 __user *)reg->addr);
1670 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
1671 kvm_clear_async_pf_completion_queue(vcpu);
1672 break;
1673 case KVM_REG_S390_PFCOMPARE:
1674 r = get_user(vcpu->arch.pfault_compare,
1675 (u64 __user *)reg->addr);
1676 break;
1677 case KVM_REG_S390_PFSELECT:
1678 r = get_user(vcpu->arch.pfault_select,
1679 (u64 __user *)reg->addr);
1680 break;
1681 case KVM_REG_S390_PP:
1682 r = get_user(vcpu->arch.sie_block->pp,
1683 (u64 __user *)reg->addr);
1684 break;
1685 case KVM_REG_S390_GBEA:
1686 r = get_user(vcpu->arch.sie_block->gbea,
1687 (u64 __user *)reg->addr);
1688 break;
1689 default:
1690 break;
1691 }
1692
1693 return r;
1694 }
1695
1696 static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
1697 {
1698 kvm_s390_vcpu_initial_reset(vcpu);
1699 return 0;
1700 }
1701
1702 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1703 {
1704 memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
1705 return 0;
1706 }
1707
1708 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
1709 {
1710 memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
1711 return 0;
1712 }
1713
1714 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
1715 struct kvm_sregs *sregs)
1716 {
1717 memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
1718 memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
1719 restore_access_regs(vcpu->run->s.regs.acrs);
1720 return 0;
1721 }
1722
1723 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
1724 struct kvm_sregs *sregs)
1725 {
1726 memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
1727 memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
1728 return 0;
1729 }
1730
1731 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1732 {
1733 if (test_fp_ctl(fpu->fpc))
1734 return -EINVAL;
1735 memcpy(vcpu->arch.guest_fpregs.fprs, &fpu->fprs, sizeof(fpu->fprs));
1736 vcpu->arch.guest_fpregs.fpc = fpu->fpc;
1737 save_fpu_regs();
1738 load_fpu_from(&vcpu->arch.guest_fpregs);
1739 return 0;
1740 }
1741
1742 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
1743 {
1744 memcpy(&fpu->fprs, vcpu->arch.guest_fpregs.fprs, sizeof(fpu->fprs));
1745 fpu->fpc = vcpu->arch.guest_fpregs.fpc;
1746 return 0;
1747 }
1748
1749 static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
1750 {
1751 int rc = 0;
1752
1753 if (!is_vcpu_stopped(vcpu))
1754 rc = -EBUSY;
1755 else {
1756 vcpu->run->psw_mask = psw.mask;
1757 vcpu->run->psw_addr = psw.addr;
1758 }
1759 return rc;
1760 }
1761
1762 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
1763 struct kvm_translation *tr)
1764 {
1765 return -EINVAL; /* not implemented yet */
1766 }
1767
1768 #define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
1769 KVM_GUESTDBG_USE_HW_BP | \
1770 KVM_GUESTDBG_ENABLE)
1771
1772 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
1773 struct kvm_guest_debug *dbg)
1774 {
1775 int rc = 0;
1776
1777 vcpu->guest_debug = 0;
1778 kvm_s390_clear_bp_data(vcpu);
1779
1780 if (dbg->control & ~VALID_GUESTDBG_FLAGS)
1781 return -EINVAL;
1782
1783 if (dbg->control & KVM_GUESTDBG_ENABLE) {
1784 vcpu->guest_debug = dbg->control;
1785 /* enforce guest PER */
1786 atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
1787
1788 if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
1789 rc = kvm_s390_import_bp_data(vcpu, dbg);
1790 } else {
1791 atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
1792 vcpu->arch.guestdbg.last_bp = 0;
1793 }
1794
1795 if (rc) {
1796 vcpu->guest_debug = 0;
1797 kvm_s390_clear_bp_data(vcpu);
1798 atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
1799 }
1800
1801 return rc;
1802 }
1803
1804 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1805 struct kvm_mp_state *mp_state)
1806 {
1807 /* CHECK_STOP and LOAD are not supported yet */
1808 return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
1809 KVM_MP_STATE_OPERATING;
1810 }
1811
1812 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1813 struct kvm_mp_state *mp_state)
1814 {
1815 int rc = 0;
1816
1817 /* user space knows about this interface - let it control the state */
1818 vcpu->kvm->arch.user_cpu_state_ctrl = 1;
1819
1820 switch (mp_state->mp_state) {
1821 case KVM_MP_STATE_STOPPED:
1822 kvm_s390_vcpu_stop(vcpu);
1823 break;
1824 case KVM_MP_STATE_OPERATING:
1825 kvm_s390_vcpu_start(vcpu);
1826 break;
1827 case KVM_MP_STATE_LOAD:
1828 case KVM_MP_STATE_CHECK_STOP:
1829 /* fall through - CHECK_STOP and LOAD are not supported yet */
1830 default:
1831 rc = -ENXIO;
1832 }
1833
1834 return rc;
1835 }
1836
1837 static bool ibs_enabled(struct kvm_vcpu *vcpu)
1838 {
1839 return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
1840 }
1841
1842 static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
1843 {
1844 retry:
1845 kvm_s390_vcpu_request_handled(vcpu);
1846 if (!vcpu->requests)
1847 return 0;
1848 /*
1849 * We use MMU_RELOAD just to re-arm the ipte notifier for the
1850 * guest prefix page. gmap_ipte_notify will wait on the ptl lock.
1851 * This ensures that the ipte instruction for this request has
1852 * already finished. We might race against a second unmapper that
1853 * wants to set the blocking bit. Lets just retry the request loop.
1854 */
1855 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
1856 int rc;
1857 rc = gmap_ipte_notify(vcpu->arch.gmap,
1858 kvm_s390_get_prefix(vcpu),
1859 PAGE_SIZE * 2);
1860 if (rc)
1861 return rc;
1862 goto retry;
1863 }
1864
1865 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
1866 vcpu->arch.sie_block->ihcpu = 0xffff;
1867 goto retry;
1868 }
1869
1870 if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
1871 if (!ibs_enabled(vcpu)) {
1872 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
1873 atomic_or(CPUSTAT_IBS,
1874 &vcpu->arch.sie_block->cpuflags);
1875 }
1876 goto retry;
1877 }
1878
1879 if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
1880 if (ibs_enabled(vcpu)) {
1881 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
1882 atomic_andnot(CPUSTAT_IBS,
1883 &vcpu->arch.sie_block->cpuflags);
1884 }
1885 goto retry;
1886 }
1887
1888 /* nothing to do, just clear the request */
1889 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
1890
1891 return 0;
1892 }
1893
1894 void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod)
1895 {
1896 struct kvm_vcpu *vcpu;
1897 int i;
1898
1899 mutex_lock(&kvm->lock);
1900 preempt_disable();
1901 kvm->arch.epoch = tod - get_tod_clock();
1902 kvm_s390_vcpu_block_all(kvm);
1903 kvm_for_each_vcpu(i, vcpu, kvm)
1904 vcpu->arch.sie_block->epoch = kvm->arch.epoch;
1905 kvm_s390_vcpu_unblock_all(kvm);
1906 preempt_enable();
1907 mutex_unlock(&kvm->lock);
1908 }
1909
1910 /**
1911 * kvm_arch_fault_in_page - fault-in guest page if necessary
1912 * @vcpu: The corresponding virtual cpu
1913 * @gpa: Guest physical address
1914 * @writable: Whether the page should be writable or not
1915 *
1916 * Make sure that a guest page has been faulted-in on the host.
1917 *
1918 * Return: Zero on success, negative error code otherwise.
1919 */
1920 long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
1921 {
1922 return gmap_fault(vcpu->arch.gmap, gpa,
1923 writable ? FAULT_FLAG_WRITE : 0);
1924 }
1925
1926 static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
1927 unsigned long token)
1928 {
1929 struct kvm_s390_interrupt inti;
1930 struct kvm_s390_irq irq;
1931
1932 if (start_token) {
1933 irq.u.ext.ext_params2 = token;
1934 irq.type = KVM_S390_INT_PFAULT_INIT;
1935 WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
1936 } else {
1937 inti.type = KVM_S390_INT_PFAULT_DONE;
1938 inti.parm64 = token;
1939 WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
1940 }
1941 }
1942
1943 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
1944 struct kvm_async_pf *work)
1945 {
1946 trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
1947 __kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
1948 }
1949
1950 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
1951 struct kvm_async_pf *work)
1952 {
1953 trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
1954 __kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
1955 }
1956
1957 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
1958 struct kvm_async_pf *work)
1959 {
1960 /* s390 will always inject the page directly */
1961 }
1962
1963 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
1964 {
1965 /*
1966 * s390 will always inject the page directly,
1967 * but we still want check_async_completion to cleanup
1968 */
1969 return true;
1970 }
1971
1972 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
1973 {
1974 hva_t hva;
1975 struct kvm_arch_async_pf arch;
1976 int rc;
1977
1978 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
1979 return 0;
1980 if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
1981 vcpu->arch.pfault_compare)
1982 return 0;
1983 if (psw_extint_disabled(vcpu))
1984 return 0;
1985 if (kvm_s390_vcpu_has_irq(vcpu, 0))
1986 return 0;
1987 if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
1988 return 0;
1989 if (!vcpu->arch.gmap->pfault_enabled)
1990 return 0;
1991
1992 hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
1993 hva += current->thread.gmap_addr & ~PAGE_MASK;
1994 if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
1995 return 0;
1996
1997 rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
1998 return rc;
1999 }
2000
2001 static int vcpu_pre_run(struct kvm_vcpu *vcpu)
2002 {
2003 int rc, cpuflags;
2004
2005 /*
2006 * On s390 notifications for arriving pages will be delivered directly
2007 * to the guest but the house keeping for completed pfaults is
2008 * handled outside the worker.
2009 */
2010 kvm_check_async_pf_completion(vcpu);
2011
2012 memcpy(&vcpu->arch.sie_block->gg14, &vcpu->run->s.regs.gprs[14], 16);
2013
2014 if (need_resched())
2015 schedule();
2016
2017 if (test_cpu_flag(CIF_MCCK_PENDING))
2018 s390_handle_mcck();
2019
2020 if (!kvm_is_ucontrol(vcpu->kvm)) {
2021 rc = kvm_s390_deliver_pending_interrupts(vcpu);
2022 if (rc)
2023 return rc;
2024 }
2025
2026 rc = kvm_s390_handle_requests(vcpu);
2027 if (rc)
2028 return rc;
2029
2030 if (guestdbg_enabled(vcpu)) {
2031 kvm_s390_backup_guest_per_regs(vcpu);
2032 kvm_s390_patch_guest_per_regs(vcpu);
2033 }
2034
2035 vcpu->arch.sie_block->icptcode = 0;
2036 cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
2037 VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
2038 trace_kvm_s390_sie_enter(vcpu, cpuflags);
2039
2040 return 0;
2041 }
2042
2043 static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
2044 {
2045 psw_t *psw = &vcpu->arch.sie_block->gpsw;
2046 u8 opcode;
2047 int rc;
2048
2049 VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
2050 trace_kvm_s390_sie_fault(vcpu);
2051
2052 /*
2053 * We want to inject an addressing exception, which is defined as a
2054 * suppressing or terminating exception. However, since we came here
2055 * by a DAT access exception, the PSW still points to the faulting
2056 * instruction since DAT exceptions are nullifying. So we've got
2057 * to look up the current opcode to get the length of the instruction
2058 * to be able to forward the PSW.
2059 */
2060 rc = read_guest(vcpu, psw->addr, 0, &opcode, 1);
2061 if (rc)
2062 return kvm_s390_inject_prog_cond(vcpu, rc);
2063 psw->addr = __rewind_psw(*psw, -insn_length(opcode));
2064
2065 return kvm_s390_inject_program_int(vcpu, PGM_ADDRESSING);
2066 }
2067
2068 static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
2069 {
2070 int rc = -1;
2071
2072 VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
2073 vcpu->arch.sie_block->icptcode);
2074 trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);
2075
2076 if (guestdbg_enabled(vcpu))
2077 kvm_s390_restore_guest_per_regs(vcpu);
2078
2079 if (exit_reason >= 0) {
2080 rc = 0;
2081 } else if (kvm_is_ucontrol(vcpu->kvm)) {
2082 vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
2083 vcpu->run->s390_ucontrol.trans_exc_code =
2084 current->thread.gmap_addr;
2085 vcpu->run->s390_ucontrol.pgm_code = 0x10;
2086 rc = -EREMOTE;
2087
2088 } else if (current->thread.gmap_pfault) {
2089 trace_kvm_s390_major_guest_pfault(vcpu);
2090 current->thread.gmap_pfault = 0;
2091 if (kvm_arch_setup_async_pf(vcpu)) {
2092 rc = 0;
2093 } else {
2094 gpa_t gpa = current->thread.gmap_addr;
2095 rc = kvm_arch_fault_in_page(vcpu, gpa, 1);
2096 }
2097 }
2098
2099 if (rc == -1)
2100 rc = vcpu_post_run_fault_in_sie(vcpu);
2101
2102 memcpy(&vcpu->run->s.regs.gprs[14], &vcpu->arch.sie_block->gg14, 16);
2103
2104 if (rc == 0) {
2105 if (kvm_is_ucontrol(vcpu->kvm))
2106 /* Don't exit for host interrupts. */
2107 rc = vcpu->arch.sie_block->icptcode ? -EOPNOTSUPP : 0;
2108 else
2109 rc = kvm_handle_sie_intercept(vcpu);
2110 }
2111
2112 return rc;
2113 }
2114
2115 static int __vcpu_run(struct kvm_vcpu *vcpu)
2116 {
2117 int rc, exit_reason;
2118
2119 /*
2120 * We try to hold kvm->srcu during most of vcpu_run (except when run-
2121 * ning the guest), so that memslots (and other stuff) are protected
2122 */
2123 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2124
2125 do {
2126 rc = vcpu_pre_run(vcpu);
2127 if (rc)
2128 break;
2129
2130 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2131 /*
2132 * As PF_VCPU will be used in fault handler, between
2133 * guest_enter and guest_exit should be no uaccess.
2134 */
2135 local_irq_disable();
2136 __kvm_guest_enter();
2137 local_irq_enable();
2138 exit_reason = sie64a(vcpu->arch.sie_block,
2139 vcpu->run->s.regs.gprs);
2140 local_irq_disable();
2141 __kvm_guest_exit();
2142 local_irq_enable();
2143 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2144
2145 rc = vcpu_post_run(vcpu, exit_reason);
2146 } while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
2147
2148 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
2149 return rc;
2150 }
2151
2152 static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2153 {
2154 vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
2155 vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
2156 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
2157 kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
2158 if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
2159 memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
2160 /* some control register changes require a tlb flush */
2161 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2162 }
2163 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
2164 vcpu->arch.sie_block->cputm = kvm_run->s.regs.cputm;
2165 vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
2166 vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
2167 vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
2168 vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
2169 }
2170 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
2171 vcpu->arch.pfault_token = kvm_run->s.regs.pft;
2172 vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
2173 vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
2174 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
2175 kvm_clear_async_pf_completion_queue(vcpu);
2176 }
2177 kvm_run->kvm_dirty_regs = 0;
2178 }
2179
2180 static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2181 {
2182 kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
2183 kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
2184 kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
2185 memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
2186 kvm_run->s.regs.cputm = vcpu->arch.sie_block->cputm;
2187 kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
2188 kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
2189 kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
2190 kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
2191 kvm_run->s.regs.pft = vcpu->arch.pfault_token;
2192 kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
2193 kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
2194 }
2195
2196 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
2197 {
2198 int rc;
2199 sigset_t sigsaved;
2200
2201 if (guestdbg_exit_pending(vcpu)) {
2202 kvm_s390_prepare_debug_exit(vcpu);
2203 return 0;
2204 }
2205
2206 if (vcpu->sigset_active)
2207 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
2208
2209 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
2210 kvm_s390_vcpu_start(vcpu);
2211 } else if (is_vcpu_stopped(vcpu)) {
2212 pr_err_ratelimited("can't run stopped vcpu %d\n",
2213 vcpu->vcpu_id);
2214 return -EINVAL;
2215 }
2216
2217 sync_regs(vcpu, kvm_run);
2218
2219 might_fault();
2220 rc = __vcpu_run(vcpu);
2221
2222 if (signal_pending(current) && !rc) {
2223 kvm_run->exit_reason = KVM_EXIT_INTR;
2224 rc = -EINTR;
2225 }
2226
2227 if (guestdbg_exit_pending(vcpu) && !rc) {
2228 kvm_s390_prepare_debug_exit(vcpu);
2229 rc = 0;
2230 }
2231
2232 if (rc == -EOPNOTSUPP) {
2233 /* intercept cannot be handled in-kernel, prepare kvm-run */
2234 kvm_run->exit_reason = KVM_EXIT_S390_SIEIC;
2235 kvm_run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
2236 kvm_run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
2237 kvm_run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
2238 rc = 0;
2239 }
2240
2241 if (rc == -EREMOTE) {
2242 /* intercept was handled, but userspace support is needed
2243 * kvm_run has been prepared by the handler */
2244 rc = 0;
2245 }
2246
2247 store_regs(vcpu, kvm_run);
2248
2249 if (vcpu->sigset_active)
2250 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
2251
2252 vcpu->stat.exit_userspace++;
2253 return rc;
2254 }
2255
2256 /*
2257 * store status at address
2258 * we use have two special cases:
2259 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
2260 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
2261 */
2262 int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
2263 {
2264 unsigned char archmode = 1;
2265 unsigned int px;
2266 u64 clkcomp;
2267 int rc;
2268
2269 if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
2270 if (write_guest_abs(vcpu, 163, &archmode, 1))
2271 return -EFAULT;
2272 gpa = SAVE_AREA_BASE;
2273 } else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
2274 if (write_guest_real(vcpu, 163, &archmode, 1))
2275 return -EFAULT;
2276 gpa = kvm_s390_real_to_abs(vcpu, SAVE_AREA_BASE);
2277 }
2278 rc = write_guest_abs(vcpu, gpa + offsetof(struct save_area, fp_regs),
2279 vcpu->arch.guest_fpregs.fprs, 128);
2280 rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, gp_regs),
2281 vcpu->run->s.regs.gprs, 128);
2282 rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, psw),
2283 &vcpu->arch.sie_block->gpsw, 16);
2284 px = kvm_s390_get_prefix(vcpu);
2285 rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, pref_reg),
2286 &px, 4);
2287 rc |= write_guest_abs(vcpu,
2288 gpa + offsetof(struct save_area, fp_ctrl_reg),
2289 &vcpu->arch.guest_fpregs.fpc, 4);
2290 rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, tod_reg),
2291 &vcpu->arch.sie_block->todpr, 4);
2292 rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, timer),
2293 &vcpu->arch.sie_block->cputm, 8);
2294 clkcomp = vcpu->arch.sie_block->ckc >> 8;
2295 rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, clk_cmp),
2296 &clkcomp, 8);
2297 rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, acc_regs),
2298 &vcpu->run->s.regs.acrs, 64);
2299 rc |= write_guest_abs(vcpu, gpa + offsetof(struct save_area, ctrl_regs),
2300 &vcpu->arch.sie_block->gcr, 128);
2301 return rc ? -EFAULT : 0;
2302 }
2303
2304 int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
2305 {
2306 /*
2307 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
2308 * copying in vcpu load/put. Lets update our copies before we save
2309 * it into the save area
2310 */
2311 save_fpu_regs();
2312 if (test_kvm_facility(vcpu->kvm, 129)) {
2313 /*
2314 * If the vector extension is available, the vector registers
2315 * which overlaps with floating-point registers are saved in
2316 * the SIE-control block. Hence, extract the floating-point
2317 * registers and the FPC value and store them in the
2318 * guest_fpregs structure.
2319 */
2320 vcpu->arch.guest_fpregs.fpc = current->thread.fpu.fpc;
2321 convert_vx_to_fp(vcpu->arch.guest_fpregs.fprs,
2322 current->thread.fpu.vxrs);
2323 } else
2324 save_fpu_to(&vcpu->arch.guest_fpregs);
2325 save_access_regs(vcpu->run->s.regs.acrs);
2326
2327 return kvm_s390_store_status_unloaded(vcpu, addr);
2328 }
2329
2330 /*
2331 * store additional status at address
2332 */
2333 int kvm_s390_store_adtl_status_unloaded(struct kvm_vcpu *vcpu,
2334 unsigned long gpa)
2335 {
2336 /* Only bits 0-53 are used for address formation */
2337 if (!(gpa & ~0x3ff))
2338 return 0;
2339
2340 return write_guest_abs(vcpu, gpa & ~0x3ff,
2341 (void *)&vcpu->run->s.regs.vrs, 512);
2342 }
2343
2344 int kvm_s390_vcpu_store_adtl_status(struct kvm_vcpu *vcpu, unsigned long addr)
2345 {
2346 if (!test_kvm_facility(vcpu->kvm, 129))
2347 return 0;
2348
2349 /*
2350 * The guest VXRS are in the host VXRs due to the lazy
2351 * copying in vcpu load/put. We can simply call save_fpu_regs()
2352 * to save the current register state because we are in the
2353 * middle of a load/put cycle.
2354 *
2355 * Let's update our copies before we save it into the save area.
2356 */
2357 save_fpu_regs();
2358
2359 return kvm_s390_store_adtl_status_unloaded(vcpu, addr);
2360 }
2361
2362 static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
2363 {
2364 kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
2365 kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
2366 }
2367
2368 static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
2369 {
2370 unsigned int i;
2371 struct kvm_vcpu *vcpu;
2372
2373 kvm_for_each_vcpu(i, vcpu, kvm) {
2374 __disable_ibs_on_vcpu(vcpu);
2375 }
2376 }
2377
2378 static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
2379 {
2380 kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
2381 kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
2382 }
2383
2384 void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
2385 {
2386 int i, online_vcpus, started_vcpus = 0;
2387
2388 if (!is_vcpu_stopped(vcpu))
2389 return;
2390
2391 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
2392 /* Only one cpu at a time may enter/leave the STOPPED state. */
2393 spin_lock(&vcpu->kvm->arch.start_stop_lock);
2394 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);
2395
2396 for (i = 0; i < online_vcpus; i++) {
2397 if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
2398 started_vcpus++;
2399 }
2400
2401 if (started_vcpus == 0) {
2402 /* we're the only active VCPU -> speed it up */
2403 __enable_ibs_on_vcpu(vcpu);
2404 } else if (started_vcpus == 1) {
2405 /*
2406 * As we are starting a second VCPU, we have to disable
2407 * the IBS facility on all VCPUs to remove potentially
2408 * oustanding ENABLE requests.
2409 */
2410 __disable_ibs_on_all_vcpus(vcpu->kvm);
2411 }
2412
2413 atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2414 /*
2415 * Another VCPU might have used IBS while we were offline.
2416 * Let's play safe and flush the VCPU at startup.
2417 */
2418 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
2419 spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2420 return;
2421 }
2422
2423 void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
2424 {
2425 int i, online_vcpus, started_vcpus = 0;
2426 struct kvm_vcpu *started_vcpu = NULL;
2427
2428 if (is_vcpu_stopped(vcpu))
2429 return;
2430
2431 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
2432 /* Only one cpu at a time may enter/leave the STOPPED state. */
2433 spin_lock(&vcpu->kvm->arch.start_stop_lock);
2434 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);
2435
2436 /* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
2437 kvm_s390_clear_stop_irq(vcpu);
2438
2439 atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
2440 __disable_ibs_on_vcpu(vcpu);
2441
2442 for (i = 0; i < online_vcpus; i++) {
2443 if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
2444 started_vcpus++;
2445 started_vcpu = vcpu->kvm->vcpus[i];
2446 }
2447 }
2448
2449 if (started_vcpus == 1) {
2450 /*
2451 * As we only have one VCPU left, we want to enable the
2452 * IBS facility for that VCPU to speed it up.
2453 */
2454 __enable_ibs_on_vcpu(started_vcpu);
2455 }
2456
2457 spin_unlock(&vcpu->kvm->arch.start_stop_lock);
2458 return;
2459 }
2460
2461 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
2462 struct kvm_enable_cap *cap)
2463 {
2464 int r;
2465
2466 if (cap->flags)
2467 return -EINVAL;
2468
2469 switch (cap->cap) {
2470 case KVM_CAP_S390_CSS_SUPPORT:
2471 if (!vcpu->kvm->arch.css_support) {
2472 vcpu->kvm->arch.css_support = 1;
2473 VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
2474 trace_kvm_s390_enable_css(vcpu->kvm);
2475 }
2476 r = 0;
2477 break;
2478 default:
2479 r = -EINVAL;
2480 break;
2481 }
2482 return r;
2483 }
2484
2485 static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
2486 struct kvm_s390_mem_op *mop)
2487 {
2488 void __user *uaddr = (void __user *)mop->buf;
2489 void *tmpbuf = NULL;
2490 int r, srcu_idx;
2491 const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
2492 | KVM_S390_MEMOP_F_CHECK_ONLY;
2493
2494 if (mop->flags & ~supported_flags)
2495 return -EINVAL;
2496
2497 if (mop->size > MEM_OP_MAX_SIZE)
2498 return -E2BIG;
2499
2500 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
2501 tmpbuf = vmalloc(mop->size);
2502 if (!tmpbuf)
2503 return -ENOMEM;
2504 }
2505
2506 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
2507
2508 switch (mop->op) {
2509 case KVM_S390_MEMOP_LOGICAL_READ:
2510 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2511 r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size, false);
2512 break;
2513 }
2514 r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
2515 if (r == 0) {
2516 if (copy_to_user(uaddr, tmpbuf, mop->size))
2517 r = -EFAULT;
2518 }
2519 break;
2520 case KVM_S390_MEMOP_LOGICAL_WRITE:
2521 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
2522 r = check_gva_range(vcpu, mop->gaddr, mop->ar, mop->size, true);
2523 break;
2524 }
2525 if (copy_from_user(tmpbuf, uaddr, mop->size)) {
2526 r = -EFAULT;
2527 break;
2528 }
2529 r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
2530 break;
2531 default:
2532 r = -EINVAL;
2533 }
2534
2535 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
2536
2537 if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
2538 kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);
2539
2540 vfree(tmpbuf);
2541 return r;
2542 }
2543
2544 long kvm_arch_vcpu_ioctl(struct file *filp,
2545 unsigned int ioctl, unsigned long arg)
2546 {
2547 struct kvm_vcpu *vcpu = filp->private_data;
2548 void __user *argp = (void __user *)arg;
2549 int idx;
2550 long r;
2551
2552 switch (ioctl) {
2553 case KVM_S390_IRQ: {
2554 struct kvm_s390_irq s390irq;
2555
2556 r = -EFAULT;
2557 if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
2558 break;
2559 r = kvm_s390_inject_vcpu(vcpu, &s390irq);
2560 break;
2561 }
2562 case KVM_S390_INTERRUPT: {
2563 struct kvm_s390_interrupt s390int;
2564 struct kvm_s390_irq s390irq;
2565
2566 r = -EFAULT;
2567 if (copy_from_user(&s390int, argp, sizeof(s390int)))
2568 break;
2569 if (s390int_to_s390irq(&s390int, &s390irq))
2570 return -EINVAL;
2571 r = kvm_s390_inject_vcpu(vcpu, &s390irq);
2572 break;
2573 }
2574 case KVM_S390_STORE_STATUS:
2575 idx = srcu_read_lock(&vcpu->kvm->srcu);
2576 r = kvm_s390_vcpu_store_status(vcpu, arg);
2577 srcu_read_unlock(&vcpu->kvm->srcu, idx);
2578 break;
2579 case KVM_S390_SET_INITIAL_PSW: {
2580 psw_t psw;
2581
2582 r = -EFAULT;
2583 if (copy_from_user(&psw, argp, sizeof(psw)))
2584 break;
2585 r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
2586 break;
2587 }
2588 case KVM_S390_INITIAL_RESET:
2589 r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
2590 break;
2591 case KVM_SET_ONE_REG:
2592 case KVM_GET_ONE_REG: {
2593 struct kvm_one_reg reg;
2594 r = -EFAULT;
2595 if (copy_from_user(&reg, argp, sizeof(reg)))
2596 break;
2597 if (ioctl == KVM_SET_ONE_REG)
2598 r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
2599 else
2600 r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
2601 break;
2602 }
2603 #ifdef CONFIG_KVM_S390_UCONTROL
2604 case KVM_S390_UCAS_MAP: {
2605 struct kvm_s390_ucas_mapping ucasmap;
2606
2607 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
2608 r = -EFAULT;
2609 break;
2610 }
2611
2612 if (!kvm_is_ucontrol(vcpu->kvm)) {
2613 r = -EINVAL;
2614 break;
2615 }
2616
2617 r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
2618 ucasmap.vcpu_addr, ucasmap.length);
2619 break;
2620 }
2621 case KVM_S390_UCAS_UNMAP: {
2622 struct kvm_s390_ucas_mapping ucasmap;
2623
2624 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
2625 r = -EFAULT;
2626 break;
2627 }
2628
2629 if (!kvm_is_ucontrol(vcpu->kvm)) {
2630 r = -EINVAL;
2631 break;
2632 }
2633
2634 r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
2635 ucasmap.length);
2636 break;
2637 }
2638 #endif
2639 case KVM_S390_VCPU_FAULT: {
2640 r = gmap_fault(vcpu->arch.gmap, arg, 0);
2641 break;
2642 }
2643 case KVM_ENABLE_CAP:
2644 {
2645 struct kvm_enable_cap cap;
2646 r = -EFAULT;
2647 if (copy_from_user(&cap, argp, sizeof(cap)))
2648 break;
2649 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
2650 break;
2651 }
2652 case KVM_S390_MEM_OP: {
2653 struct kvm_s390_mem_op mem_op;
2654
2655 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
2656 r = kvm_s390_guest_mem_op(vcpu, &mem_op);
2657 else
2658 r = -EFAULT;
2659 break;
2660 }
2661 case KVM_S390_SET_IRQ_STATE: {
2662 struct kvm_s390_irq_state irq_state;
2663
2664 r = -EFAULT;
2665 if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
2666 break;
2667 if (irq_state.len > VCPU_IRQS_MAX_BUF ||
2668 irq_state.len == 0 ||
2669 irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
2670 r = -EINVAL;
2671 break;
2672 }
2673 r = kvm_s390_set_irq_state(vcpu,
2674 (void __user *) irq_state.buf,
2675 irq_state.len);
2676 break;
2677 }
2678 case KVM_S390_GET_IRQ_STATE: {
2679 struct kvm_s390_irq_state irq_state;
2680
2681 r = -EFAULT;
2682 if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
2683 break;
2684 if (irq_state.len == 0) {
2685 r = -EINVAL;
2686 break;
2687 }
2688 r = kvm_s390_get_irq_state(vcpu,
2689 (__u8 __user *) irq_state.buf,
2690 irq_state.len);
2691 break;
2692 }
2693 default:
2694 r = -ENOTTY;
2695 }
2696 return r;
2697 }
2698
2699 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
2700 {
2701 #ifdef CONFIG_KVM_S390_UCONTROL
2702 if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
2703 && (kvm_is_ucontrol(vcpu->kvm))) {
2704 vmf->page = virt_to_page(vcpu->arch.sie_block);
2705 get_page(vmf->page);
2706 return 0;
2707 }
2708 #endif
2709 return VM_FAULT_SIGBUS;
2710 }
2711
2712 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
2713 unsigned long npages)
2714 {
2715 return 0;
2716 }
2717
2718 /* Section: memory related */
2719 int kvm_arch_prepare_memory_region(struct kvm *kvm,
2720 struct kvm_memory_slot *memslot,
2721 const struct kvm_userspace_memory_region *mem,
2722 enum kvm_mr_change change)
2723 {
2724 /* A few sanity checks. We can have memory slots which have to be
2725 located/ended at a segment boundary (1MB). The memory in userland is
2726 ok to be fragmented into various different vmas. It is okay to mmap()
2727 and munmap() stuff in this slot after doing this call at any time */
2728
2729 if (mem->userspace_addr & 0xffffful)
2730 return -EINVAL;
2731
2732 if (mem->memory_size & 0xffffful)
2733 return -EINVAL;
2734
2735 return 0;
2736 }
2737
2738 void kvm_arch_commit_memory_region(struct kvm *kvm,
2739 const struct kvm_userspace_memory_region *mem,
2740 const struct kvm_memory_slot *old,
2741 const struct kvm_memory_slot *new,
2742 enum kvm_mr_change change)
2743 {
2744 int rc;
2745
2746 /* If the basics of the memslot do not change, we do not want
2747 * to update the gmap. Every update causes several unnecessary
2748 * segment translation exceptions. This is usually handled just
2749 * fine by the normal fault handler + gmap, but it will also
2750 * cause faults on the prefix page of running guest CPUs.
2751 */
2752 if (old->userspace_addr == mem->userspace_addr &&
2753 old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
2754 old->npages * PAGE_SIZE == mem->memory_size)
2755 return;
2756
2757 rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
2758 mem->guest_phys_addr, mem->memory_size);
2759 if (rc)
2760 pr_warn("failed to commit memory region\n");
2761 return;
2762 }
2763
2764 static int __init kvm_s390_init(void)
2765 {
2766 return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
2767 }
2768
2769 static void __exit kvm_s390_exit(void)
2770 {
2771 kvm_exit();
2772 }
2773
2774 module_init(kvm_s390_init);
2775 module_exit(kvm_s390_exit);
2776
2777 /*
2778 * Enable autoloading of the kvm module.
2779 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
2780 * since x86 takes a different approach.
2781 */
2782 #include <linux/miscdevice.h>
2783 MODULE_ALIAS_MISCDEV(KVM_MINOR);
2784 MODULE_ALIAS("devname:kvm");