]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/s390/kvm/kvm-s390.c
Merge tag 'mailbox-v4.15' of git://git.linaro.org/landing-teams/working/fujitsu/integ...
[mirror_ubuntu-jammy-kernel.git] / arch / s390 / kvm / kvm-s390.c
1 /*
2 * hosting zSeries kernel virtual machines
3 *
4 * Copyright IBM Corp. 2008, 2009
5 *
6 * This program is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU General Public License (version 2 only)
8 * as published by the Free Software Foundation.
9 *
10 * Author(s): Carsten Otte <cotte@de.ibm.com>
11 * Christian Borntraeger <borntraeger@de.ibm.com>
12 * Heiko Carstens <heiko.carstens@de.ibm.com>
13 * Christian Ehrhardt <ehrhardt@de.ibm.com>
14 * Jason J. Herne <jjherne@us.ibm.com>
15 */
16
17 #include <linux/compiler.h>
18 #include <linux/err.h>
19 #include <linux/fs.h>
20 #include <linux/hrtimer.h>
21 #include <linux/init.h>
22 #include <linux/kvm.h>
23 #include <linux/kvm_host.h>
24 #include <linux/mman.h>
25 #include <linux/module.h>
26 #include <linux/moduleparam.h>
27 #include <linux/random.h>
28 #include <linux/slab.h>
29 #include <linux/timer.h>
30 #include <linux/vmalloc.h>
31 #include <linux/bitmap.h>
32 #include <linux/sched/signal.h>
33 #include <linux/string.h>
34
35 #include <asm/asm-offsets.h>
36 #include <asm/lowcore.h>
37 #include <asm/stp.h>
38 #include <asm/pgtable.h>
39 #include <asm/gmap.h>
40 #include <asm/nmi.h>
41 #include <asm/switch_to.h>
42 #include <asm/isc.h>
43 #include <asm/sclp.h>
44 #include <asm/cpacf.h>
45 #include <asm/timex.h>
46 #include "kvm-s390.h"
47 #include "gaccess.h"
48
49 #define KMSG_COMPONENT "kvm-s390"
50 #undef pr_fmt
51 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
52
53 #define CREATE_TRACE_POINTS
54 #include "trace.h"
55 #include "trace-s390.h"
56
57 #define MEM_OP_MAX_SIZE 65536 /* Maximum transfer size for KVM_S390_MEM_OP */
58 #define LOCAL_IRQS 32
59 #define VCPU_IRQS_MAX_BUF (sizeof(struct kvm_s390_irq) * \
60 (KVM_MAX_VCPUS + LOCAL_IRQS))
61
62 #define VCPU_STAT(x) offsetof(struct kvm_vcpu, stat.x), KVM_STAT_VCPU
63
64 struct kvm_stats_debugfs_item debugfs_entries[] = {
65 { "userspace_handled", VCPU_STAT(exit_userspace) },
66 { "exit_null", VCPU_STAT(exit_null) },
67 { "exit_validity", VCPU_STAT(exit_validity) },
68 { "exit_stop_request", VCPU_STAT(exit_stop_request) },
69 { "exit_external_request", VCPU_STAT(exit_external_request) },
70 { "exit_external_interrupt", VCPU_STAT(exit_external_interrupt) },
71 { "exit_instruction", VCPU_STAT(exit_instruction) },
72 { "exit_pei", VCPU_STAT(exit_pei) },
73 { "exit_program_interruption", VCPU_STAT(exit_program_interruption) },
74 { "exit_instr_and_program_int", VCPU_STAT(exit_instr_and_program) },
75 { "exit_operation_exception", VCPU_STAT(exit_operation_exception) },
76 { "halt_successful_poll", VCPU_STAT(halt_successful_poll) },
77 { "halt_attempted_poll", VCPU_STAT(halt_attempted_poll) },
78 { "halt_poll_invalid", VCPU_STAT(halt_poll_invalid) },
79 { "halt_wakeup", VCPU_STAT(halt_wakeup) },
80 { "instruction_lctlg", VCPU_STAT(instruction_lctlg) },
81 { "instruction_lctl", VCPU_STAT(instruction_lctl) },
82 { "instruction_stctl", VCPU_STAT(instruction_stctl) },
83 { "instruction_stctg", VCPU_STAT(instruction_stctg) },
84 { "deliver_emergency_signal", VCPU_STAT(deliver_emergency_signal) },
85 { "deliver_external_call", VCPU_STAT(deliver_external_call) },
86 { "deliver_service_signal", VCPU_STAT(deliver_service_signal) },
87 { "deliver_virtio_interrupt", VCPU_STAT(deliver_virtio_interrupt) },
88 { "deliver_stop_signal", VCPU_STAT(deliver_stop_signal) },
89 { "deliver_prefix_signal", VCPU_STAT(deliver_prefix_signal) },
90 { "deliver_restart_signal", VCPU_STAT(deliver_restart_signal) },
91 { "deliver_program_interruption", VCPU_STAT(deliver_program_int) },
92 { "exit_wait_state", VCPU_STAT(exit_wait_state) },
93 { "instruction_pfmf", VCPU_STAT(instruction_pfmf) },
94 { "instruction_stidp", VCPU_STAT(instruction_stidp) },
95 { "instruction_spx", VCPU_STAT(instruction_spx) },
96 { "instruction_stpx", VCPU_STAT(instruction_stpx) },
97 { "instruction_stap", VCPU_STAT(instruction_stap) },
98 { "instruction_storage_key", VCPU_STAT(instruction_storage_key) },
99 { "instruction_ipte_interlock", VCPU_STAT(instruction_ipte_interlock) },
100 { "instruction_stsch", VCPU_STAT(instruction_stsch) },
101 { "instruction_chsc", VCPU_STAT(instruction_chsc) },
102 { "instruction_essa", VCPU_STAT(instruction_essa) },
103 { "instruction_stsi", VCPU_STAT(instruction_stsi) },
104 { "instruction_stfl", VCPU_STAT(instruction_stfl) },
105 { "instruction_tprot", VCPU_STAT(instruction_tprot) },
106 { "instruction_sthyi", VCPU_STAT(instruction_sthyi) },
107 { "instruction_sie", VCPU_STAT(instruction_sie) },
108 { "instruction_sigp_sense", VCPU_STAT(instruction_sigp_sense) },
109 { "instruction_sigp_sense_running", VCPU_STAT(instruction_sigp_sense_running) },
110 { "instruction_sigp_external_call", VCPU_STAT(instruction_sigp_external_call) },
111 { "instruction_sigp_emergency", VCPU_STAT(instruction_sigp_emergency) },
112 { "instruction_sigp_cond_emergency", VCPU_STAT(instruction_sigp_cond_emergency) },
113 { "instruction_sigp_start", VCPU_STAT(instruction_sigp_start) },
114 { "instruction_sigp_stop", VCPU_STAT(instruction_sigp_stop) },
115 { "instruction_sigp_stop_store_status", VCPU_STAT(instruction_sigp_stop_store_status) },
116 { "instruction_sigp_store_status", VCPU_STAT(instruction_sigp_store_status) },
117 { "instruction_sigp_store_adtl_status", VCPU_STAT(instruction_sigp_store_adtl_status) },
118 { "instruction_sigp_set_arch", VCPU_STAT(instruction_sigp_arch) },
119 { "instruction_sigp_set_prefix", VCPU_STAT(instruction_sigp_prefix) },
120 { "instruction_sigp_restart", VCPU_STAT(instruction_sigp_restart) },
121 { "instruction_sigp_cpu_reset", VCPU_STAT(instruction_sigp_cpu_reset) },
122 { "instruction_sigp_init_cpu_reset", VCPU_STAT(instruction_sigp_init_cpu_reset) },
123 { "instruction_sigp_unknown", VCPU_STAT(instruction_sigp_unknown) },
124 { "diagnose_10", VCPU_STAT(diagnose_10) },
125 { "diagnose_44", VCPU_STAT(diagnose_44) },
126 { "diagnose_9c", VCPU_STAT(diagnose_9c) },
127 { "diagnose_258", VCPU_STAT(diagnose_258) },
128 { "diagnose_308", VCPU_STAT(diagnose_308) },
129 { "diagnose_500", VCPU_STAT(diagnose_500) },
130 { NULL }
131 };
132
133 struct kvm_s390_tod_clock_ext {
134 __u8 epoch_idx;
135 __u64 tod;
136 __u8 reserved[7];
137 } __packed;
138
139 /* allow nested virtualization in KVM (if enabled by user space) */
140 static int nested;
141 module_param(nested, int, S_IRUGO);
142 MODULE_PARM_DESC(nested, "Nested virtualization support");
143
144 /* upper facilities limit for kvm */
145 unsigned long kvm_s390_fac_list_mask[16] = { FACILITIES_KVM };
146
147 unsigned long kvm_s390_fac_list_mask_size(void)
148 {
149 BUILD_BUG_ON(ARRAY_SIZE(kvm_s390_fac_list_mask) > S390_ARCH_FAC_MASK_SIZE_U64);
150 return ARRAY_SIZE(kvm_s390_fac_list_mask);
151 }
152
153 /* available cpu features supported by kvm */
154 static DECLARE_BITMAP(kvm_s390_available_cpu_feat, KVM_S390_VM_CPU_FEAT_NR_BITS);
155 /* available subfunctions indicated via query / "test bit" */
156 static struct kvm_s390_vm_cpu_subfunc kvm_s390_available_subfunc;
157
158 static struct gmap_notifier gmap_notifier;
159 static struct gmap_notifier vsie_gmap_notifier;
160 debug_info_t *kvm_s390_dbf;
161
162 /* Section: not file related */
163 int kvm_arch_hardware_enable(void)
164 {
165 /* every s390 is virtualization enabled ;-) */
166 return 0;
167 }
168
169 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
170 unsigned long end);
171
172 /*
173 * This callback is executed during stop_machine(). All CPUs are therefore
174 * temporarily stopped. In order not to change guest behavior, we have to
175 * disable preemption whenever we touch the epoch of kvm and the VCPUs,
176 * so a CPU won't be stopped while calculating with the epoch.
177 */
178 static int kvm_clock_sync(struct notifier_block *notifier, unsigned long val,
179 void *v)
180 {
181 struct kvm *kvm;
182 struct kvm_vcpu *vcpu;
183 int i;
184 unsigned long long *delta = v;
185
186 list_for_each_entry(kvm, &vm_list, vm_list) {
187 kvm->arch.epoch -= *delta;
188 kvm_for_each_vcpu(i, vcpu, kvm) {
189 vcpu->arch.sie_block->epoch -= *delta;
190 if (vcpu->arch.cputm_enabled)
191 vcpu->arch.cputm_start += *delta;
192 if (vcpu->arch.vsie_block)
193 vcpu->arch.vsie_block->epoch -= *delta;
194 }
195 }
196 return NOTIFY_OK;
197 }
198
199 static struct notifier_block kvm_clock_notifier = {
200 .notifier_call = kvm_clock_sync,
201 };
202
203 int kvm_arch_hardware_setup(void)
204 {
205 gmap_notifier.notifier_call = kvm_gmap_notifier;
206 gmap_register_pte_notifier(&gmap_notifier);
207 vsie_gmap_notifier.notifier_call = kvm_s390_vsie_gmap_notifier;
208 gmap_register_pte_notifier(&vsie_gmap_notifier);
209 atomic_notifier_chain_register(&s390_epoch_delta_notifier,
210 &kvm_clock_notifier);
211 return 0;
212 }
213
214 void kvm_arch_hardware_unsetup(void)
215 {
216 gmap_unregister_pte_notifier(&gmap_notifier);
217 gmap_unregister_pte_notifier(&vsie_gmap_notifier);
218 atomic_notifier_chain_unregister(&s390_epoch_delta_notifier,
219 &kvm_clock_notifier);
220 }
221
222 static void allow_cpu_feat(unsigned long nr)
223 {
224 set_bit_inv(nr, kvm_s390_available_cpu_feat);
225 }
226
227 static inline int plo_test_bit(unsigned char nr)
228 {
229 register unsigned long r0 asm("0") = (unsigned long) nr | 0x100;
230 int cc;
231
232 asm volatile(
233 /* Parameter registers are ignored for "test bit" */
234 " plo 0,0,0,0(0)\n"
235 " ipm %0\n"
236 " srl %0,28\n"
237 : "=d" (cc)
238 : "d" (r0)
239 : "cc");
240 return cc == 0;
241 }
242
243 static void kvm_s390_cpu_feat_init(void)
244 {
245 int i;
246
247 for (i = 0; i < 256; ++i) {
248 if (plo_test_bit(i))
249 kvm_s390_available_subfunc.plo[i >> 3] |= 0x80 >> (i & 7);
250 }
251
252 if (test_facility(28)) /* TOD-clock steering */
253 ptff(kvm_s390_available_subfunc.ptff,
254 sizeof(kvm_s390_available_subfunc.ptff),
255 PTFF_QAF);
256
257 if (test_facility(17)) { /* MSA */
258 __cpacf_query(CPACF_KMAC, (cpacf_mask_t *)
259 kvm_s390_available_subfunc.kmac);
260 __cpacf_query(CPACF_KMC, (cpacf_mask_t *)
261 kvm_s390_available_subfunc.kmc);
262 __cpacf_query(CPACF_KM, (cpacf_mask_t *)
263 kvm_s390_available_subfunc.km);
264 __cpacf_query(CPACF_KIMD, (cpacf_mask_t *)
265 kvm_s390_available_subfunc.kimd);
266 __cpacf_query(CPACF_KLMD, (cpacf_mask_t *)
267 kvm_s390_available_subfunc.klmd);
268 }
269 if (test_facility(76)) /* MSA3 */
270 __cpacf_query(CPACF_PCKMO, (cpacf_mask_t *)
271 kvm_s390_available_subfunc.pckmo);
272 if (test_facility(77)) { /* MSA4 */
273 __cpacf_query(CPACF_KMCTR, (cpacf_mask_t *)
274 kvm_s390_available_subfunc.kmctr);
275 __cpacf_query(CPACF_KMF, (cpacf_mask_t *)
276 kvm_s390_available_subfunc.kmf);
277 __cpacf_query(CPACF_KMO, (cpacf_mask_t *)
278 kvm_s390_available_subfunc.kmo);
279 __cpacf_query(CPACF_PCC, (cpacf_mask_t *)
280 kvm_s390_available_subfunc.pcc);
281 }
282 if (test_facility(57)) /* MSA5 */
283 __cpacf_query(CPACF_PRNO, (cpacf_mask_t *)
284 kvm_s390_available_subfunc.ppno);
285
286 if (test_facility(146)) /* MSA8 */
287 __cpacf_query(CPACF_KMA, (cpacf_mask_t *)
288 kvm_s390_available_subfunc.kma);
289
290 if (MACHINE_HAS_ESOP)
291 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_ESOP);
292 /*
293 * We need SIE support, ESOP (PROT_READ protection for gmap_shadow),
294 * 64bit SCAO (SCA passthrough) and IDTE (for gmap_shadow unshadowing).
295 */
296 if (!sclp.has_sief2 || !MACHINE_HAS_ESOP || !sclp.has_64bscao ||
297 !test_facility(3) || !nested)
298 return;
299 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIEF2);
300 if (sclp.has_64bscao)
301 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_64BSCAO);
302 if (sclp.has_siif)
303 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_SIIF);
304 if (sclp.has_gpere)
305 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GPERE);
306 if (sclp.has_gsls)
307 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_GSLS);
308 if (sclp.has_ib)
309 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IB);
310 if (sclp.has_cei)
311 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_CEI);
312 if (sclp.has_ibs)
313 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_IBS);
314 if (sclp.has_kss)
315 allow_cpu_feat(KVM_S390_VM_CPU_FEAT_KSS);
316 /*
317 * KVM_S390_VM_CPU_FEAT_SKEY: Wrong shadow of PTE.I bits will make
318 * all skey handling functions read/set the skey from the PGSTE
319 * instead of the real storage key.
320 *
321 * KVM_S390_VM_CPU_FEAT_CMMA: Wrong shadow of PTE.I bits will make
322 * pages being detected as preserved although they are resident.
323 *
324 * KVM_S390_VM_CPU_FEAT_PFMFI: Wrong shadow of PTE.I bits will
325 * have the same effect as for KVM_S390_VM_CPU_FEAT_SKEY.
326 *
327 * For KVM_S390_VM_CPU_FEAT_SKEY, KVM_S390_VM_CPU_FEAT_CMMA and
328 * KVM_S390_VM_CPU_FEAT_PFMFI, all PTE.I and PGSTE bits have to be
329 * correctly shadowed. We can do that for the PGSTE but not for PTE.I.
330 *
331 * KVM_S390_VM_CPU_FEAT_SIGPIF: Wrong SCB addresses in the SCA. We
332 * cannot easily shadow the SCA because of the ipte lock.
333 */
334 }
335
336 int kvm_arch_init(void *opaque)
337 {
338 kvm_s390_dbf = debug_register("kvm-trace", 32, 1, 7 * sizeof(long));
339 if (!kvm_s390_dbf)
340 return -ENOMEM;
341
342 if (debug_register_view(kvm_s390_dbf, &debug_sprintf_view)) {
343 debug_unregister(kvm_s390_dbf);
344 return -ENOMEM;
345 }
346
347 kvm_s390_cpu_feat_init();
348
349 /* Register floating interrupt controller interface. */
350 return kvm_register_device_ops(&kvm_flic_ops, KVM_DEV_TYPE_FLIC);
351 }
352
353 void kvm_arch_exit(void)
354 {
355 debug_unregister(kvm_s390_dbf);
356 }
357
358 /* Section: device related */
359 long kvm_arch_dev_ioctl(struct file *filp,
360 unsigned int ioctl, unsigned long arg)
361 {
362 if (ioctl == KVM_S390_ENABLE_SIE)
363 return s390_enable_sie();
364 return -EINVAL;
365 }
366
367 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
368 {
369 int r;
370
371 switch (ext) {
372 case KVM_CAP_S390_PSW:
373 case KVM_CAP_S390_GMAP:
374 case KVM_CAP_SYNC_MMU:
375 #ifdef CONFIG_KVM_S390_UCONTROL
376 case KVM_CAP_S390_UCONTROL:
377 #endif
378 case KVM_CAP_ASYNC_PF:
379 case KVM_CAP_SYNC_REGS:
380 case KVM_CAP_ONE_REG:
381 case KVM_CAP_ENABLE_CAP:
382 case KVM_CAP_S390_CSS_SUPPORT:
383 case KVM_CAP_IOEVENTFD:
384 case KVM_CAP_DEVICE_CTRL:
385 case KVM_CAP_ENABLE_CAP_VM:
386 case KVM_CAP_S390_IRQCHIP:
387 case KVM_CAP_VM_ATTRIBUTES:
388 case KVM_CAP_MP_STATE:
389 case KVM_CAP_IMMEDIATE_EXIT:
390 case KVM_CAP_S390_INJECT_IRQ:
391 case KVM_CAP_S390_USER_SIGP:
392 case KVM_CAP_S390_USER_STSI:
393 case KVM_CAP_S390_SKEYS:
394 case KVM_CAP_S390_IRQ_STATE:
395 case KVM_CAP_S390_USER_INSTR0:
396 case KVM_CAP_S390_CMMA_MIGRATION:
397 case KVM_CAP_S390_AIS:
398 r = 1;
399 break;
400 case KVM_CAP_S390_MEM_OP:
401 r = MEM_OP_MAX_SIZE;
402 break;
403 case KVM_CAP_NR_VCPUS:
404 case KVM_CAP_MAX_VCPUS:
405 r = KVM_S390_BSCA_CPU_SLOTS;
406 if (!kvm_s390_use_sca_entries())
407 r = KVM_MAX_VCPUS;
408 else if (sclp.has_esca && sclp.has_64bscao)
409 r = KVM_S390_ESCA_CPU_SLOTS;
410 break;
411 case KVM_CAP_NR_MEMSLOTS:
412 r = KVM_USER_MEM_SLOTS;
413 break;
414 case KVM_CAP_S390_COW:
415 r = MACHINE_HAS_ESOP;
416 break;
417 case KVM_CAP_S390_VECTOR_REGISTERS:
418 r = MACHINE_HAS_VX;
419 break;
420 case KVM_CAP_S390_RI:
421 r = test_facility(64);
422 break;
423 case KVM_CAP_S390_GS:
424 r = test_facility(133);
425 break;
426 default:
427 r = 0;
428 }
429 return r;
430 }
431
432 static void kvm_s390_sync_dirty_log(struct kvm *kvm,
433 struct kvm_memory_slot *memslot)
434 {
435 gfn_t cur_gfn, last_gfn;
436 unsigned long address;
437 struct gmap *gmap = kvm->arch.gmap;
438
439 /* Loop over all guest pages */
440 last_gfn = memslot->base_gfn + memslot->npages;
441 for (cur_gfn = memslot->base_gfn; cur_gfn <= last_gfn; cur_gfn++) {
442 address = gfn_to_hva_memslot(memslot, cur_gfn);
443
444 if (test_and_clear_guest_dirty(gmap->mm, address))
445 mark_page_dirty(kvm, cur_gfn);
446 if (fatal_signal_pending(current))
447 return;
448 cond_resched();
449 }
450 }
451
452 /* Section: vm related */
453 static void sca_del_vcpu(struct kvm_vcpu *vcpu);
454
455 /*
456 * Get (and clear) the dirty memory log for a memory slot.
457 */
458 int kvm_vm_ioctl_get_dirty_log(struct kvm *kvm,
459 struct kvm_dirty_log *log)
460 {
461 int r;
462 unsigned long n;
463 struct kvm_memslots *slots;
464 struct kvm_memory_slot *memslot;
465 int is_dirty = 0;
466
467 if (kvm_is_ucontrol(kvm))
468 return -EINVAL;
469
470 mutex_lock(&kvm->slots_lock);
471
472 r = -EINVAL;
473 if (log->slot >= KVM_USER_MEM_SLOTS)
474 goto out;
475
476 slots = kvm_memslots(kvm);
477 memslot = id_to_memslot(slots, log->slot);
478 r = -ENOENT;
479 if (!memslot->dirty_bitmap)
480 goto out;
481
482 kvm_s390_sync_dirty_log(kvm, memslot);
483 r = kvm_get_dirty_log(kvm, log, &is_dirty);
484 if (r)
485 goto out;
486
487 /* Clear the dirty log */
488 if (is_dirty) {
489 n = kvm_dirty_bitmap_bytes(memslot);
490 memset(memslot->dirty_bitmap, 0, n);
491 }
492 r = 0;
493 out:
494 mutex_unlock(&kvm->slots_lock);
495 return r;
496 }
497
498 static void icpt_operexc_on_all_vcpus(struct kvm *kvm)
499 {
500 unsigned int i;
501 struct kvm_vcpu *vcpu;
502
503 kvm_for_each_vcpu(i, vcpu, kvm) {
504 kvm_s390_sync_request(KVM_REQ_ICPT_OPEREXC, vcpu);
505 }
506 }
507
508 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm, struct kvm_enable_cap *cap)
509 {
510 int r;
511
512 if (cap->flags)
513 return -EINVAL;
514
515 switch (cap->cap) {
516 case KVM_CAP_S390_IRQCHIP:
517 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_IRQCHIP");
518 kvm->arch.use_irqchip = 1;
519 r = 0;
520 break;
521 case KVM_CAP_S390_USER_SIGP:
522 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_SIGP");
523 kvm->arch.user_sigp = 1;
524 r = 0;
525 break;
526 case KVM_CAP_S390_VECTOR_REGISTERS:
527 mutex_lock(&kvm->lock);
528 if (kvm->created_vcpus) {
529 r = -EBUSY;
530 } else if (MACHINE_HAS_VX) {
531 set_kvm_facility(kvm->arch.model.fac_mask, 129);
532 set_kvm_facility(kvm->arch.model.fac_list, 129);
533 if (test_facility(134)) {
534 set_kvm_facility(kvm->arch.model.fac_mask, 134);
535 set_kvm_facility(kvm->arch.model.fac_list, 134);
536 }
537 if (test_facility(135)) {
538 set_kvm_facility(kvm->arch.model.fac_mask, 135);
539 set_kvm_facility(kvm->arch.model.fac_list, 135);
540 }
541 r = 0;
542 } else
543 r = -EINVAL;
544 mutex_unlock(&kvm->lock);
545 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_VECTOR_REGISTERS %s",
546 r ? "(not available)" : "(success)");
547 break;
548 case KVM_CAP_S390_RI:
549 r = -EINVAL;
550 mutex_lock(&kvm->lock);
551 if (kvm->created_vcpus) {
552 r = -EBUSY;
553 } else if (test_facility(64)) {
554 set_kvm_facility(kvm->arch.model.fac_mask, 64);
555 set_kvm_facility(kvm->arch.model.fac_list, 64);
556 r = 0;
557 }
558 mutex_unlock(&kvm->lock);
559 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_RI %s",
560 r ? "(not available)" : "(success)");
561 break;
562 case KVM_CAP_S390_AIS:
563 mutex_lock(&kvm->lock);
564 if (kvm->created_vcpus) {
565 r = -EBUSY;
566 } else {
567 set_kvm_facility(kvm->arch.model.fac_mask, 72);
568 set_kvm_facility(kvm->arch.model.fac_list, 72);
569 r = 0;
570 }
571 mutex_unlock(&kvm->lock);
572 VM_EVENT(kvm, 3, "ENABLE: AIS %s",
573 r ? "(not available)" : "(success)");
574 break;
575 case KVM_CAP_S390_GS:
576 r = -EINVAL;
577 mutex_lock(&kvm->lock);
578 if (atomic_read(&kvm->online_vcpus)) {
579 r = -EBUSY;
580 } else if (test_facility(133)) {
581 set_kvm_facility(kvm->arch.model.fac_mask, 133);
582 set_kvm_facility(kvm->arch.model.fac_list, 133);
583 r = 0;
584 }
585 mutex_unlock(&kvm->lock);
586 VM_EVENT(kvm, 3, "ENABLE: CAP_S390_GS %s",
587 r ? "(not available)" : "(success)");
588 break;
589 case KVM_CAP_S390_USER_STSI:
590 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_STSI");
591 kvm->arch.user_stsi = 1;
592 r = 0;
593 break;
594 case KVM_CAP_S390_USER_INSTR0:
595 VM_EVENT(kvm, 3, "%s", "ENABLE: CAP_S390_USER_INSTR0");
596 kvm->arch.user_instr0 = 1;
597 icpt_operexc_on_all_vcpus(kvm);
598 r = 0;
599 break;
600 default:
601 r = -EINVAL;
602 break;
603 }
604 return r;
605 }
606
607 static int kvm_s390_get_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
608 {
609 int ret;
610
611 switch (attr->attr) {
612 case KVM_S390_VM_MEM_LIMIT_SIZE:
613 ret = 0;
614 VM_EVENT(kvm, 3, "QUERY: max guest memory: %lu bytes",
615 kvm->arch.mem_limit);
616 if (put_user(kvm->arch.mem_limit, (u64 __user *)attr->addr))
617 ret = -EFAULT;
618 break;
619 default:
620 ret = -ENXIO;
621 break;
622 }
623 return ret;
624 }
625
626 static int kvm_s390_set_mem_control(struct kvm *kvm, struct kvm_device_attr *attr)
627 {
628 int ret;
629 unsigned int idx;
630 switch (attr->attr) {
631 case KVM_S390_VM_MEM_ENABLE_CMMA:
632 ret = -ENXIO;
633 if (!sclp.has_cmma)
634 break;
635
636 ret = -EBUSY;
637 VM_EVENT(kvm, 3, "%s", "ENABLE: CMMA support");
638 mutex_lock(&kvm->lock);
639 if (!kvm->created_vcpus) {
640 kvm->arch.use_cmma = 1;
641 ret = 0;
642 }
643 mutex_unlock(&kvm->lock);
644 break;
645 case KVM_S390_VM_MEM_CLR_CMMA:
646 ret = -ENXIO;
647 if (!sclp.has_cmma)
648 break;
649 ret = -EINVAL;
650 if (!kvm->arch.use_cmma)
651 break;
652
653 VM_EVENT(kvm, 3, "%s", "RESET: CMMA states");
654 mutex_lock(&kvm->lock);
655 idx = srcu_read_lock(&kvm->srcu);
656 s390_reset_cmma(kvm->arch.gmap->mm);
657 srcu_read_unlock(&kvm->srcu, idx);
658 mutex_unlock(&kvm->lock);
659 ret = 0;
660 break;
661 case KVM_S390_VM_MEM_LIMIT_SIZE: {
662 unsigned long new_limit;
663
664 if (kvm_is_ucontrol(kvm))
665 return -EINVAL;
666
667 if (get_user(new_limit, (u64 __user *)attr->addr))
668 return -EFAULT;
669
670 if (kvm->arch.mem_limit != KVM_S390_NO_MEM_LIMIT &&
671 new_limit > kvm->arch.mem_limit)
672 return -E2BIG;
673
674 if (!new_limit)
675 return -EINVAL;
676
677 /* gmap_create takes last usable address */
678 if (new_limit != KVM_S390_NO_MEM_LIMIT)
679 new_limit -= 1;
680
681 ret = -EBUSY;
682 mutex_lock(&kvm->lock);
683 if (!kvm->created_vcpus) {
684 /* gmap_create will round the limit up */
685 struct gmap *new = gmap_create(current->mm, new_limit);
686
687 if (!new) {
688 ret = -ENOMEM;
689 } else {
690 gmap_remove(kvm->arch.gmap);
691 new->private = kvm;
692 kvm->arch.gmap = new;
693 ret = 0;
694 }
695 }
696 mutex_unlock(&kvm->lock);
697 VM_EVENT(kvm, 3, "SET: max guest address: %lu", new_limit);
698 VM_EVENT(kvm, 3, "New guest asce: 0x%pK",
699 (void *) kvm->arch.gmap->asce);
700 break;
701 }
702 default:
703 ret = -ENXIO;
704 break;
705 }
706 return ret;
707 }
708
709 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu);
710
711 static int kvm_s390_vm_set_crypto(struct kvm *kvm, struct kvm_device_attr *attr)
712 {
713 struct kvm_vcpu *vcpu;
714 int i;
715
716 if (!test_kvm_facility(kvm, 76))
717 return -EINVAL;
718
719 mutex_lock(&kvm->lock);
720 switch (attr->attr) {
721 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
722 get_random_bytes(
723 kvm->arch.crypto.crycb->aes_wrapping_key_mask,
724 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
725 kvm->arch.crypto.aes_kw = 1;
726 VM_EVENT(kvm, 3, "%s", "ENABLE: AES keywrapping support");
727 break;
728 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
729 get_random_bytes(
730 kvm->arch.crypto.crycb->dea_wrapping_key_mask,
731 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
732 kvm->arch.crypto.dea_kw = 1;
733 VM_EVENT(kvm, 3, "%s", "ENABLE: DEA keywrapping support");
734 break;
735 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
736 kvm->arch.crypto.aes_kw = 0;
737 memset(kvm->arch.crypto.crycb->aes_wrapping_key_mask, 0,
738 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
739 VM_EVENT(kvm, 3, "%s", "DISABLE: AES keywrapping support");
740 break;
741 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
742 kvm->arch.crypto.dea_kw = 0;
743 memset(kvm->arch.crypto.crycb->dea_wrapping_key_mask, 0,
744 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
745 VM_EVENT(kvm, 3, "%s", "DISABLE: DEA keywrapping support");
746 break;
747 default:
748 mutex_unlock(&kvm->lock);
749 return -ENXIO;
750 }
751
752 kvm_for_each_vcpu(i, vcpu, kvm) {
753 kvm_s390_vcpu_crypto_setup(vcpu);
754 exit_sie(vcpu);
755 }
756 mutex_unlock(&kvm->lock);
757 return 0;
758 }
759
760 static void kvm_s390_sync_request_broadcast(struct kvm *kvm, int req)
761 {
762 int cx;
763 struct kvm_vcpu *vcpu;
764
765 kvm_for_each_vcpu(cx, vcpu, kvm)
766 kvm_s390_sync_request(req, vcpu);
767 }
768
769 /*
770 * Must be called with kvm->srcu held to avoid races on memslots, and with
771 * kvm->lock to avoid races with ourselves and kvm_s390_vm_stop_migration.
772 */
773 static int kvm_s390_vm_start_migration(struct kvm *kvm)
774 {
775 struct kvm_s390_migration_state *mgs;
776 struct kvm_memory_slot *ms;
777 /* should be the only one */
778 struct kvm_memslots *slots;
779 unsigned long ram_pages;
780 int slotnr;
781
782 /* migration mode already enabled */
783 if (kvm->arch.migration_state)
784 return 0;
785
786 slots = kvm_memslots(kvm);
787 if (!slots || !slots->used_slots)
788 return -EINVAL;
789
790 mgs = kzalloc(sizeof(*mgs), GFP_KERNEL);
791 if (!mgs)
792 return -ENOMEM;
793 kvm->arch.migration_state = mgs;
794
795 if (kvm->arch.use_cmma) {
796 /*
797 * Get the last slot. They should be sorted by base_gfn, so the
798 * last slot is also the one at the end of the address space.
799 * We have verified above that at least one slot is present.
800 */
801 ms = slots->memslots + slots->used_slots - 1;
802 /* round up so we only use full longs */
803 ram_pages = roundup(ms->base_gfn + ms->npages, BITS_PER_LONG);
804 /* allocate enough bytes to store all the bits */
805 mgs->pgste_bitmap = vmalloc(ram_pages / 8);
806 if (!mgs->pgste_bitmap) {
807 kfree(mgs);
808 kvm->arch.migration_state = NULL;
809 return -ENOMEM;
810 }
811
812 mgs->bitmap_size = ram_pages;
813 atomic64_set(&mgs->dirty_pages, ram_pages);
814 /* mark all the pages in active slots as dirty */
815 for (slotnr = 0; slotnr < slots->used_slots; slotnr++) {
816 ms = slots->memslots + slotnr;
817 bitmap_set(mgs->pgste_bitmap, ms->base_gfn, ms->npages);
818 }
819
820 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_START_MIGRATION);
821 }
822 return 0;
823 }
824
825 /*
826 * Must be called with kvm->lock to avoid races with ourselves and
827 * kvm_s390_vm_start_migration.
828 */
829 static int kvm_s390_vm_stop_migration(struct kvm *kvm)
830 {
831 struct kvm_s390_migration_state *mgs;
832
833 /* migration mode already disabled */
834 if (!kvm->arch.migration_state)
835 return 0;
836 mgs = kvm->arch.migration_state;
837 kvm->arch.migration_state = NULL;
838
839 if (kvm->arch.use_cmma) {
840 kvm_s390_sync_request_broadcast(kvm, KVM_REQ_STOP_MIGRATION);
841 vfree(mgs->pgste_bitmap);
842 }
843 kfree(mgs);
844 return 0;
845 }
846
847 static int kvm_s390_vm_set_migration(struct kvm *kvm,
848 struct kvm_device_attr *attr)
849 {
850 int idx, res = -ENXIO;
851
852 mutex_lock(&kvm->lock);
853 switch (attr->attr) {
854 case KVM_S390_VM_MIGRATION_START:
855 idx = srcu_read_lock(&kvm->srcu);
856 res = kvm_s390_vm_start_migration(kvm);
857 srcu_read_unlock(&kvm->srcu, idx);
858 break;
859 case KVM_S390_VM_MIGRATION_STOP:
860 res = kvm_s390_vm_stop_migration(kvm);
861 break;
862 default:
863 break;
864 }
865 mutex_unlock(&kvm->lock);
866
867 return res;
868 }
869
870 static int kvm_s390_vm_get_migration(struct kvm *kvm,
871 struct kvm_device_attr *attr)
872 {
873 u64 mig = (kvm->arch.migration_state != NULL);
874
875 if (attr->attr != KVM_S390_VM_MIGRATION_STATUS)
876 return -ENXIO;
877
878 if (copy_to_user((void __user *)attr->addr, &mig, sizeof(mig)))
879 return -EFAULT;
880 return 0;
881 }
882
883 static int kvm_s390_set_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr)
884 {
885 struct kvm_s390_vm_tod_clock gtod;
886
887 if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
888 return -EFAULT;
889
890 if (test_kvm_facility(kvm, 139))
891 kvm_s390_set_tod_clock_ext(kvm, &gtod);
892 else if (gtod.epoch_idx == 0)
893 kvm_s390_set_tod_clock(kvm, gtod.tod);
894 else
895 return -EINVAL;
896
897 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x, TOD base: 0x%llx",
898 gtod.epoch_idx, gtod.tod);
899
900 return 0;
901 }
902
903 static int kvm_s390_set_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
904 {
905 u8 gtod_high;
906
907 if (copy_from_user(&gtod_high, (void __user *)attr->addr,
908 sizeof(gtod_high)))
909 return -EFAULT;
910
911 if (gtod_high != 0)
912 return -EINVAL;
913 VM_EVENT(kvm, 3, "SET: TOD extension: 0x%x", gtod_high);
914
915 return 0;
916 }
917
918 static int kvm_s390_set_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
919 {
920 u64 gtod;
921
922 if (copy_from_user(&gtod, (void __user *)attr->addr, sizeof(gtod)))
923 return -EFAULT;
924
925 kvm_s390_set_tod_clock(kvm, gtod);
926 VM_EVENT(kvm, 3, "SET: TOD base: 0x%llx", gtod);
927 return 0;
928 }
929
930 static int kvm_s390_set_tod(struct kvm *kvm, struct kvm_device_attr *attr)
931 {
932 int ret;
933
934 if (attr->flags)
935 return -EINVAL;
936
937 switch (attr->attr) {
938 case KVM_S390_VM_TOD_EXT:
939 ret = kvm_s390_set_tod_ext(kvm, attr);
940 break;
941 case KVM_S390_VM_TOD_HIGH:
942 ret = kvm_s390_set_tod_high(kvm, attr);
943 break;
944 case KVM_S390_VM_TOD_LOW:
945 ret = kvm_s390_set_tod_low(kvm, attr);
946 break;
947 default:
948 ret = -ENXIO;
949 break;
950 }
951 return ret;
952 }
953
954 static void kvm_s390_get_tod_clock_ext(struct kvm *kvm,
955 struct kvm_s390_vm_tod_clock *gtod)
956 {
957 struct kvm_s390_tod_clock_ext htod;
958
959 preempt_disable();
960
961 get_tod_clock_ext((char *)&htod);
962
963 gtod->tod = htod.tod + kvm->arch.epoch;
964 gtod->epoch_idx = htod.epoch_idx + kvm->arch.epdx;
965
966 if (gtod->tod < htod.tod)
967 gtod->epoch_idx += 1;
968
969 preempt_enable();
970 }
971
972 static int kvm_s390_get_tod_ext(struct kvm *kvm, struct kvm_device_attr *attr)
973 {
974 struct kvm_s390_vm_tod_clock gtod;
975
976 memset(&gtod, 0, sizeof(gtod));
977
978 if (test_kvm_facility(kvm, 139))
979 kvm_s390_get_tod_clock_ext(kvm, &gtod);
980 else
981 gtod.tod = kvm_s390_get_tod_clock_fast(kvm);
982
983 if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
984 return -EFAULT;
985
986 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x, TOD base: 0x%llx",
987 gtod.epoch_idx, gtod.tod);
988 return 0;
989 }
990
991 static int kvm_s390_get_tod_high(struct kvm *kvm, struct kvm_device_attr *attr)
992 {
993 u8 gtod_high = 0;
994
995 if (copy_to_user((void __user *)attr->addr, &gtod_high,
996 sizeof(gtod_high)))
997 return -EFAULT;
998 VM_EVENT(kvm, 3, "QUERY: TOD extension: 0x%x", gtod_high);
999
1000 return 0;
1001 }
1002
1003 static int kvm_s390_get_tod_low(struct kvm *kvm, struct kvm_device_attr *attr)
1004 {
1005 u64 gtod;
1006
1007 gtod = kvm_s390_get_tod_clock_fast(kvm);
1008 if (copy_to_user((void __user *)attr->addr, &gtod, sizeof(gtod)))
1009 return -EFAULT;
1010 VM_EVENT(kvm, 3, "QUERY: TOD base: 0x%llx", gtod);
1011
1012 return 0;
1013 }
1014
1015 static int kvm_s390_get_tod(struct kvm *kvm, struct kvm_device_attr *attr)
1016 {
1017 int ret;
1018
1019 if (attr->flags)
1020 return -EINVAL;
1021
1022 switch (attr->attr) {
1023 case KVM_S390_VM_TOD_EXT:
1024 ret = kvm_s390_get_tod_ext(kvm, attr);
1025 break;
1026 case KVM_S390_VM_TOD_HIGH:
1027 ret = kvm_s390_get_tod_high(kvm, attr);
1028 break;
1029 case KVM_S390_VM_TOD_LOW:
1030 ret = kvm_s390_get_tod_low(kvm, attr);
1031 break;
1032 default:
1033 ret = -ENXIO;
1034 break;
1035 }
1036 return ret;
1037 }
1038
1039 static int kvm_s390_set_processor(struct kvm *kvm, struct kvm_device_attr *attr)
1040 {
1041 struct kvm_s390_vm_cpu_processor *proc;
1042 u16 lowest_ibc, unblocked_ibc;
1043 int ret = 0;
1044
1045 mutex_lock(&kvm->lock);
1046 if (kvm->created_vcpus) {
1047 ret = -EBUSY;
1048 goto out;
1049 }
1050 proc = kzalloc(sizeof(*proc), GFP_KERNEL);
1051 if (!proc) {
1052 ret = -ENOMEM;
1053 goto out;
1054 }
1055 if (!copy_from_user(proc, (void __user *)attr->addr,
1056 sizeof(*proc))) {
1057 kvm->arch.model.cpuid = proc->cpuid;
1058 lowest_ibc = sclp.ibc >> 16 & 0xfff;
1059 unblocked_ibc = sclp.ibc & 0xfff;
1060 if (lowest_ibc && proc->ibc) {
1061 if (proc->ibc > unblocked_ibc)
1062 kvm->arch.model.ibc = unblocked_ibc;
1063 else if (proc->ibc < lowest_ibc)
1064 kvm->arch.model.ibc = lowest_ibc;
1065 else
1066 kvm->arch.model.ibc = proc->ibc;
1067 }
1068 memcpy(kvm->arch.model.fac_list, proc->fac_list,
1069 S390_ARCH_FAC_LIST_SIZE_BYTE);
1070 VM_EVENT(kvm, 3, "SET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx",
1071 kvm->arch.model.ibc,
1072 kvm->arch.model.cpuid);
1073 VM_EVENT(kvm, 3, "SET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx",
1074 kvm->arch.model.fac_list[0],
1075 kvm->arch.model.fac_list[1],
1076 kvm->arch.model.fac_list[2]);
1077 } else
1078 ret = -EFAULT;
1079 kfree(proc);
1080 out:
1081 mutex_unlock(&kvm->lock);
1082 return ret;
1083 }
1084
1085 static int kvm_s390_set_processor_feat(struct kvm *kvm,
1086 struct kvm_device_attr *attr)
1087 {
1088 struct kvm_s390_vm_cpu_feat data;
1089 int ret = -EBUSY;
1090
1091 if (copy_from_user(&data, (void __user *)attr->addr, sizeof(data)))
1092 return -EFAULT;
1093 if (!bitmap_subset((unsigned long *) data.feat,
1094 kvm_s390_available_cpu_feat,
1095 KVM_S390_VM_CPU_FEAT_NR_BITS))
1096 return -EINVAL;
1097
1098 mutex_lock(&kvm->lock);
1099 if (!atomic_read(&kvm->online_vcpus)) {
1100 bitmap_copy(kvm->arch.cpu_feat, (unsigned long *) data.feat,
1101 KVM_S390_VM_CPU_FEAT_NR_BITS);
1102 ret = 0;
1103 }
1104 mutex_unlock(&kvm->lock);
1105 return ret;
1106 }
1107
1108 static int kvm_s390_set_processor_subfunc(struct kvm *kvm,
1109 struct kvm_device_attr *attr)
1110 {
1111 /*
1112 * Once supported by kernel + hw, we have to store the subfunctions
1113 * in kvm->arch and remember that user space configured them.
1114 */
1115 return -ENXIO;
1116 }
1117
1118 static int kvm_s390_set_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
1119 {
1120 int ret = -ENXIO;
1121
1122 switch (attr->attr) {
1123 case KVM_S390_VM_CPU_PROCESSOR:
1124 ret = kvm_s390_set_processor(kvm, attr);
1125 break;
1126 case KVM_S390_VM_CPU_PROCESSOR_FEAT:
1127 ret = kvm_s390_set_processor_feat(kvm, attr);
1128 break;
1129 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1130 ret = kvm_s390_set_processor_subfunc(kvm, attr);
1131 break;
1132 }
1133 return ret;
1134 }
1135
1136 static int kvm_s390_get_processor(struct kvm *kvm, struct kvm_device_attr *attr)
1137 {
1138 struct kvm_s390_vm_cpu_processor *proc;
1139 int ret = 0;
1140
1141 proc = kzalloc(sizeof(*proc), GFP_KERNEL);
1142 if (!proc) {
1143 ret = -ENOMEM;
1144 goto out;
1145 }
1146 proc->cpuid = kvm->arch.model.cpuid;
1147 proc->ibc = kvm->arch.model.ibc;
1148 memcpy(&proc->fac_list, kvm->arch.model.fac_list,
1149 S390_ARCH_FAC_LIST_SIZE_BYTE);
1150 VM_EVENT(kvm, 3, "GET: guest ibc: 0x%4.4x, guest cpuid: 0x%16.16llx",
1151 kvm->arch.model.ibc,
1152 kvm->arch.model.cpuid);
1153 VM_EVENT(kvm, 3, "GET: guest faclist: 0x%16.16llx.%16.16llx.%16.16llx",
1154 kvm->arch.model.fac_list[0],
1155 kvm->arch.model.fac_list[1],
1156 kvm->arch.model.fac_list[2]);
1157 if (copy_to_user((void __user *)attr->addr, proc, sizeof(*proc)))
1158 ret = -EFAULT;
1159 kfree(proc);
1160 out:
1161 return ret;
1162 }
1163
1164 static int kvm_s390_get_machine(struct kvm *kvm, struct kvm_device_attr *attr)
1165 {
1166 struct kvm_s390_vm_cpu_machine *mach;
1167 int ret = 0;
1168
1169 mach = kzalloc(sizeof(*mach), GFP_KERNEL);
1170 if (!mach) {
1171 ret = -ENOMEM;
1172 goto out;
1173 }
1174 get_cpu_id((struct cpuid *) &mach->cpuid);
1175 mach->ibc = sclp.ibc;
1176 memcpy(&mach->fac_mask, kvm->arch.model.fac_mask,
1177 S390_ARCH_FAC_LIST_SIZE_BYTE);
1178 memcpy((unsigned long *)&mach->fac_list, S390_lowcore.stfle_fac_list,
1179 sizeof(S390_lowcore.stfle_fac_list));
1180 VM_EVENT(kvm, 3, "GET: host ibc: 0x%4.4x, host cpuid: 0x%16.16llx",
1181 kvm->arch.model.ibc,
1182 kvm->arch.model.cpuid);
1183 VM_EVENT(kvm, 3, "GET: host facmask: 0x%16.16llx.%16.16llx.%16.16llx",
1184 mach->fac_mask[0],
1185 mach->fac_mask[1],
1186 mach->fac_mask[2]);
1187 VM_EVENT(kvm, 3, "GET: host faclist: 0x%16.16llx.%16.16llx.%16.16llx",
1188 mach->fac_list[0],
1189 mach->fac_list[1],
1190 mach->fac_list[2]);
1191 if (copy_to_user((void __user *)attr->addr, mach, sizeof(*mach)))
1192 ret = -EFAULT;
1193 kfree(mach);
1194 out:
1195 return ret;
1196 }
1197
1198 static int kvm_s390_get_processor_feat(struct kvm *kvm,
1199 struct kvm_device_attr *attr)
1200 {
1201 struct kvm_s390_vm_cpu_feat data;
1202
1203 bitmap_copy((unsigned long *) data.feat, kvm->arch.cpu_feat,
1204 KVM_S390_VM_CPU_FEAT_NR_BITS);
1205 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
1206 return -EFAULT;
1207 return 0;
1208 }
1209
1210 static int kvm_s390_get_machine_feat(struct kvm *kvm,
1211 struct kvm_device_attr *attr)
1212 {
1213 struct kvm_s390_vm_cpu_feat data;
1214
1215 bitmap_copy((unsigned long *) data.feat,
1216 kvm_s390_available_cpu_feat,
1217 KVM_S390_VM_CPU_FEAT_NR_BITS);
1218 if (copy_to_user((void __user *)attr->addr, &data, sizeof(data)))
1219 return -EFAULT;
1220 return 0;
1221 }
1222
1223 static int kvm_s390_get_processor_subfunc(struct kvm *kvm,
1224 struct kvm_device_attr *attr)
1225 {
1226 /*
1227 * Once we can actually configure subfunctions (kernel + hw support),
1228 * we have to check if they were already set by user space, if so copy
1229 * them from kvm->arch.
1230 */
1231 return -ENXIO;
1232 }
1233
1234 static int kvm_s390_get_machine_subfunc(struct kvm *kvm,
1235 struct kvm_device_attr *attr)
1236 {
1237 if (copy_to_user((void __user *)attr->addr, &kvm_s390_available_subfunc,
1238 sizeof(struct kvm_s390_vm_cpu_subfunc)))
1239 return -EFAULT;
1240 return 0;
1241 }
1242 static int kvm_s390_get_cpu_model(struct kvm *kvm, struct kvm_device_attr *attr)
1243 {
1244 int ret = -ENXIO;
1245
1246 switch (attr->attr) {
1247 case KVM_S390_VM_CPU_PROCESSOR:
1248 ret = kvm_s390_get_processor(kvm, attr);
1249 break;
1250 case KVM_S390_VM_CPU_MACHINE:
1251 ret = kvm_s390_get_machine(kvm, attr);
1252 break;
1253 case KVM_S390_VM_CPU_PROCESSOR_FEAT:
1254 ret = kvm_s390_get_processor_feat(kvm, attr);
1255 break;
1256 case KVM_S390_VM_CPU_MACHINE_FEAT:
1257 ret = kvm_s390_get_machine_feat(kvm, attr);
1258 break;
1259 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1260 ret = kvm_s390_get_processor_subfunc(kvm, attr);
1261 break;
1262 case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
1263 ret = kvm_s390_get_machine_subfunc(kvm, attr);
1264 break;
1265 }
1266 return ret;
1267 }
1268
1269 static int kvm_s390_vm_set_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1270 {
1271 int ret;
1272
1273 switch (attr->group) {
1274 case KVM_S390_VM_MEM_CTRL:
1275 ret = kvm_s390_set_mem_control(kvm, attr);
1276 break;
1277 case KVM_S390_VM_TOD:
1278 ret = kvm_s390_set_tod(kvm, attr);
1279 break;
1280 case KVM_S390_VM_CPU_MODEL:
1281 ret = kvm_s390_set_cpu_model(kvm, attr);
1282 break;
1283 case KVM_S390_VM_CRYPTO:
1284 ret = kvm_s390_vm_set_crypto(kvm, attr);
1285 break;
1286 case KVM_S390_VM_MIGRATION:
1287 ret = kvm_s390_vm_set_migration(kvm, attr);
1288 break;
1289 default:
1290 ret = -ENXIO;
1291 break;
1292 }
1293
1294 return ret;
1295 }
1296
1297 static int kvm_s390_vm_get_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1298 {
1299 int ret;
1300
1301 switch (attr->group) {
1302 case KVM_S390_VM_MEM_CTRL:
1303 ret = kvm_s390_get_mem_control(kvm, attr);
1304 break;
1305 case KVM_S390_VM_TOD:
1306 ret = kvm_s390_get_tod(kvm, attr);
1307 break;
1308 case KVM_S390_VM_CPU_MODEL:
1309 ret = kvm_s390_get_cpu_model(kvm, attr);
1310 break;
1311 case KVM_S390_VM_MIGRATION:
1312 ret = kvm_s390_vm_get_migration(kvm, attr);
1313 break;
1314 default:
1315 ret = -ENXIO;
1316 break;
1317 }
1318
1319 return ret;
1320 }
1321
1322 static int kvm_s390_vm_has_attr(struct kvm *kvm, struct kvm_device_attr *attr)
1323 {
1324 int ret;
1325
1326 switch (attr->group) {
1327 case KVM_S390_VM_MEM_CTRL:
1328 switch (attr->attr) {
1329 case KVM_S390_VM_MEM_ENABLE_CMMA:
1330 case KVM_S390_VM_MEM_CLR_CMMA:
1331 ret = sclp.has_cmma ? 0 : -ENXIO;
1332 break;
1333 case KVM_S390_VM_MEM_LIMIT_SIZE:
1334 ret = 0;
1335 break;
1336 default:
1337 ret = -ENXIO;
1338 break;
1339 }
1340 break;
1341 case KVM_S390_VM_TOD:
1342 switch (attr->attr) {
1343 case KVM_S390_VM_TOD_LOW:
1344 case KVM_S390_VM_TOD_HIGH:
1345 ret = 0;
1346 break;
1347 default:
1348 ret = -ENXIO;
1349 break;
1350 }
1351 break;
1352 case KVM_S390_VM_CPU_MODEL:
1353 switch (attr->attr) {
1354 case KVM_S390_VM_CPU_PROCESSOR:
1355 case KVM_S390_VM_CPU_MACHINE:
1356 case KVM_S390_VM_CPU_PROCESSOR_FEAT:
1357 case KVM_S390_VM_CPU_MACHINE_FEAT:
1358 case KVM_S390_VM_CPU_MACHINE_SUBFUNC:
1359 ret = 0;
1360 break;
1361 /* configuring subfunctions is not supported yet */
1362 case KVM_S390_VM_CPU_PROCESSOR_SUBFUNC:
1363 default:
1364 ret = -ENXIO;
1365 break;
1366 }
1367 break;
1368 case KVM_S390_VM_CRYPTO:
1369 switch (attr->attr) {
1370 case KVM_S390_VM_CRYPTO_ENABLE_AES_KW:
1371 case KVM_S390_VM_CRYPTO_ENABLE_DEA_KW:
1372 case KVM_S390_VM_CRYPTO_DISABLE_AES_KW:
1373 case KVM_S390_VM_CRYPTO_DISABLE_DEA_KW:
1374 ret = 0;
1375 break;
1376 default:
1377 ret = -ENXIO;
1378 break;
1379 }
1380 break;
1381 case KVM_S390_VM_MIGRATION:
1382 ret = 0;
1383 break;
1384 default:
1385 ret = -ENXIO;
1386 break;
1387 }
1388
1389 return ret;
1390 }
1391
1392 static long kvm_s390_get_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
1393 {
1394 uint8_t *keys;
1395 uint64_t hva;
1396 int srcu_idx, i, r = 0;
1397
1398 if (args->flags != 0)
1399 return -EINVAL;
1400
1401 /* Is this guest using storage keys? */
1402 if (!mm_use_skey(current->mm))
1403 return KVM_S390_GET_SKEYS_NONE;
1404
1405 /* Enforce sane limit on memory allocation */
1406 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
1407 return -EINVAL;
1408
1409 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL);
1410 if (!keys)
1411 return -ENOMEM;
1412
1413 down_read(&current->mm->mmap_sem);
1414 srcu_idx = srcu_read_lock(&kvm->srcu);
1415 for (i = 0; i < args->count; i++) {
1416 hva = gfn_to_hva(kvm, args->start_gfn + i);
1417 if (kvm_is_error_hva(hva)) {
1418 r = -EFAULT;
1419 break;
1420 }
1421
1422 r = get_guest_storage_key(current->mm, hva, &keys[i]);
1423 if (r)
1424 break;
1425 }
1426 srcu_read_unlock(&kvm->srcu, srcu_idx);
1427 up_read(&current->mm->mmap_sem);
1428
1429 if (!r) {
1430 r = copy_to_user((uint8_t __user *)args->skeydata_addr, keys,
1431 sizeof(uint8_t) * args->count);
1432 if (r)
1433 r = -EFAULT;
1434 }
1435
1436 kvfree(keys);
1437 return r;
1438 }
1439
1440 static long kvm_s390_set_skeys(struct kvm *kvm, struct kvm_s390_skeys *args)
1441 {
1442 uint8_t *keys;
1443 uint64_t hva;
1444 int srcu_idx, i, r = 0;
1445
1446 if (args->flags != 0)
1447 return -EINVAL;
1448
1449 /* Enforce sane limit on memory allocation */
1450 if (args->count < 1 || args->count > KVM_S390_SKEYS_MAX)
1451 return -EINVAL;
1452
1453 keys = kvmalloc_array(args->count, sizeof(uint8_t), GFP_KERNEL);
1454 if (!keys)
1455 return -ENOMEM;
1456
1457 r = copy_from_user(keys, (uint8_t __user *)args->skeydata_addr,
1458 sizeof(uint8_t) * args->count);
1459 if (r) {
1460 r = -EFAULT;
1461 goto out;
1462 }
1463
1464 /* Enable storage key handling for the guest */
1465 r = s390_enable_skey();
1466 if (r)
1467 goto out;
1468
1469 down_read(&current->mm->mmap_sem);
1470 srcu_idx = srcu_read_lock(&kvm->srcu);
1471 for (i = 0; i < args->count; i++) {
1472 hva = gfn_to_hva(kvm, args->start_gfn + i);
1473 if (kvm_is_error_hva(hva)) {
1474 r = -EFAULT;
1475 break;
1476 }
1477
1478 /* Lowest order bit is reserved */
1479 if (keys[i] & 0x01) {
1480 r = -EINVAL;
1481 break;
1482 }
1483
1484 r = set_guest_storage_key(current->mm, hva, keys[i], 0);
1485 if (r)
1486 break;
1487 }
1488 srcu_read_unlock(&kvm->srcu, srcu_idx);
1489 up_read(&current->mm->mmap_sem);
1490 out:
1491 kvfree(keys);
1492 return r;
1493 }
1494
1495 /*
1496 * Base address and length must be sent at the start of each block, therefore
1497 * it's cheaper to send some clean data, as long as it's less than the size of
1498 * two longs.
1499 */
1500 #define KVM_S390_MAX_BIT_DISTANCE (2 * sizeof(void *))
1501 /* for consistency */
1502 #define KVM_S390_CMMA_SIZE_MAX ((u32)KVM_S390_SKEYS_MAX)
1503
1504 /*
1505 * This function searches for the next page with dirty CMMA attributes, and
1506 * saves the attributes in the buffer up to either the end of the buffer or
1507 * until a block of at least KVM_S390_MAX_BIT_DISTANCE clean bits is found;
1508 * no trailing clean bytes are saved.
1509 * In case no dirty bits were found, or if CMMA was not enabled or used, the
1510 * output buffer will indicate 0 as length.
1511 */
1512 static int kvm_s390_get_cmma_bits(struct kvm *kvm,
1513 struct kvm_s390_cmma_log *args)
1514 {
1515 struct kvm_s390_migration_state *s = kvm->arch.migration_state;
1516 unsigned long bufsize, hva, pgstev, i, next, cur;
1517 int srcu_idx, peek, r = 0, rr;
1518 u8 *res;
1519
1520 cur = args->start_gfn;
1521 i = next = pgstev = 0;
1522
1523 if (unlikely(!kvm->arch.use_cmma))
1524 return -ENXIO;
1525 /* Invalid/unsupported flags were specified */
1526 if (args->flags & ~KVM_S390_CMMA_PEEK)
1527 return -EINVAL;
1528 /* Migration mode query, and we are not doing a migration */
1529 peek = !!(args->flags & KVM_S390_CMMA_PEEK);
1530 if (!peek && !s)
1531 return -EINVAL;
1532 /* CMMA is disabled or was not used, or the buffer has length zero */
1533 bufsize = min(args->count, KVM_S390_CMMA_SIZE_MAX);
1534 if (!bufsize || !kvm->mm->context.use_cmma) {
1535 memset(args, 0, sizeof(*args));
1536 return 0;
1537 }
1538
1539 if (!peek) {
1540 /* We are not peeking, and there are no dirty pages */
1541 if (!atomic64_read(&s->dirty_pages)) {
1542 memset(args, 0, sizeof(*args));
1543 return 0;
1544 }
1545 cur = find_next_bit(s->pgste_bitmap, s->bitmap_size,
1546 args->start_gfn);
1547 if (cur >= s->bitmap_size) /* nothing found, loop back */
1548 cur = find_next_bit(s->pgste_bitmap, s->bitmap_size, 0);
1549 if (cur >= s->bitmap_size) { /* again! (very unlikely) */
1550 memset(args, 0, sizeof(*args));
1551 return 0;
1552 }
1553 next = find_next_bit(s->pgste_bitmap, s->bitmap_size, cur + 1);
1554 }
1555
1556 res = vmalloc(bufsize);
1557 if (!res)
1558 return -ENOMEM;
1559
1560 args->start_gfn = cur;
1561
1562 down_read(&kvm->mm->mmap_sem);
1563 srcu_idx = srcu_read_lock(&kvm->srcu);
1564 while (i < bufsize) {
1565 hva = gfn_to_hva(kvm, cur);
1566 if (kvm_is_error_hva(hva)) {
1567 r = -EFAULT;
1568 break;
1569 }
1570 /* decrement only if we actually flipped the bit to 0 */
1571 if (!peek && test_and_clear_bit(cur, s->pgste_bitmap))
1572 atomic64_dec(&s->dirty_pages);
1573 r = get_pgste(kvm->mm, hva, &pgstev);
1574 if (r < 0)
1575 pgstev = 0;
1576 /* save the value */
1577 res[i++] = (pgstev >> 24) & 0x43;
1578 /*
1579 * if the next bit is too far away, stop.
1580 * if we reached the previous "next", find the next one
1581 */
1582 if (!peek) {
1583 if (next > cur + KVM_S390_MAX_BIT_DISTANCE)
1584 break;
1585 if (cur == next)
1586 next = find_next_bit(s->pgste_bitmap,
1587 s->bitmap_size, cur + 1);
1588 /* reached the end of the bitmap or of the buffer, stop */
1589 if ((next >= s->bitmap_size) ||
1590 (next >= args->start_gfn + bufsize))
1591 break;
1592 }
1593 cur++;
1594 }
1595 srcu_read_unlock(&kvm->srcu, srcu_idx);
1596 up_read(&kvm->mm->mmap_sem);
1597 args->count = i;
1598 args->remaining = s ? atomic64_read(&s->dirty_pages) : 0;
1599
1600 rr = copy_to_user((void __user *)args->values, res, args->count);
1601 if (rr)
1602 r = -EFAULT;
1603
1604 vfree(res);
1605 return r;
1606 }
1607
1608 /*
1609 * This function sets the CMMA attributes for the given pages. If the input
1610 * buffer has zero length, no action is taken, otherwise the attributes are
1611 * set and the mm->context.use_cmma flag is set.
1612 */
1613 static int kvm_s390_set_cmma_bits(struct kvm *kvm,
1614 const struct kvm_s390_cmma_log *args)
1615 {
1616 unsigned long hva, mask, pgstev, i;
1617 uint8_t *bits;
1618 int srcu_idx, r = 0;
1619
1620 mask = args->mask;
1621
1622 if (!kvm->arch.use_cmma)
1623 return -ENXIO;
1624 /* invalid/unsupported flags */
1625 if (args->flags != 0)
1626 return -EINVAL;
1627 /* Enforce sane limit on memory allocation */
1628 if (args->count > KVM_S390_CMMA_SIZE_MAX)
1629 return -EINVAL;
1630 /* Nothing to do */
1631 if (args->count == 0)
1632 return 0;
1633
1634 bits = vmalloc(sizeof(*bits) * args->count);
1635 if (!bits)
1636 return -ENOMEM;
1637
1638 r = copy_from_user(bits, (void __user *)args->values, args->count);
1639 if (r) {
1640 r = -EFAULT;
1641 goto out;
1642 }
1643
1644 down_read(&kvm->mm->mmap_sem);
1645 srcu_idx = srcu_read_lock(&kvm->srcu);
1646 for (i = 0; i < args->count; i++) {
1647 hva = gfn_to_hva(kvm, args->start_gfn + i);
1648 if (kvm_is_error_hva(hva)) {
1649 r = -EFAULT;
1650 break;
1651 }
1652
1653 pgstev = bits[i];
1654 pgstev = pgstev << 24;
1655 mask &= _PGSTE_GPS_USAGE_MASK | _PGSTE_GPS_NODAT;
1656 set_pgste_bits(kvm->mm, hva, mask, pgstev);
1657 }
1658 srcu_read_unlock(&kvm->srcu, srcu_idx);
1659 up_read(&kvm->mm->mmap_sem);
1660
1661 if (!kvm->mm->context.use_cmma) {
1662 down_write(&kvm->mm->mmap_sem);
1663 kvm->mm->context.use_cmma = 1;
1664 up_write(&kvm->mm->mmap_sem);
1665 }
1666 out:
1667 vfree(bits);
1668 return r;
1669 }
1670
1671 long kvm_arch_vm_ioctl(struct file *filp,
1672 unsigned int ioctl, unsigned long arg)
1673 {
1674 struct kvm *kvm = filp->private_data;
1675 void __user *argp = (void __user *)arg;
1676 struct kvm_device_attr attr;
1677 int r;
1678
1679 switch (ioctl) {
1680 case KVM_S390_INTERRUPT: {
1681 struct kvm_s390_interrupt s390int;
1682
1683 r = -EFAULT;
1684 if (copy_from_user(&s390int, argp, sizeof(s390int)))
1685 break;
1686 r = kvm_s390_inject_vm(kvm, &s390int);
1687 break;
1688 }
1689 case KVM_ENABLE_CAP: {
1690 struct kvm_enable_cap cap;
1691 r = -EFAULT;
1692 if (copy_from_user(&cap, argp, sizeof(cap)))
1693 break;
1694 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
1695 break;
1696 }
1697 case KVM_CREATE_IRQCHIP: {
1698 struct kvm_irq_routing_entry routing;
1699
1700 r = -EINVAL;
1701 if (kvm->arch.use_irqchip) {
1702 /* Set up dummy routing. */
1703 memset(&routing, 0, sizeof(routing));
1704 r = kvm_set_irq_routing(kvm, &routing, 0, 0);
1705 }
1706 break;
1707 }
1708 case KVM_SET_DEVICE_ATTR: {
1709 r = -EFAULT;
1710 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
1711 break;
1712 r = kvm_s390_vm_set_attr(kvm, &attr);
1713 break;
1714 }
1715 case KVM_GET_DEVICE_ATTR: {
1716 r = -EFAULT;
1717 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
1718 break;
1719 r = kvm_s390_vm_get_attr(kvm, &attr);
1720 break;
1721 }
1722 case KVM_HAS_DEVICE_ATTR: {
1723 r = -EFAULT;
1724 if (copy_from_user(&attr, (void __user *)arg, sizeof(attr)))
1725 break;
1726 r = kvm_s390_vm_has_attr(kvm, &attr);
1727 break;
1728 }
1729 case KVM_S390_GET_SKEYS: {
1730 struct kvm_s390_skeys args;
1731
1732 r = -EFAULT;
1733 if (copy_from_user(&args, argp,
1734 sizeof(struct kvm_s390_skeys)))
1735 break;
1736 r = kvm_s390_get_skeys(kvm, &args);
1737 break;
1738 }
1739 case KVM_S390_SET_SKEYS: {
1740 struct kvm_s390_skeys args;
1741
1742 r = -EFAULT;
1743 if (copy_from_user(&args, argp,
1744 sizeof(struct kvm_s390_skeys)))
1745 break;
1746 r = kvm_s390_set_skeys(kvm, &args);
1747 break;
1748 }
1749 case KVM_S390_GET_CMMA_BITS: {
1750 struct kvm_s390_cmma_log args;
1751
1752 r = -EFAULT;
1753 if (copy_from_user(&args, argp, sizeof(args)))
1754 break;
1755 r = kvm_s390_get_cmma_bits(kvm, &args);
1756 if (!r) {
1757 r = copy_to_user(argp, &args, sizeof(args));
1758 if (r)
1759 r = -EFAULT;
1760 }
1761 break;
1762 }
1763 case KVM_S390_SET_CMMA_BITS: {
1764 struct kvm_s390_cmma_log args;
1765
1766 r = -EFAULT;
1767 if (copy_from_user(&args, argp, sizeof(args)))
1768 break;
1769 r = kvm_s390_set_cmma_bits(kvm, &args);
1770 break;
1771 }
1772 default:
1773 r = -ENOTTY;
1774 }
1775
1776 return r;
1777 }
1778
1779 static int kvm_s390_query_ap_config(u8 *config)
1780 {
1781 u32 fcn_code = 0x04000000UL;
1782 u32 cc = 0;
1783
1784 memset(config, 0, 128);
1785 asm volatile(
1786 "lgr 0,%1\n"
1787 "lgr 2,%2\n"
1788 ".long 0xb2af0000\n" /* PQAP(QCI) */
1789 "0: ipm %0\n"
1790 "srl %0,28\n"
1791 "1:\n"
1792 EX_TABLE(0b, 1b)
1793 : "+r" (cc)
1794 : "r" (fcn_code), "r" (config)
1795 : "cc", "0", "2", "memory"
1796 );
1797
1798 return cc;
1799 }
1800
1801 static int kvm_s390_apxa_installed(void)
1802 {
1803 u8 config[128];
1804 int cc;
1805
1806 if (test_facility(12)) {
1807 cc = kvm_s390_query_ap_config(config);
1808
1809 if (cc)
1810 pr_err("PQAP(QCI) failed with cc=%d", cc);
1811 else
1812 return config[0] & 0x40;
1813 }
1814
1815 return 0;
1816 }
1817
1818 static void kvm_s390_set_crycb_format(struct kvm *kvm)
1819 {
1820 kvm->arch.crypto.crycbd = (__u32)(unsigned long) kvm->arch.crypto.crycb;
1821
1822 if (kvm_s390_apxa_installed())
1823 kvm->arch.crypto.crycbd |= CRYCB_FORMAT2;
1824 else
1825 kvm->arch.crypto.crycbd |= CRYCB_FORMAT1;
1826 }
1827
1828 static u64 kvm_s390_get_initial_cpuid(void)
1829 {
1830 struct cpuid cpuid;
1831
1832 get_cpu_id(&cpuid);
1833 cpuid.version = 0xff;
1834 return *((u64 *) &cpuid);
1835 }
1836
1837 static void kvm_s390_crypto_init(struct kvm *kvm)
1838 {
1839 if (!test_kvm_facility(kvm, 76))
1840 return;
1841
1842 kvm->arch.crypto.crycb = &kvm->arch.sie_page2->crycb;
1843 kvm_s390_set_crycb_format(kvm);
1844
1845 /* Enable AES/DEA protected key functions by default */
1846 kvm->arch.crypto.aes_kw = 1;
1847 kvm->arch.crypto.dea_kw = 1;
1848 get_random_bytes(kvm->arch.crypto.crycb->aes_wrapping_key_mask,
1849 sizeof(kvm->arch.crypto.crycb->aes_wrapping_key_mask));
1850 get_random_bytes(kvm->arch.crypto.crycb->dea_wrapping_key_mask,
1851 sizeof(kvm->arch.crypto.crycb->dea_wrapping_key_mask));
1852 }
1853
1854 static void sca_dispose(struct kvm *kvm)
1855 {
1856 if (kvm->arch.use_esca)
1857 free_pages_exact(kvm->arch.sca, sizeof(struct esca_block));
1858 else
1859 free_page((unsigned long)(kvm->arch.sca));
1860 kvm->arch.sca = NULL;
1861 }
1862
1863 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
1864 {
1865 gfp_t alloc_flags = GFP_KERNEL;
1866 int i, rc;
1867 char debug_name[16];
1868 static unsigned long sca_offset;
1869
1870 rc = -EINVAL;
1871 #ifdef CONFIG_KVM_S390_UCONTROL
1872 if (type & ~KVM_VM_S390_UCONTROL)
1873 goto out_err;
1874 if ((type & KVM_VM_S390_UCONTROL) && (!capable(CAP_SYS_ADMIN)))
1875 goto out_err;
1876 #else
1877 if (type)
1878 goto out_err;
1879 #endif
1880
1881 rc = s390_enable_sie();
1882 if (rc)
1883 goto out_err;
1884
1885 rc = -ENOMEM;
1886
1887 kvm->arch.use_esca = 0; /* start with basic SCA */
1888 if (!sclp.has_64bscao)
1889 alloc_flags |= GFP_DMA;
1890 rwlock_init(&kvm->arch.sca_lock);
1891 kvm->arch.sca = (struct bsca_block *) get_zeroed_page(alloc_flags);
1892 if (!kvm->arch.sca)
1893 goto out_err;
1894 spin_lock(&kvm_lock);
1895 sca_offset += 16;
1896 if (sca_offset + sizeof(struct bsca_block) > PAGE_SIZE)
1897 sca_offset = 0;
1898 kvm->arch.sca = (struct bsca_block *)
1899 ((char *) kvm->arch.sca + sca_offset);
1900 spin_unlock(&kvm_lock);
1901
1902 sprintf(debug_name, "kvm-%u", current->pid);
1903
1904 kvm->arch.dbf = debug_register(debug_name, 32, 1, 7 * sizeof(long));
1905 if (!kvm->arch.dbf)
1906 goto out_err;
1907
1908 kvm->arch.sie_page2 =
1909 (struct sie_page2 *) get_zeroed_page(GFP_KERNEL | GFP_DMA);
1910 if (!kvm->arch.sie_page2)
1911 goto out_err;
1912
1913 /* Populate the facility mask initially. */
1914 memcpy(kvm->arch.model.fac_mask, S390_lowcore.stfle_fac_list,
1915 sizeof(S390_lowcore.stfle_fac_list));
1916 for (i = 0; i < S390_ARCH_FAC_LIST_SIZE_U64; i++) {
1917 if (i < kvm_s390_fac_list_mask_size())
1918 kvm->arch.model.fac_mask[i] &= kvm_s390_fac_list_mask[i];
1919 else
1920 kvm->arch.model.fac_mask[i] = 0UL;
1921 }
1922
1923 /* Populate the facility list initially. */
1924 kvm->arch.model.fac_list = kvm->arch.sie_page2->fac_list;
1925 memcpy(kvm->arch.model.fac_list, kvm->arch.model.fac_mask,
1926 S390_ARCH_FAC_LIST_SIZE_BYTE);
1927
1928 /* we are always in czam mode - even on pre z14 machines */
1929 set_kvm_facility(kvm->arch.model.fac_mask, 138);
1930 set_kvm_facility(kvm->arch.model.fac_list, 138);
1931 /* we emulate STHYI in kvm */
1932 set_kvm_facility(kvm->arch.model.fac_mask, 74);
1933 set_kvm_facility(kvm->arch.model.fac_list, 74);
1934 if (MACHINE_HAS_TLB_GUEST) {
1935 set_kvm_facility(kvm->arch.model.fac_mask, 147);
1936 set_kvm_facility(kvm->arch.model.fac_list, 147);
1937 }
1938
1939 kvm->arch.model.cpuid = kvm_s390_get_initial_cpuid();
1940 kvm->arch.model.ibc = sclp.ibc & 0x0fff;
1941
1942 kvm_s390_crypto_init(kvm);
1943
1944 mutex_init(&kvm->arch.float_int.ais_lock);
1945 kvm->arch.float_int.simm = 0;
1946 kvm->arch.float_int.nimm = 0;
1947 spin_lock_init(&kvm->arch.float_int.lock);
1948 for (i = 0; i < FIRQ_LIST_COUNT; i++)
1949 INIT_LIST_HEAD(&kvm->arch.float_int.lists[i]);
1950 init_waitqueue_head(&kvm->arch.ipte_wq);
1951 mutex_init(&kvm->arch.ipte_mutex);
1952
1953 debug_register_view(kvm->arch.dbf, &debug_sprintf_view);
1954 VM_EVENT(kvm, 3, "vm created with type %lu", type);
1955
1956 if (type & KVM_VM_S390_UCONTROL) {
1957 kvm->arch.gmap = NULL;
1958 kvm->arch.mem_limit = KVM_S390_NO_MEM_LIMIT;
1959 } else {
1960 if (sclp.hamax == U64_MAX)
1961 kvm->arch.mem_limit = TASK_SIZE_MAX;
1962 else
1963 kvm->arch.mem_limit = min_t(unsigned long, TASK_SIZE_MAX,
1964 sclp.hamax + 1);
1965 kvm->arch.gmap = gmap_create(current->mm, kvm->arch.mem_limit - 1);
1966 if (!kvm->arch.gmap)
1967 goto out_err;
1968 kvm->arch.gmap->private = kvm;
1969 kvm->arch.gmap->pfault_enabled = 0;
1970 }
1971
1972 kvm->arch.css_support = 0;
1973 kvm->arch.use_irqchip = 0;
1974 kvm->arch.epoch = 0;
1975
1976 spin_lock_init(&kvm->arch.start_stop_lock);
1977 kvm_s390_vsie_init(kvm);
1978 KVM_EVENT(3, "vm 0x%pK created by pid %u", kvm, current->pid);
1979
1980 return 0;
1981 out_err:
1982 free_page((unsigned long)kvm->arch.sie_page2);
1983 debug_unregister(kvm->arch.dbf);
1984 sca_dispose(kvm);
1985 KVM_EVENT(3, "creation of vm failed: %d", rc);
1986 return rc;
1987 }
1988
1989 bool kvm_arch_has_vcpu_debugfs(void)
1990 {
1991 return false;
1992 }
1993
1994 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
1995 {
1996 return 0;
1997 }
1998
1999 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
2000 {
2001 VCPU_EVENT(vcpu, 3, "%s", "free cpu");
2002 trace_kvm_s390_destroy_vcpu(vcpu->vcpu_id);
2003 kvm_s390_clear_local_irqs(vcpu);
2004 kvm_clear_async_pf_completion_queue(vcpu);
2005 if (!kvm_is_ucontrol(vcpu->kvm))
2006 sca_del_vcpu(vcpu);
2007
2008 if (kvm_is_ucontrol(vcpu->kvm))
2009 gmap_remove(vcpu->arch.gmap);
2010
2011 if (vcpu->kvm->arch.use_cmma)
2012 kvm_s390_vcpu_unsetup_cmma(vcpu);
2013 free_page((unsigned long)(vcpu->arch.sie_block));
2014
2015 kvm_vcpu_uninit(vcpu);
2016 kmem_cache_free(kvm_vcpu_cache, vcpu);
2017 }
2018
2019 static void kvm_free_vcpus(struct kvm *kvm)
2020 {
2021 unsigned int i;
2022 struct kvm_vcpu *vcpu;
2023
2024 kvm_for_each_vcpu(i, vcpu, kvm)
2025 kvm_arch_vcpu_destroy(vcpu);
2026
2027 mutex_lock(&kvm->lock);
2028 for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
2029 kvm->vcpus[i] = NULL;
2030
2031 atomic_set(&kvm->online_vcpus, 0);
2032 mutex_unlock(&kvm->lock);
2033 }
2034
2035 void kvm_arch_destroy_vm(struct kvm *kvm)
2036 {
2037 kvm_free_vcpus(kvm);
2038 sca_dispose(kvm);
2039 debug_unregister(kvm->arch.dbf);
2040 free_page((unsigned long)kvm->arch.sie_page2);
2041 if (!kvm_is_ucontrol(kvm))
2042 gmap_remove(kvm->arch.gmap);
2043 kvm_s390_destroy_adapters(kvm);
2044 kvm_s390_clear_float_irqs(kvm);
2045 kvm_s390_vsie_destroy(kvm);
2046 if (kvm->arch.migration_state) {
2047 vfree(kvm->arch.migration_state->pgste_bitmap);
2048 kfree(kvm->arch.migration_state);
2049 }
2050 KVM_EVENT(3, "vm 0x%pK destroyed", kvm);
2051 }
2052
2053 /* Section: vcpu related */
2054 static int __kvm_ucontrol_vcpu_init(struct kvm_vcpu *vcpu)
2055 {
2056 vcpu->arch.gmap = gmap_create(current->mm, -1UL);
2057 if (!vcpu->arch.gmap)
2058 return -ENOMEM;
2059 vcpu->arch.gmap->private = vcpu->kvm;
2060
2061 return 0;
2062 }
2063
2064 static void sca_del_vcpu(struct kvm_vcpu *vcpu)
2065 {
2066 if (!kvm_s390_use_sca_entries())
2067 return;
2068 read_lock(&vcpu->kvm->arch.sca_lock);
2069 if (vcpu->kvm->arch.use_esca) {
2070 struct esca_block *sca = vcpu->kvm->arch.sca;
2071
2072 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
2073 sca->cpu[vcpu->vcpu_id].sda = 0;
2074 } else {
2075 struct bsca_block *sca = vcpu->kvm->arch.sca;
2076
2077 clear_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
2078 sca->cpu[vcpu->vcpu_id].sda = 0;
2079 }
2080 read_unlock(&vcpu->kvm->arch.sca_lock);
2081 }
2082
2083 static void sca_add_vcpu(struct kvm_vcpu *vcpu)
2084 {
2085 if (!kvm_s390_use_sca_entries()) {
2086 struct bsca_block *sca = vcpu->kvm->arch.sca;
2087
2088 /* we still need the basic sca for the ipte control */
2089 vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
2090 vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
2091 }
2092 read_lock(&vcpu->kvm->arch.sca_lock);
2093 if (vcpu->kvm->arch.use_esca) {
2094 struct esca_block *sca = vcpu->kvm->arch.sca;
2095
2096 sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
2097 vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
2098 vcpu->arch.sie_block->scaol = (__u32)(__u64)sca & ~0x3fU;
2099 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA;
2100 set_bit_inv(vcpu->vcpu_id, (unsigned long *) sca->mcn);
2101 } else {
2102 struct bsca_block *sca = vcpu->kvm->arch.sca;
2103
2104 sca->cpu[vcpu->vcpu_id].sda = (__u64) vcpu->arch.sie_block;
2105 vcpu->arch.sie_block->scaoh = (__u32)(((__u64)sca) >> 32);
2106 vcpu->arch.sie_block->scaol = (__u32)(__u64)sca;
2107 set_bit_inv(vcpu->vcpu_id, (unsigned long *) &sca->mcn);
2108 }
2109 read_unlock(&vcpu->kvm->arch.sca_lock);
2110 }
2111
2112 /* Basic SCA to Extended SCA data copy routines */
2113 static inline void sca_copy_entry(struct esca_entry *d, struct bsca_entry *s)
2114 {
2115 d->sda = s->sda;
2116 d->sigp_ctrl.c = s->sigp_ctrl.c;
2117 d->sigp_ctrl.scn = s->sigp_ctrl.scn;
2118 }
2119
2120 static void sca_copy_b_to_e(struct esca_block *d, struct bsca_block *s)
2121 {
2122 int i;
2123
2124 d->ipte_control = s->ipte_control;
2125 d->mcn[0] = s->mcn;
2126 for (i = 0; i < KVM_S390_BSCA_CPU_SLOTS; i++)
2127 sca_copy_entry(&d->cpu[i], &s->cpu[i]);
2128 }
2129
2130 static int sca_switch_to_extended(struct kvm *kvm)
2131 {
2132 struct bsca_block *old_sca = kvm->arch.sca;
2133 struct esca_block *new_sca;
2134 struct kvm_vcpu *vcpu;
2135 unsigned int vcpu_idx;
2136 u32 scaol, scaoh;
2137
2138 new_sca = alloc_pages_exact(sizeof(*new_sca), GFP_KERNEL|__GFP_ZERO);
2139 if (!new_sca)
2140 return -ENOMEM;
2141
2142 scaoh = (u32)((u64)(new_sca) >> 32);
2143 scaol = (u32)(u64)(new_sca) & ~0x3fU;
2144
2145 kvm_s390_vcpu_block_all(kvm);
2146 write_lock(&kvm->arch.sca_lock);
2147
2148 sca_copy_b_to_e(new_sca, old_sca);
2149
2150 kvm_for_each_vcpu(vcpu_idx, vcpu, kvm) {
2151 vcpu->arch.sie_block->scaoh = scaoh;
2152 vcpu->arch.sie_block->scaol = scaol;
2153 vcpu->arch.sie_block->ecb2 |= ECB2_ESCA;
2154 }
2155 kvm->arch.sca = new_sca;
2156 kvm->arch.use_esca = 1;
2157
2158 write_unlock(&kvm->arch.sca_lock);
2159 kvm_s390_vcpu_unblock_all(kvm);
2160
2161 free_page((unsigned long)old_sca);
2162
2163 VM_EVENT(kvm, 2, "Switched to ESCA (0x%pK -> 0x%pK)",
2164 old_sca, kvm->arch.sca);
2165 return 0;
2166 }
2167
2168 static int sca_can_add_vcpu(struct kvm *kvm, unsigned int id)
2169 {
2170 int rc;
2171
2172 if (!kvm_s390_use_sca_entries()) {
2173 if (id < KVM_MAX_VCPUS)
2174 return true;
2175 return false;
2176 }
2177 if (id < KVM_S390_BSCA_CPU_SLOTS)
2178 return true;
2179 if (!sclp.has_esca || !sclp.has_64bscao)
2180 return false;
2181
2182 mutex_lock(&kvm->lock);
2183 rc = kvm->arch.use_esca ? 0 : sca_switch_to_extended(kvm);
2184 mutex_unlock(&kvm->lock);
2185
2186 return rc == 0 && id < KVM_S390_ESCA_CPU_SLOTS;
2187 }
2188
2189 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
2190 {
2191 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
2192 kvm_clear_async_pf_completion_queue(vcpu);
2193 vcpu->run->kvm_valid_regs = KVM_SYNC_PREFIX |
2194 KVM_SYNC_GPRS |
2195 KVM_SYNC_ACRS |
2196 KVM_SYNC_CRS |
2197 KVM_SYNC_ARCH0 |
2198 KVM_SYNC_PFAULT;
2199 kvm_s390_set_prefix(vcpu, 0);
2200 if (test_kvm_facility(vcpu->kvm, 64))
2201 vcpu->run->kvm_valid_regs |= KVM_SYNC_RICCB;
2202 if (test_kvm_facility(vcpu->kvm, 133))
2203 vcpu->run->kvm_valid_regs |= KVM_SYNC_GSCB;
2204 /* fprs can be synchronized via vrs, even if the guest has no vx. With
2205 * MACHINE_HAS_VX, (load|store)_fpu_regs() will work with vrs format.
2206 */
2207 if (MACHINE_HAS_VX)
2208 vcpu->run->kvm_valid_regs |= KVM_SYNC_VRS;
2209 else
2210 vcpu->run->kvm_valid_regs |= KVM_SYNC_FPRS;
2211
2212 if (kvm_is_ucontrol(vcpu->kvm))
2213 return __kvm_ucontrol_vcpu_init(vcpu);
2214
2215 return 0;
2216 }
2217
2218 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
2219 static void __start_cpu_timer_accounting(struct kvm_vcpu *vcpu)
2220 {
2221 WARN_ON_ONCE(vcpu->arch.cputm_start != 0);
2222 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
2223 vcpu->arch.cputm_start = get_tod_clock_fast();
2224 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
2225 }
2226
2227 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
2228 static void __stop_cpu_timer_accounting(struct kvm_vcpu *vcpu)
2229 {
2230 WARN_ON_ONCE(vcpu->arch.cputm_start == 0);
2231 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
2232 vcpu->arch.sie_block->cputm -= get_tod_clock_fast() - vcpu->arch.cputm_start;
2233 vcpu->arch.cputm_start = 0;
2234 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
2235 }
2236
2237 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
2238 static void __enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
2239 {
2240 WARN_ON_ONCE(vcpu->arch.cputm_enabled);
2241 vcpu->arch.cputm_enabled = true;
2242 __start_cpu_timer_accounting(vcpu);
2243 }
2244
2245 /* needs disabled preemption to protect from TOD sync and vcpu_load/put */
2246 static void __disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
2247 {
2248 WARN_ON_ONCE(!vcpu->arch.cputm_enabled);
2249 __stop_cpu_timer_accounting(vcpu);
2250 vcpu->arch.cputm_enabled = false;
2251 }
2252
2253 static void enable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
2254 {
2255 preempt_disable(); /* protect from TOD sync and vcpu_load/put */
2256 __enable_cpu_timer_accounting(vcpu);
2257 preempt_enable();
2258 }
2259
2260 static void disable_cpu_timer_accounting(struct kvm_vcpu *vcpu)
2261 {
2262 preempt_disable(); /* protect from TOD sync and vcpu_load/put */
2263 __disable_cpu_timer_accounting(vcpu);
2264 preempt_enable();
2265 }
2266
2267 /* set the cpu timer - may only be called from the VCPU thread itself */
2268 void kvm_s390_set_cpu_timer(struct kvm_vcpu *vcpu, __u64 cputm)
2269 {
2270 preempt_disable(); /* protect from TOD sync and vcpu_load/put */
2271 raw_write_seqcount_begin(&vcpu->arch.cputm_seqcount);
2272 if (vcpu->arch.cputm_enabled)
2273 vcpu->arch.cputm_start = get_tod_clock_fast();
2274 vcpu->arch.sie_block->cputm = cputm;
2275 raw_write_seqcount_end(&vcpu->arch.cputm_seqcount);
2276 preempt_enable();
2277 }
2278
2279 /* update and get the cpu timer - can also be called from other VCPU threads */
2280 __u64 kvm_s390_get_cpu_timer(struct kvm_vcpu *vcpu)
2281 {
2282 unsigned int seq;
2283 __u64 value;
2284
2285 if (unlikely(!vcpu->arch.cputm_enabled))
2286 return vcpu->arch.sie_block->cputm;
2287
2288 preempt_disable(); /* protect from TOD sync and vcpu_load/put */
2289 do {
2290 seq = raw_read_seqcount(&vcpu->arch.cputm_seqcount);
2291 /*
2292 * If the writer would ever execute a read in the critical
2293 * section, e.g. in irq context, we have a deadlock.
2294 */
2295 WARN_ON_ONCE((seq & 1) && smp_processor_id() == vcpu->cpu);
2296 value = vcpu->arch.sie_block->cputm;
2297 /* if cputm_start is 0, accounting is being started/stopped */
2298 if (likely(vcpu->arch.cputm_start))
2299 value -= get_tod_clock_fast() - vcpu->arch.cputm_start;
2300 } while (read_seqcount_retry(&vcpu->arch.cputm_seqcount, seq & ~1));
2301 preempt_enable();
2302 return value;
2303 }
2304
2305 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
2306 {
2307
2308 gmap_enable(vcpu->arch.enabled_gmap);
2309 atomic_or(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
2310 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
2311 __start_cpu_timer_accounting(vcpu);
2312 vcpu->cpu = cpu;
2313 }
2314
2315 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
2316 {
2317 vcpu->cpu = -1;
2318 if (vcpu->arch.cputm_enabled && !is_vcpu_idle(vcpu))
2319 __stop_cpu_timer_accounting(vcpu);
2320 atomic_andnot(CPUSTAT_RUNNING, &vcpu->arch.sie_block->cpuflags);
2321 vcpu->arch.enabled_gmap = gmap_get_enabled();
2322 gmap_disable(vcpu->arch.enabled_gmap);
2323
2324 }
2325
2326 static void kvm_s390_vcpu_initial_reset(struct kvm_vcpu *vcpu)
2327 {
2328 /* this equals initial cpu reset in pop, but we don't switch to ESA */
2329 vcpu->arch.sie_block->gpsw.mask = 0UL;
2330 vcpu->arch.sie_block->gpsw.addr = 0UL;
2331 kvm_s390_set_prefix(vcpu, 0);
2332 kvm_s390_set_cpu_timer(vcpu, 0);
2333 vcpu->arch.sie_block->ckc = 0UL;
2334 vcpu->arch.sie_block->todpr = 0;
2335 memset(vcpu->arch.sie_block->gcr, 0, 16 * sizeof(__u64));
2336 vcpu->arch.sie_block->gcr[0] = 0xE0UL;
2337 vcpu->arch.sie_block->gcr[14] = 0xC2000000UL;
2338 /* make sure the new fpc will be lazily loaded */
2339 save_fpu_regs();
2340 current->thread.fpu.fpc = 0;
2341 vcpu->arch.sie_block->gbea = 1;
2342 vcpu->arch.sie_block->pp = 0;
2343 vcpu->arch.pfault_token = KVM_S390_PFAULT_TOKEN_INVALID;
2344 kvm_clear_async_pf_completion_queue(vcpu);
2345 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm))
2346 kvm_s390_vcpu_stop(vcpu);
2347 kvm_s390_clear_local_irqs(vcpu);
2348 }
2349
2350 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
2351 {
2352 mutex_lock(&vcpu->kvm->lock);
2353 preempt_disable();
2354 vcpu->arch.sie_block->epoch = vcpu->kvm->arch.epoch;
2355 preempt_enable();
2356 mutex_unlock(&vcpu->kvm->lock);
2357 if (!kvm_is_ucontrol(vcpu->kvm)) {
2358 vcpu->arch.gmap = vcpu->kvm->arch.gmap;
2359 sca_add_vcpu(vcpu);
2360 }
2361 if (test_kvm_facility(vcpu->kvm, 74) || vcpu->kvm->arch.user_instr0)
2362 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
2363 /* make vcpu_load load the right gmap on the first trigger */
2364 vcpu->arch.enabled_gmap = vcpu->arch.gmap;
2365 }
2366
2367 static void kvm_s390_vcpu_crypto_setup(struct kvm_vcpu *vcpu)
2368 {
2369 if (!test_kvm_facility(vcpu->kvm, 76))
2370 return;
2371
2372 vcpu->arch.sie_block->ecb3 &= ~(ECB3_AES | ECB3_DEA);
2373
2374 if (vcpu->kvm->arch.crypto.aes_kw)
2375 vcpu->arch.sie_block->ecb3 |= ECB3_AES;
2376 if (vcpu->kvm->arch.crypto.dea_kw)
2377 vcpu->arch.sie_block->ecb3 |= ECB3_DEA;
2378
2379 vcpu->arch.sie_block->crycbd = vcpu->kvm->arch.crypto.crycbd;
2380 }
2381
2382 void kvm_s390_vcpu_unsetup_cmma(struct kvm_vcpu *vcpu)
2383 {
2384 free_page(vcpu->arch.sie_block->cbrlo);
2385 vcpu->arch.sie_block->cbrlo = 0;
2386 }
2387
2388 int kvm_s390_vcpu_setup_cmma(struct kvm_vcpu *vcpu)
2389 {
2390 vcpu->arch.sie_block->cbrlo = get_zeroed_page(GFP_KERNEL);
2391 if (!vcpu->arch.sie_block->cbrlo)
2392 return -ENOMEM;
2393
2394 vcpu->arch.sie_block->ecb2 &= ~ECB2_PFMFI;
2395 return 0;
2396 }
2397
2398 static void kvm_s390_vcpu_setup_model(struct kvm_vcpu *vcpu)
2399 {
2400 struct kvm_s390_cpu_model *model = &vcpu->kvm->arch.model;
2401
2402 vcpu->arch.sie_block->ibc = model->ibc;
2403 if (test_kvm_facility(vcpu->kvm, 7))
2404 vcpu->arch.sie_block->fac = (u32)(u64) model->fac_list;
2405 }
2406
2407 int kvm_arch_vcpu_setup(struct kvm_vcpu *vcpu)
2408 {
2409 int rc = 0;
2410
2411 atomic_set(&vcpu->arch.sie_block->cpuflags, CPUSTAT_ZARCH |
2412 CPUSTAT_SM |
2413 CPUSTAT_STOPPED);
2414
2415 if (test_kvm_facility(vcpu->kvm, 78))
2416 atomic_or(CPUSTAT_GED2, &vcpu->arch.sie_block->cpuflags);
2417 else if (test_kvm_facility(vcpu->kvm, 8))
2418 atomic_or(CPUSTAT_GED, &vcpu->arch.sie_block->cpuflags);
2419
2420 kvm_s390_vcpu_setup_model(vcpu);
2421
2422 /* pgste_set_pte has special handling for !MACHINE_HAS_ESOP */
2423 if (MACHINE_HAS_ESOP)
2424 vcpu->arch.sie_block->ecb |= ECB_HOSTPROTINT;
2425 if (test_kvm_facility(vcpu->kvm, 9))
2426 vcpu->arch.sie_block->ecb |= ECB_SRSI;
2427 if (test_kvm_facility(vcpu->kvm, 73))
2428 vcpu->arch.sie_block->ecb |= ECB_TE;
2429
2430 if (test_kvm_facility(vcpu->kvm, 8) && sclp.has_pfmfi)
2431 vcpu->arch.sie_block->ecb2 |= ECB2_PFMFI;
2432 if (test_kvm_facility(vcpu->kvm, 130))
2433 vcpu->arch.sie_block->ecb2 |= ECB2_IEP;
2434 vcpu->arch.sie_block->eca = ECA_MVPGI | ECA_PROTEXCI;
2435 if (sclp.has_cei)
2436 vcpu->arch.sie_block->eca |= ECA_CEI;
2437 if (sclp.has_ib)
2438 vcpu->arch.sie_block->eca |= ECA_IB;
2439 if (sclp.has_siif)
2440 vcpu->arch.sie_block->eca |= ECA_SII;
2441 if (sclp.has_sigpif)
2442 vcpu->arch.sie_block->eca |= ECA_SIGPI;
2443 if (test_kvm_facility(vcpu->kvm, 129)) {
2444 vcpu->arch.sie_block->eca |= ECA_VX;
2445 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT;
2446 }
2447 if (test_kvm_facility(vcpu->kvm, 139))
2448 vcpu->arch.sie_block->ecd |= ECD_MEF;
2449
2450 vcpu->arch.sie_block->sdnxo = ((unsigned long) &vcpu->run->s.regs.sdnx)
2451 | SDNXC;
2452 vcpu->arch.sie_block->riccbd = (unsigned long) &vcpu->run->s.regs.riccb;
2453
2454 if (sclp.has_kss)
2455 atomic_or(CPUSTAT_KSS, &vcpu->arch.sie_block->cpuflags);
2456 else
2457 vcpu->arch.sie_block->ictl |= ICTL_ISKE | ICTL_SSKE | ICTL_RRBE;
2458
2459 if (vcpu->kvm->arch.use_cmma) {
2460 rc = kvm_s390_vcpu_setup_cmma(vcpu);
2461 if (rc)
2462 return rc;
2463 }
2464 hrtimer_init(&vcpu->arch.ckc_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
2465 vcpu->arch.ckc_timer.function = kvm_s390_idle_wakeup;
2466
2467 kvm_s390_vcpu_crypto_setup(vcpu);
2468
2469 return rc;
2470 }
2471
2472 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm,
2473 unsigned int id)
2474 {
2475 struct kvm_vcpu *vcpu;
2476 struct sie_page *sie_page;
2477 int rc = -EINVAL;
2478
2479 if (!kvm_is_ucontrol(kvm) && !sca_can_add_vcpu(kvm, id))
2480 goto out;
2481
2482 rc = -ENOMEM;
2483
2484 vcpu = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
2485 if (!vcpu)
2486 goto out;
2487
2488 BUILD_BUG_ON(sizeof(struct sie_page) != 4096);
2489 sie_page = (struct sie_page *) get_zeroed_page(GFP_KERNEL);
2490 if (!sie_page)
2491 goto out_free_cpu;
2492
2493 vcpu->arch.sie_block = &sie_page->sie_block;
2494 vcpu->arch.sie_block->itdba = (unsigned long) &sie_page->itdb;
2495
2496 /* the real guest size will always be smaller than msl */
2497 vcpu->arch.sie_block->mso = 0;
2498 vcpu->arch.sie_block->msl = sclp.hamax;
2499
2500 vcpu->arch.sie_block->icpua = id;
2501 spin_lock_init(&vcpu->arch.local_int.lock);
2502 vcpu->arch.local_int.float_int = &kvm->arch.float_int;
2503 vcpu->arch.local_int.wq = &vcpu->wq;
2504 vcpu->arch.local_int.cpuflags = &vcpu->arch.sie_block->cpuflags;
2505 seqcount_init(&vcpu->arch.cputm_seqcount);
2506
2507 rc = kvm_vcpu_init(vcpu, kvm, id);
2508 if (rc)
2509 goto out_free_sie_block;
2510 VM_EVENT(kvm, 3, "create cpu %d at 0x%pK, sie block at 0x%pK", id, vcpu,
2511 vcpu->arch.sie_block);
2512 trace_kvm_s390_create_vcpu(id, vcpu, vcpu->arch.sie_block);
2513
2514 return vcpu;
2515 out_free_sie_block:
2516 free_page((unsigned long)(vcpu->arch.sie_block));
2517 out_free_cpu:
2518 kmem_cache_free(kvm_vcpu_cache, vcpu);
2519 out:
2520 return ERR_PTR(rc);
2521 }
2522
2523 int kvm_arch_vcpu_runnable(struct kvm_vcpu *vcpu)
2524 {
2525 return kvm_s390_vcpu_has_irq(vcpu, 0);
2526 }
2527
2528 bool kvm_arch_vcpu_in_kernel(struct kvm_vcpu *vcpu)
2529 {
2530 return !(vcpu->arch.sie_block->gpsw.mask & PSW_MASK_PSTATE);
2531 }
2532
2533 void kvm_s390_vcpu_block(struct kvm_vcpu *vcpu)
2534 {
2535 atomic_or(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
2536 exit_sie(vcpu);
2537 }
2538
2539 void kvm_s390_vcpu_unblock(struct kvm_vcpu *vcpu)
2540 {
2541 atomic_andnot(PROG_BLOCK_SIE, &vcpu->arch.sie_block->prog20);
2542 }
2543
2544 static void kvm_s390_vcpu_request(struct kvm_vcpu *vcpu)
2545 {
2546 atomic_or(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
2547 exit_sie(vcpu);
2548 }
2549
2550 static void kvm_s390_vcpu_request_handled(struct kvm_vcpu *vcpu)
2551 {
2552 atomic_andnot(PROG_REQUEST, &vcpu->arch.sie_block->prog20);
2553 }
2554
2555 /*
2556 * Kick a guest cpu out of SIE and wait until SIE is not running.
2557 * If the CPU is not running (e.g. waiting as idle) the function will
2558 * return immediately. */
2559 void exit_sie(struct kvm_vcpu *vcpu)
2560 {
2561 atomic_or(CPUSTAT_STOP_INT, &vcpu->arch.sie_block->cpuflags);
2562 while (vcpu->arch.sie_block->prog0c & PROG_IN_SIE)
2563 cpu_relax();
2564 }
2565
2566 /* Kick a guest cpu out of SIE to process a request synchronously */
2567 void kvm_s390_sync_request(int req, struct kvm_vcpu *vcpu)
2568 {
2569 kvm_make_request(req, vcpu);
2570 kvm_s390_vcpu_request(vcpu);
2571 }
2572
2573 static void kvm_gmap_notifier(struct gmap *gmap, unsigned long start,
2574 unsigned long end)
2575 {
2576 struct kvm *kvm = gmap->private;
2577 struct kvm_vcpu *vcpu;
2578 unsigned long prefix;
2579 int i;
2580
2581 if (gmap_is_shadow(gmap))
2582 return;
2583 if (start >= 1UL << 31)
2584 /* We are only interested in prefix pages */
2585 return;
2586 kvm_for_each_vcpu(i, vcpu, kvm) {
2587 /* match against both prefix pages */
2588 prefix = kvm_s390_get_prefix(vcpu);
2589 if (prefix <= end && start <= prefix + 2*PAGE_SIZE - 1) {
2590 VCPU_EVENT(vcpu, 2, "gmap notifier for %lx-%lx",
2591 start, end);
2592 kvm_s390_sync_request(KVM_REQ_MMU_RELOAD, vcpu);
2593 }
2594 }
2595 }
2596
2597 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
2598 {
2599 /* kvm common code refers to this, but never calls it */
2600 BUG();
2601 return 0;
2602 }
2603
2604 static int kvm_arch_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu,
2605 struct kvm_one_reg *reg)
2606 {
2607 int r = -EINVAL;
2608
2609 switch (reg->id) {
2610 case KVM_REG_S390_TODPR:
2611 r = put_user(vcpu->arch.sie_block->todpr,
2612 (u32 __user *)reg->addr);
2613 break;
2614 case KVM_REG_S390_EPOCHDIFF:
2615 r = put_user(vcpu->arch.sie_block->epoch,
2616 (u64 __user *)reg->addr);
2617 break;
2618 case KVM_REG_S390_CPU_TIMER:
2619 r = put_user(kvm_s390_get_cpu_timer(vcpu),
2620 (u64 __user *)reg->addr);
2621 break;
2622 case KVM_REG_S390_CLOCK_COMP:
2623 r = put_user(vcpu->arch.sie_block->ckc,
2624 (u64 __user *)reg->addr);
2625 break;
2626 case KVM_REG_S390_PFTOKEN:
2627 r = put_user(vcpu->arch.pfault_token,
2628 (u64 __user *)reg->addr);
2629 break;
2630 case KVM_REG_S390_PFCOMPARE:
2631 r = put_user(vcpu->arch.pfault_compare,
2632 (u64 __user *)reg->addr);
2633 break;
2634 case KVM_REG_S390_PFSELECT:
2635 r = put_user(vcpu->arch.pfault_select,
2636 (u64 __user *)reg->addr);
2637 break;
2638 case KVM_REG_S390_PP:
2639 r = put_user(vcpu->arch.sie_block->pp,
2640 (u64 __user *)reg->addr);
2641 break;
2642 case KVM_REG_S390_GBEA:
2643 r = put_user(vcpu->arch.sie_block->gbea,
2644 (u64 __user *)reg->addr);
2645 break;
2646 default:
2647 break;
2648 }
2649
2650 return r;
2651 }
2652
2653 static int kvm_arch_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu,
2654 struct kvm_one_reg *reg)
2655 {
2656 int r = -EINVAL;
2657 __u64 val;
2658
2659 switch (reg->id) {
2660 case KVM_REG_S390_TODPR:
2661 r = get_user(vcpu->arch.sie_block->todpr,
2662 (u32 __user *)reg->addr);
2663 break;
2664 case KVM_REG_S390_EPOCHDIFF:
2665 r = get_user(vcpu->arch.sie_block->epoch,
2666 (u64 __user *)reg->addr);
2667 break;
2668 case KVM_REG_S390_CPU_TIMER:
2669 r = get_user(val, (u64 __user *)reg->addr);
2670 if (!r)
2671 kvm_s390_set_cpu_timer(vcpu, val);
2672 break;
2673 case KVM_REG_S390_CLOCK_COMP:
2674 r = get_user(vcpu->arch.sie_block->ckc,
2675 (u64 __user *)reg->addr);
2676 break;
2677 case KVM_REG_S390_PFTOKEN:
2678 r = get_user(vcpu->arch.pfault_token,
2679 (u64 __user *)reg->addr);
2680 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
2681 kvm_clear_async_pf_completion_queue(vcpu);
2682 break;
2683 case KVM_REG_S390_PFCOMPARE:
2684 r = get_user(vcpu->arch.pfault_compare,
2685 (u64 __user *)reg->addr);
2686 break;
2687 case KVM_REG_S390_PFSELECT:
2688 r = get_user(vcpu->arch.pfault_select,
2689 (u64 __user *)reg->addr);
2690 break;
2691 case KVM_REG_S390_PP:
2692 r = get_user(vcpu->arch.sie_block->pp,
2693 (u64 __user *)reg->addr);
2694 break;
2695 case KVM_REG_S390_GBEA:
2696 r = get_user(vcpu->arch.sie_block->gbea,
2697 (u64 __user *)reg->addr);
2698 break;
2699 default:
2700 break;
2701 }
2702
2703 return r;
2704 }
2705
2706 static int kvm_arch_vcpu_ioctl_initial_reset(struct kvm_vcpu *vcpu)
2707 {
2708 kvm_s390_vcpu_initial_reset(vcpu);
2709 return 0;
2710 }
2711
2712 int kvm_arch_vcpu_ioctl_set_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
2713 {
2714 memcpy(&vcpu->run->s.regs.gprs, &regs->gprs, sizeof(regs->gprs));
2715 return 0;
2716 }
2717
2718 int kvm_arch_vcpu_ioctl_get_regs(struct kvm_vcpu *vcpu, struct kvm_regs *regs)
2719 {
2720 memcpy(&regs->gprs, &vcpu->run->s.regs.gprs, sizeof(regs->gprs));
2721 return 0;
2722 }
2723
2724 int kvm_arch_vcpu_ioctl_set_sregs(struct kvm_vcpu *vcpu,
2725 struct kvm_sregs *sregs)
2726 {
2727 memcpy(&vcpu->run->s.regs.acrs, &sregs->acrs, sizeof(sregs->acrs));
2728 memcpy(&vcpu->arch.sie_block->gcr, &sregs->crs, sizeof(sregs->crs));
2729 return 0;
2730 }
2731
2732 int kvm_arch_vcpu_ioctl_get_sregs(struct kvm_vcpu *vcpu,
2733 struct kvm_sregs *sregs)
2734 {
2735 memcpy(&sregs->acrs, &vcpu->run->s.regs.acrs, sizeof(sregs->acrs));
2736 memcpy(&sregs->crs, &vcpu->arch.sie_block->gcr, sizeof(sregs->crs));
2737 return 0;
2738 }
2739
2740 int kvm_arch_vcpu_ioctl_set_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2741 {
2742 if (test_fp_ctl(fpu->fpc))
2743 return -EINVAL;
2744 vcpu->run->s.regs.fpc = fpu->fpc;
2745 if (MACHINE_HAS_VX)
2746 convert_fp_to_vx((__vector128 *) vcpu->run->s.regs.vrs,
2747 (freg_t *) fpu->fprs);
2748 else
2749 memcpy(vcpu->run->s.regs.fprs, &fpu->fprs, sizeof(fpu->fprs));
2750 return 0;
2751 }
2752
2753 int kvm_arch_vcpu_ioctl_get_fpu(struct kvm_vcpu *vcpu, struct kvm_fpu *fpu)
2754 {
2755 /* make sure we have the latest values */
2756 save_fpu_regs();
2757 if (MACHINE_HAS_VX)
2758 convert_vx_to_fp((freg_t *) fpu->fprs,
2759 (__vector128 *) vcpu->run->s.regs.vrs);
2760 else
2761 memcpy(fpu->fprs, vcpu->run->s.regs.fprs, sizeof(fpu->fprs));
2762 fpu->fpc = vcpu->run->s.regs.fpc;
2763 return 0;
2764 }
2765
2766 static int kvm_arch_vcpu_ioctl_set_initial_psw(struct kvm_vcpu *vcpu, psw_t psw)
2767 {
2768 int rc = 0;
2769
2770 if (!is_vcpu_stopped(vcpu))
2771 rc = -EBUSY;
2772 else {
2773 vcpu->run->psw_mask = psw.mask;
2774 vcpu->run->psw_addr = psw.addr;
2775 }
2776 return rc;
2777 }
2778
2779 int kvm_arch_vcpu_ioctl_translate(struct kvm_vcpu *vcpu,
2780 struct kvm_translation *tr)
2781 {
2782 return -EINVAL; /* not implemented yet */
2783 }
2784
2785 #define VALID_GUESTDBG_FLAGS (KVM_GUESTDBG_SINGLESTEP | \
2786 KVM_GUESTDBG_USE_HW_BP | \
2787 KVM_GUESTDBG_ENABLE)
2788
2789 int kvm_arch_vcpu_ioctl_set_guest_debug(struct kvm_vcpu *vcpu,
2790 struct kvm_guest_debug *dbg)
2791 {
2792 int rc = 0;
2793
2794 vcpu->guest_debug = 0;
2795 kvm_s390_clear_bp_data(vcpu);
2796
2797 if (dbg->control & ~VALID_GUESTDBG_FLAGS)
2798 return -EINVAL;
2799 if (!sclp.has_gpere)
2800 return -EINVAL;
2801
2802 if (dbg->control & KVM_GUESTDBG_ENABLE) {
2803 vcpu->guest_debug = dbg->control;
2804 /* enforce guest PER */
2805 atomic_or(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2806
2807 if (dbg->control & KVM_GUESTDBG_USE_HW_BP)
2808 rc = kvm_s390_import_bp_data(vcpu, dbg);
2809 } else {
2810 atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2811 vcpu->arch.guestdbg.last_bp = 0;
2812 }
2813
2814 if (rc) {
2815 vcpu->guest_debug = 0;
2816 kvm_s390_clear_bp_data(vcpu);
2817 atomic_andnot(CPUSTAT_P, &vcpu->arch.sie_block->cpuflags);
2818 }
2819
2820 return rc;
2821 }
2822
2823 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
2824 struct kvm_mp_state *mp_state)
2825 {
2826 /* CHECK_STOP and LOAD are not supported yet */
2827 return is_vcpu_stopped(vcpu) ? KVM_MP_STATE_STOPPED :
2828 KVM_MP_STATE_OPERATING;
2829 }
2830
2831 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
2832 struct kvm_mp_state *mp_state)
2833 {
2834 int rc = 0;
2835
2836 /* user space knows about this interface - let it control the state */
2837 vcpu->kvm->arch.user_cpu_state_ctrl = 1;
2838
2839 switch (mp_state->mp_state) {
2840 case KVM_MP_STATE_STOPPED:
2841 kvm_s390_vcpu_stop(vcpu);
2842 break;
2843 case KVM_MP_STATE_OPERATING:
2844 kvm_s390_vcpu_start(vcpu);
2845 break;
2846 case KVM_MP_STATE_LOAD:
2847 case KVM_MP_STATE_CHECK_STOP:
2848 /* fall through - CHECK_STOP and LOAD are not supported yet */
2849 default:
2850 rc = -ENXIO;
2851 }
2852
2853 return rc;
2854 }
2855
2856 static bool ibs_enabled(struct kvm_vcpu *vcpu)
2857 {
2858 return atomic_read(&vcpu->arch.sie_block->cpuflags) & CPUSTAT_IBS;
2859 }
2860
2861 static int kvm_s390_handle_requests(struct kvm_vcpu *vcpu)
2862 {
2863 retry:
2864 kvm_s390_vcpu_request_handled(vcpu);
2865 if (!kvm_request_pending(vcpu))
2866 return 0;
2867 /*
2868 * We use MMU_RELOAD just to re-arm the ipte notifier for the
2869 * guest prefix page. gmap_mprotect_notify will wait on the ptl lock.
2870 * This ensures that the ipte instruction for this request has
2871 * already finished. We might race against a second unmapper that
2872 * wants to set the blocking bit. Lets just retry the request loop.
2873 */
2874 if (kvm_check_request(KVM_REQ_MMU_RELOAD, vcpu)) {
2875 int rc;
2876 rc = gmap_mprotect_notify(vcpu->arch.gmap,
2877 kvm_s390_get_prefix(vcpu),
2878 PAGE_SIZE * 2, PROT_WRITE);
2879 if (rc) {
2880 kvm_make_request(KVM_REQ_MMU_RELOAD, vcpu);
2881 return rc;
2882 }
2883 goto retry;
2884 }
2885
2886 if (kvm_check_request(KVM_REQ_TLB_FLUSH, vcpu)) {
2887 vcpu->arch.sie_block->ihcpu = 0xffff;
2888 goto retry;
2889 }
2890
2891 if (kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu)) {
2892 if (!ibs_enabled(vcpu)) {
2893 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 1);
2894 atomic_or(CPUSTAT_IBS,
2895 &vcpu->arch.sie_block->cpuflags);
2896 }
2897 goto retry;
2898 }
2899
2900 if (kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu)) {
2901 if (ibs_enabled(vcpu)) {
2902 trace_kvm_s390_enable_disable_ibs(vcpu->vcpu_id, 0);
2903 atomic_andnot(CPUSTAT_IBS,
2904 &vcpu->arch.sie_block->cpuflags);
2905 }
2906 goto retry;
2907 }
2908
2909 if (kvm_check_request(KVM_REQ_ICPT_OPEREXC, vcpu)) {
2910 vcpu->arch.sie_block->ictl |= ICTL_OPEREXC;
2911 goto retry;
2912 }
2913
2914 if (kvm_check_request(KVM_REQ_START_MIGRATION, vcpu)) {
2915 /*
2916 * Disable CMMA virtualization; we will emulate the ESSA
2917 * instruction manually, in order to provide additional
2918 * functionalities needed for live migration.
2919 */
2920 vcpu->arch.sie_block->ecb2 &= ~ECB2_CMMA;
2921 goto retry;
2922 }
2923
2924 if (kvm_check_request(KVM_REQ_STOP_MIGRATION, vcpu)) {
2925 /*
2926 * Re-enable CMMA virtualization if CMMA is available and
2927 * was used.
2928 */
2929 if ((vcpu->kvm->arch.use_cmma) &&
2930 (vcpu->kvm->mm->context.use_cmma))
2931 vcpu->arch.sie_block->ecb2 |= ECB2_CMMA;
2932 goto retry;
2933 }
2934
2935 /* nothing to do, just clear the request */
2936 kvm_clear_request(KVM_REQ_UNHALT, vcpu);
2937
2938 return 0;
2939 }
2940
2941 void kvm_s390_set_tod_clock_ext(struct kvm *kvm,
2942 const struct kvm_s390_vm_tod_clock *gtod)
2943 {
2944 struct kvm_vcpu *vcpu;
2945 struct kvm_s390_tod_clock_ext htod;
2946 int i;
2947
2948 mutex_lock(&kvm->lock);
2949 preempt_disable();
2950
2951 get_tod_clock_ext((char *)&htod);
2952
2953 kvm->arch.epoch = gtod->tod - htod.tod;
2954 kvm->arch.epdx = gtod->epoch_idx - htod.epoch_idx;
2955
2956 if (kvm->arch.epoch > gtod->tod)
2957 kvm->arch.epdx -= 1;
2958
2959 kvm_s390_vcpu_block_all(kvm);
2960 kvm_for_each_vcpu(i, vcpu, kvm) {
2961 vcpu->arch.sie_block->epoch = kvm->arch.epoch;
2962 vcpu->arch.sie_block->epdx = kvm->arch.epdx;
2963 }
2964
2965 kvm_s390_vcpu_unblock_all(kvm);
2966 preempt_enable();
2967 mutex_unlock(&kvm->lock);
2968 }
2969
2970 void kvm_s390_set_tod_clock(struct kvm *kvm, u64 tod)
2971 {
2972 struct kvm_vcpu *vcpu;
2973 int i;
2974
2975 mutex_lock(&kvm->lock);
2976 preempt_disable();
2977 kvm->arch.epoch = tod - get_tod_clock();
2978 kvm_s390_vcpu_block_all(kvm);
2979 kvm_for_each_vcpu(i, vcpu, kvm)
2980 vcpu->arch.sie_block->epoch = kvm->arch.epoch;
2981 kvm_s390_vcpu_unblock_all(kvm);
2982 preempt_enable();
2983 mutex_unlock(&kvm->lock);
2984 }
2985
2986 /**
2987 * kvm_arch_fault_in_page - fault-in guest page if necessary
2988 * @vcpu: The corresponding virtual cpu
2989 * @gpa: Guest physical address
2990 * @writable: Whether the page should be writable or not
2991 *
2992 * Make sure that a guest page has been faulted-in on the host.
2993 *
2994 * Return: Zero on success, negative error code otherwise.
2995 */
2996 long kvm_arch_fault_in_page(struct kvm_vcpu *vcpu, gpa_t gpa, int writable)
2997 {
2998 return gmap_fault(vcpu->arch.gmap, gpa,
2999 writable ? FAULT_FLAG_WRITE : 0);
3000 }
3001
3002 static void __kvm_inject_pfault_token(struct kvm_vcpu *vcpu, bool start_token,
3003 unsigned long token)
3004 {
3005 struct kvm_s390_interrupt inti;
3006 struct kvm_s390_irq irq;
3007
3008 if (start_token) {
3009 irq.u.ext.ext_params2 = token;
3010 irq.type = KVM_S390_INT_PFAULT_INIT;
3011 WARN_ON_ONCE(kvm_s390_inject_vcpu(vcpu, &irq));
3012 } else {
3013 inti.type = KVM_S390_INT_PFAULT_DONE;
3014 inti.parm64 = token;
3015 WARN_ON_ONCE(kvm_s390_inject_vm(vcpu->kvm, &inti));
3016 }
3017 }
3018
3019 void kvm_arch_async_page_not_present(struct kvm_vcpu *vcpu,
3020 struct kvm_async_pf *work)
3021 {
3022 trace_kvm_s390_pfault_init(vcpu, work->arch.pfault_token);
3023 __kvm_inject_pfault_token(vcpu, true, work->arch.pfault_token);
3024 }
3025
3026 void kvm_arch_async_page_present(struct kvm_vcpu *vcpu,
3027 struct kvm_async_pf *work)
3028 {
3029 trace_kvm_s390_pfault_done(vcpu, work->arch.pfault_token);
3030 __kvm_inject_pfault_token(vcpu, false, work->arch.pfault_token);
3031 }
3032
3033 void kvm_arch_async_page_ready(struct kvm_vcpu *vcpu,
3034 struct kvm_async_pf *work)
3035 {
3036 /* s390 will always inject the page directly */
3037 }
3038
3039 bool kvm_arch_can_inject_async_page_present(struct kvm_vcpu *vcpu)
3040 {
3041 /*
3042 * s390 will always inject the page directly,
3043 * but we still want check_async_completion to cleanup
3044 */
3045 return true;
3046 }
3047
3048 static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu)
3049 {
3050 hva_t hva;
3051 struct kvm_arch_async_pf arch;
3052 int rc;
3053
3054 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
3055 return 0;
3056 if ((vcpu->arch.sie_block->gpsw.mask & vcpu->arch.pfault_select) !=
3057 vcpu->arch.pfault_compare)
3058 return 0;
3059 if (psw_extint_disabled(vcpu))
3060 return 0;
3061 if (kvm_s390_vcpu_has_irq(vcpu, 0))
3062 return 0;
3063 if (!(vcpu->arch.sie_block->gcr[0] & 0x200ul))
3064 return 0;
3065 if (!vcpu->arch.gmap->pfault_enabled)
3066 return 0;
3067
3068 hva = gfn_to_hva(vcpu->kvm, gpa_to_gfn(current->thread.gmap_addr));
3069 hva += current->thread.gmap_addr & ~PAGE_MASK;
3070 if (read_guest_real(vcpu, vcpu->arch.pfault_token, &arch.pfault_token, 8))
3071 return 0;
3072
3073 rc = kvm_setup_async_pf(vcpu, current->thread.gmap_addr, hva, &arch);
3074 return rc;
3075 }
3076
3077 static int vcpu_pre_run(struct kvm_vcpu *vcpu)
3078 {
3079 int rc, cpuflags;
3080
3081 /*
3082 * On s390 notifications for arriving pages will be delivered directly
3083 * to the guest but the house keeping for completed pfaults is
3084 * handled outside the worker.
3085 */
3086 kvm_check_async_pf_completion(vcpu);
3087
3088 vcpu->arch.sie_block->gg14 = vcpu->run->s.regs.gprs[14];
3089 vcpu->arch.sie_block->gg15 = vcpu->run->s.regs.gprs[15];
3090
3091 if (need_resched())
3092 schedule();
3093
3094 if (test_cpu_flag(CIF_MCCK_PENDING))
3095 s390_handle_mcck();
3096
3097 if (!kvm_is_ucontrol(vcpu->kvm)) {
3098 rc = kvm_s390_deliver_pending_interrupts(vcpu);
3099 if (rc)
3100 return rc;
3101 }
3102
3103 rc = kvm_s390_handle_requests(vcpu);
3104 if (rc)
3105 return rc;
3106
3107 if (guestdbg_enabled(vcpu)) {
3108 kvm_s390_backup_guest_per_regs(vcpu);
3109 kvm_s390_patch_guest_per_regs(vcpu);
3110 }
3111
3112 vcpu->arch.sie_block->icptcode = 0;
3113 cpuflags = atomic_read(&vcpu->arch.sie_block->cpuflags);
3114 VCPU_EVENT(vcpu, 6, "entering sie flags %x", cpuflags);
3115 trace_kvm_s390_sie_enter(vcpu, cpuflags);
3116
3117 return 0;
3118 }
3119
3120 static int vcpu_post_run_fault_in_sie(struct kvm_vcpu *vcpu)
3121 {
3122 struct kvm_s390_pgm_info pgm_info = {
3123 .code = PGM_ADDRESSING,
3124 };
3125 u8 opcode, ilen;
3126 int rc;
3127
3128 VCPU_EVENT(vcpu, 3, "%s", "fault in sie instruction");
3129 trace_kvm_s390_sie_fault(vcpu);
3130
3131 /*
3132 * We want to inject an addressing exception, which is defined as a
3133 * suppressing or terminating exception. However, since we came here
3134 * by a DAT access exception, the PSW still points to the faulting
3135 * instruction since DAT exceptions are nullifying. So we've got
3136 * to look up the current opcode to get the length of the instruction
3137 * to be able to forward the PSW.
3138 */
3139 rc = read_guest_instr(vcpu, vcpu->arch.sie_block->gpsw.addr, &opcode, 1);
3140 ilen = insn_length(opcode);
3141 if (rc < 0) {
3142 return rc;
3143 } else if (rc) {
3144 /* Instruction-Fetching Exceptions - we can't detect the ilen.
3145 * Forward by arbitrary ilc, injection will take care of
3146 * nullification if necessary.
3147 */
3148 pgm_info = vcpu->arch.pgm;
3149 ilen = 4;
3150 }
3151 pgm_info.flags = ilen | KVM_S390_PGM_FLAGS_ILC_VALID;
3152 kvm_s390_forward_psw(vcpu, ilen);
3153 return kvm_s390_inject_prog_irq(vcpu, &pgm_info);
3154 }
3155
3156 static int vcpu_post_run(struct kvm_vcpu *vcpu, int exit_reason)
3157 {
3158 struct mcck_volatile_info *mcck_info;
3159 struct sie_page *sie_page;
3160
3161 VCPU_EVENT(vcpu, 6, "exit sie icptcode %d",
3162 vcpu->arch.sie_block->icptcode);
3163 trace_kvm_s390_sie_exit(vcpu, vcpu->arch.sie_block->icptcode);
3164
3165 if (guestdbg_enabled(vcpu))
3166 kvm_s390_restore_guest_per_regs(vcpu);
3167
3168 vcpu->run->s.regs.gprs[14] = vcpu->arch.sie_block->gg14;
3169 vcpu->run->s.regs.gprs[15] = vcpu->arch.sie_block->gg15;
3170
3171 if (exit_reason == -EINTR) {
3172 VCPU_EVENT(vcpu, 3, "%s", "machine check");
3173 sie_page = container_of(vcpu->arch.sie_block,
3174 struct sie_page, sie_block);
3175 mcck_info = &sie_page->mcck_info;
3176 kvm_s390_reinject_machine_check(vcpu, mcck_info);
3177 return 0;
3178 }
3179
3180 if (vcpu->arch.sie_block->icptcode > 0) {
3181 int rc = kvm_handle_sie_intercept(vcpu);
3182
3183 if (rc != -EOPNOTSUPP)
3184 return rc;
3185 vcpu->run->exit_reason = KVM_EXIT_S390_SIEIC;
3186 vcpu->run->s390_sieic.icptcode = vcpu->arch.sie_block->icptcode;
3187 vcpu->run->s390_sieic.ipa = vcpu->arch.sie_block->ipa;
3188 vcpu->run->s390_sieic.ipb = vcpu->arch.sie_block->ipb;
3189 return -EREMOTE;
3190 } else if (exit_reason != -EFAULT) {
3191 vcpu->stat.exit_null++;
3192 return 0;
3193 } else if (kvm_is_ucontrol(vcpu->kvm)) {
3194 vcpu->run->exit_reason = KVM_EXIT_S390_UCONTROL;
3195 vcpu->run->s390_ucontrol.trans_exc_code =
3196 current->thread.gmap_addr;
3197 vcpu->run->s390_ucontrol.pgm_code = 0x10;
3198 return -EREMOTE;
3199 } else if (current->thread.gmap_pfault) {
3200 trace_kvm_s390_major_guest_pfault(vcpu);
3201 current->thread.gmap_pfault = 0;
3202 if (kvm_arch_setup_async_pf(vcpu))
3203 return 0;
3204 return kvm_arch_fault_in_page(vcpu, current->thread.gmap_addr, 1);
3205 }
3206 return vcpu_post_run_fault_in_sie(vcpu);
3207 }
3208
3209 static int __vcpu_run(struct kvm_vcpu *vcpu)
3210 {
3211 int rc, exit_reason;
3212
3213 /*
3214 * We try to hold kvm->srcu during most of vcpu_run (except when run-
3215 * ning the guest), so that memslots (and other stuff) are protected
3216 */
3217 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
3218
3219 do {
3220 rc = vcpu_pre_run(vcpu);
3221 if (rc)
3222 break;
3223
3224 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
3225 /*
3226 * As PF_VCPU will be used in fault handler, between
3227 * guest_enter and guest_exit should be no uaccess.
3228 */
3229 local_irq_disable();
3230 guest_enter_irqoff();
3231 __disable_cpu_timer_accounting(vcpu);
3232 local_irq_enable();
3233 exit_reason = sie64a(vcpu->arch.sie_block,
3234 vcpu->run->s.regs.gprs);
3235 local_irq_disable();
3236 __enable_cpu_timer_accounting(vcpu);
3237 guest_exit_irqoff();
3238 local_irq_enable();
3239 vcpu->srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
3240
3241 rc = vcpu_post_run(vcpu, exit_reason);
3242 } while (!signal_pending(current) && !guestdbg_exit_pending(vcpu) && !rc);
3243
3244 srcu_read_unlock(&vcpu->kvm->srcu, vcpu->srcu_idx);
3245 return rc;
3246 }
3247
3248 static void sync_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3249 {
3250 struct runtime_instr_cb *riccb;
3251 struct gs_cb *gscb;
3252
3253 riccb = (struct runtime_instr_cb *) &kvm_run->s.regs.riccb;
3254 gscb = (struct gs_cb *) &kvm_run->s.regs.gscb;
3255 vcpu->arch.sie_block->gpsw.mask = kvm_run->psw_mask;
3256 vcpu->arch.sie_block->gpsw.addr = kvm_run->psw_addr;
3257 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PREFIX)
3258 kvm_s390_set_prefix(vcpu, kvm_run->s.regs.prefix);
3259 if (kvm_run->kvm_dirty_regs & KVM_SYNC_CRS) {
3260 memcpy(&vcpu->arch.sie_block->gcr, &kvm_run->s.regs.crs, 128);
3261 /* some control register changes require a tlb flush */
3262 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3263 }
3264 if (kvm_run->kvm_dirty_regs & KVM_SYNC_ARCH0) {
3265 kvm_s390_set_cpu_timer(vcpu, kvm_run->s.regs.cputm);
3266 vcpu->arch.sie_block->ckc = kvm_run->s.regs.ckc;
3267 vcpu->arch.sie_block->todpr = kvm_run->s.regs.todpr;
3268 vcpu->arch.sie_block->pp = kvm_run->s.regs.pp;
3269 vcpu->arch.sie_block->gbea = kvm_run->s.regs.gbea;
3270 }
3271 if (kvm_run->kvm_dirty_regs & KVM_SYNC_PFAULT) {
3272 vcpu->arch.pfault_token = kvm_run->s.regs.pft;
3273 vcpu->arch.pfault_select = kvm_run->s.regs.pfs;
3274 vcpu->arch.pfault_compare = kvm_run->s.regs.pfc;
3275 if (vcpu->arch.pfault_token == KVM_S390_PFAULT_TOKEN_INVALID)
3276 kvm_clear_async_pf_completion_queue(vcpu);
3277 }
3278 /*
3279 * If userspace sets the riccb (e.g. after migration) to a valid state,
3280 * we should enable RI here instead of doing the lazy enablement.
3281 */
3282 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_RICCB) &&
3283 test_kvm_facility(vcpu->kvm, 64) &&
3284 riccb->v &&
3285 !(vcpu->arch.sie_block->ecb3 & ECB3_RI)) {
3286 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: RI (sync_regs)");
3287 vcpu->arch.sie_block->ecb3 |= ECB3_RI;
3288 }
3289 /*
3290 * If userspace sets the gscb (e.g. after migration) to non-zero,
3291 * we should enable GS here instead of doing the lazy enablement.
3292 */
3293 if ((kvm_run->kvm_dirty_regs & KVM_SYNC_GSCB) &&
3294 test_kvm_facility(vcpu->kvm, 133) &&
3295 gscb->gssm &&
3296 !vcpu->arch.gs_enabled) {
3297 VCPU_EVENT(vcpu, 3, "%s", "ENABLE: GS (sync_regs)");
3298 vcpu->arch.sie_block->ecb |= ECB_GS;
3299 vcpu->arch.sie_block->ecd |= ECD_HOSTREGMGMT;
3300 vcpu->arch.gs_enabled = 1;
3301 }
3302 save_access_regs(vcpu->arch.host_acrs);
3303 restore_access_regs(vcpu->run->s.regs.acrs);
3304 /* save host (userspace) fprs/vrs */
3305 save_fpu_regs();
3306 vcpu->arch.host_fpregs.fpc = current->thread.fpu.fpc;
3307 vcpu->arch.host_fpregs.regs = current->thread.fpu.regs;
3308 if (MACHINE_HAS_VX)
3309 current->thread.fpu.regs = vcpu->run->s.regs.vrs;
3310 else
3311 current->thread.fpu.regs = vcpu->run->s.regs.fprs;
3312 current->thread.fpu.fpc = vcpu->run->s.regs.fpc;
3313 if (test_fp_ctl(current->thread.fpu.fpc))
3314 /* User space provided an invalid FPC, let's clear it */
3315 current->thread.fpu.fpc = 0;
3316 if (MACHINE_HAS_GS) {
3317 preempt_disable();
3318 __ctl_set_bit(2, 4);
3319 if (current->thread.gs_cb) {
3320 vcpu->arch.host_gscb = current->thread.gs_cb;
3321 save_gs_cb(vcpu->arch.host_gscb);
3322 }
3323 if (vcpu->arch.gs_enabled) {
3324 current->thread.gs_cb = (struct gs_cb *)
3325 &vcpu->run->s.regs.gscb;
3326 restore_gs_cb(current->thread.gs_cb);
3327 }
3328 preempt_enable();
3329 }
3330
3331 kvm_run->kvm_dirty_regs = 0;
3332 }
3333
3334 static void store_regs(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3335 {
3336 kvm_run->psw_mask = vcpu->arch.sie_block->gpsw.mask;
3337 kvm_run->psw_addr = vcpu->arch.sie_block->gpsw.addr;
3338 kvm_run->s.regs.prefix = kvm_s390_get_prefix(vcpu);
3339 memcpy(&kvm_run->s.regs.crs, &vcpu->arch.sie_block->gcr, 128);
3340 kvm_run->s.regs.cputm = kvm_s390_get_cpu_timer(vcpu);
3341 kvm_run->s.regs.ckc = vcpu->arch.sie_block->ckc;
3342 kvm_run->s.regs.todpr = vcpu->arch.sie_block->todpr;
3343 kvm_run->s.regs.pp = vcpu->arch.sie_block->pp;
3344 kvm_run->s.regs.gbea = vcpu->arch.sie_block->gbea;
3345 kvm_run->s.regs.pft = vcpu->arch.pfault_token;
3346 kvm_run->s.regs.pfs = vcpu->arch.pfault_select;
3347 kvm_run->s.regs.pfc = vcpu->arch.pfault_compare;
3348 save_access_regs(vcpu->run->s.regs.acrs);
3349 restore_access_regs(vcpu->arch.host_acrs);
3350 /* Save guest register state */
3351 save_fpu_regs();
3352 vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
3353 /* Restore will be done lazily at return */
3354 current->thread.fpu.fpc = vcpu->arch.host_fpregs.fpc;
3355 current->thread.fpu.regs = vcpu->arch.host_fpregs.regs;
3356 if (MACHINE_HAS_GS) {
3357 __ctl_set_bit(2, 4);
3358 if (vcpu->arch.gs_enabled)
3359 save_gs_cb(current->thread.gs_cb);
3360 preempt_disable();
3361 current->thread.gs_cb = vcpu->arch.host_gscb;
3362 restore_gs_cb(vcpu->arch.host_gscb);
3363 preempt_enable();
3364 if (!vcpu->arch.host_gscb)
3365 __ctl_clear_bit(2, 4);
3366 vcpu->arch.host_gscb = NULL;
3367 }
3368
3369 }
3370
3371 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *kvm_run)
3372 {
3373 int rc;
3374 sigset_t sigsaved;
3375
3376 if (kvm_run->immediate_exit)
3377 return -EINTR;
3378
3379 if (guestdbg_exit_pending(vcpu)) {
3380 kvm_s390_prepare_debug_exit(vcpu);
3381 return 0;
3382 }
3383
3384 if (vcpu->sigset_active)
3385 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
3386
3387 if (!kvm_s390_user_cpu_state_ctrl(vcpu->kvm)) {
3388 kvm_s390_vcpu_start(vcpu);
3389 } else if (is_vcpu_stopped(vcpu)) {
3390 pr_err_ratelimited("can't run stopped vcpu %d\n",
3391 vcpu->vcpu_id);
3392 return -EINVAL;
3393 }
3394
3395 sync_regs(vcpu, kvm_run);
3396 enable_cpu_timer_accounting(vcpu);
3397
3398 might_fault();
3399 rc = __vcpu_run(vcpu);
3400
3401 if (signal_pending(current) && !rc) {
3402 kvm_run->exit_reason = KVM_EXIT_INTR;
3403 rc = -EINTR;
3404 }
3405
3406 if (guestdbg_exit_pending(vcpu) && !rc) {
3407 kvm_s390_prepare_debug_exit(vcpu);
3408 rc = 0;
3409 }
3410
3411 if (rc == -EREMOTE) {
3412 /* userspace support is needed, kvm_run has been prepared */
3413 rc = 0;
3414 }
3415
3416 disable_cpu_timer_accounting(vcpu);
3417 store_regs(vcpu, kvm_run);
3418
3419 if (vcpu->sigset_active)
3420 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
3421
3422 vcpu->stat.exit_userspace++;
3423 return rc;
3424 }
3425
3426 /*
3427 * store status at address
3428 * we use have two special cases:
3429 * KVM_S390_STORE_STATUS_NOADDR: -> 0x1200 on 64 bit
3430 * KVM_S390_STORE_STATUS_PREFIXED: -> prefix
3431 */
3432 int kvm_s390_store_status_unloaded(struct kvm_vcpu *vcpu, unsigned long gpa)
3433 {
3434 unsigned char archmode = 1;
3435 freg_t fprs[NUM_FPRS];
3436 unsigned int px;
3437 u64 clkcomp, cputm;
3438 int rc;
3439
3440 px = kvm_s390_get_prefix(vcpu);
3441 if (gpa == KVM_S390_STORE_STATUS_NOADDR) {
3442 if (write_guest_abs(vcpu, 163, &archmode, 1))
3443 return -EFAULT;
3444 gpa = 0;
3445 } else if (gpa == KVM_S390_STORE_STATUS_PREFIXED) {
3446 if (write_guest_real(vcpu, 163, &archmode, 1))
3447 return -EFAULT;
3448 gpa = px;
3449 } else
3450 gpa -= __LC_FPREGS_SAVE_AREA;
3451
3452 /* manually convert vector registers if necessary */
3453 if (MACHINE_HAS_VX) {
3454 convert_vx_to_fp(fprs, (__vector128 *) vcpu->run->s.regs.vrs);
3455 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
3456 fprs, 128);
3457 } else {
3458 rc = write_guest_abs(vcpu, gpa + __LC_FPREGS_SAVE_AREA,
3459 vcpu->run->s.regs.fprs, 128);
3460 }
3461 rc |= write_guest_abs(vcpu, gpa + __LC_GPREGS_SAVE_AREA,
3462 vcpu->run->s.regs.gprs, 128);
3463 rc |= write_guest_abs(vcpu, gpa + __LC_PSW_SAVE_AREA,
3464 &vcpu->arch.sie_block->gpsw, 16);
3465 rc |= write_guest_abs(vcpu, gpa + __LC_PREFIX_SAVE_AREA,
3466 &px, 4);
3467 rc |= write_guest_abs(vcpu, gpa + __LC_FP_CREG_SAVE_AREA,
3468 &vcpu->run->s.regs.fpc, 4);
3469 rc |= write_guest_abs(vcpu, gpa + __LC_TOD_PROGREG_SAVE_AREA,
3470 &vcpu->arch.sie_block->todpr, 4);
3471 cputm = kvm_s390_get_cpu_timer(vcpu);
3472 rc |= write_guest_abs(vcpu, gpa + __LC_CPU_TIMER_SAVE_AREA,
3473 &cputm, 8);
3474 clkcomp = vcpu->arch.sie_block->ckc >> 8;
3475 rc |= write_guest_abs(vcpu, gpa + __LC_CLOCK_COMP_SAVE_AREA,
3476 &clkcomp, 8);
3477 rc |= write_guest_abs(vcpu, gpa + __LC_AREGS_SAVE_AREA,
3478 &vcpu->run->s.regs.acrs, 64);
3479 rc |= write_guest_abs(vcpu, gpa + __LC_CREGS_SAVE_AREA,
3480 &vcpu->arch.sie_block->gcr, 128);
3481 return rc ? -EFAULT : 0;
3482 }
3483
3484 int kvm_s390_vcpu_store_status(struct kvm_vcpu *vcpu, unsigned long addr)
3485 {
3486 /*
3487 * The guest FPRS and ACRS are in the host FPRS/ACRS due to the lazy
3488 * switch in the run ioctl. Let's update our copies before we save
3489 * it into the save area
3490 */
3491 save_fpu_regs();
3492 vcpu->run->s.regs.fpc = current->thread.fpu.fpc;
3493 save_access_regs(vcpu->run->s.regs.acrs);
3494
3495 return kvm_s390_store_status_unloaded(vcpu, addr);
3496 }
3497
3498 static void __disable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
3499 {
3500 kvm_check_request(KVM_REQ_ENABLE_IBS, vcpu);
3501 kvm_s390_sync_request(KVM_REQ_DISABLE_IBS, vcpu);
3502 }
3503
3504 static void __disable_ibs_on_all_vcpus(struct kvm *kvm)
3505 {
3506 unsigned int i;
3507 struct kvm_vcpu *vcpu;
3508
3509 kvm_for_each_vcpu(i, vcpu, kvm) {
3510 __disable_ibs_on_vcpu(vcpu);
3511 }
3512 }
3513
3514 static void __enable_ibs_on_vcpu(struct kvm_vcpu *vcpu)
3515 {
3516 if (!sclp.has_ibs)
3517 return;
3518 kvm_check_request(KVM_REQ_DISABLE_IBS, vcpu);
3519 kvm_s390_sync_request(KVM_REQ_ENABLE_IBS, vcpu);
3520 }
3521
3522 void kvm_s390_vcpu_start(struct kvm_vcpu *vcpu)
3523 {
3524 int i, online_vcpus, started_vcpus = 0;
3525
3526 if (!is_vcpu_stopped(vcpu))
3527 return;
3528
3529 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 1);
3530 /* Only one cpu at a time may enter/leave the STOPPED state. */
3531 spin_lock(&vcpu->kvm->arch.start_stop_lock);
3532 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);
3533
3534 for (i = 0; i < online_vcpus; i++) {
3535 if (!is_vcpu_stopped(vcpu->kvm->vcpus[i]))
3536 started_vcpus++;
3537 }
3538
3539 if (started_vcpus == 0) {
3540 /* we're the only active VCPU -> speed it up */
3541 __enable_ibs_on_vcpu(vcpu);
3542 } else if (started_vcpus == 1) {
3543 /*
3544 * As we are starting a second VCPU, we have to disable
3545 * the IBS facility on all VCPUs to remove potentially
3546 * oustanding ENABLE requests.
3547 */
3548 __disable_ibs_on_all_vcpus(vcpu->kvm);
3549 }
3550
3551 atomic_andnot(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
3552 /*
3553 * Another VCPU might have used IBS while we were offline.
3554 * Let's play safe and flush the VCPU at startup.
3555 */
3556 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
3557 spin_unlock(&vcpu->kvm->arch.start_stop_lock);
3558 return;
3559 }
3560
3561 void kvm_s390_vcpu_stop(struct kvm_vcpu *vcpu)
3562 {
3563 int i, online_vcpus, started_vcpus = 0;
3564 struct kvm_vcpu *started_vcpu = NULL;
3565
3566 if (is_vcpu_stopped(vcpu))
3567 return;
3568
3569 trace_kvm_s390_vcpu_start_stop(vcpu->vcpu_id, 0);
3570 /* Only one cpu at a time may enter/leave the STOPPED state. */
3571 spin_lock(&vcpu->kvm->arch.start_stop_lock);
3572 online_vcpus = atomic_read(&vcpu->kvm->online_vcpus);
3573
3574 /* SIGP STOP and SIGP STOP AND STORE STATUS has been fully processed */
3575 kvm_s390_clear_stop_irq(vcpu);
3576
3577 atomic_or(CPUSTAT_STOPPED, &vcpu->arch.sie_block->cpuflags);
3578 __disable_ibs_on_vcpu(vcpu);
3579
3580 for (i = 0; i < online_vcpus; i++) {
3581 if (!is_vcpu_stopped(vcpu->kvm->vcpus[i])) {
3582 started_vcpus++;
3583 started_vcpu = vcpu->kvm->vcpus[i];
3584 }
3585 }
3586
3587 if (started_vcpus == 1) {
3588 /*
3589 * As we only have one VCPU left, we want to enable the
3590 * IBS facility for that VCPU to speed it up.
3591 */
3592 __enable_ibs_on_vcpu(started_vcpu);
3593 }
3594
3595 spin_unlock(&vcpu->kvm->arch.start_stop_lock);
3596 return;
3597 }
3598
3599 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
3600 struct kvm_enable_cap *cap)
3601 {
3602 int r;
3603
3604 if (cap->flags)
3605 return -EINVAL;
3606
3607 switch (cap->cap) {
3608 case KVM_CAP_S390_CSS_SUPPORT:
3609 if (!vcpu->kvm->arch.css_support) {
3610 vcpu->kvm->arch.css_support = 1;
3611 VM_EVENT(vcpu->kvm, 3, "%s", "ENABLE: CSS support");
3612 trace_kvm_s390_enable_css(vcpu->kvm);
3613 }
3614 r = 0;
3615 break;
3616 default:
3617 r = -EINVAL;
3618 break;
3619 }
3620 return r;
3621 }
3622
3623 static long kvm_s390_guest_mem_op(struct kvm_vcpu *vcpu,
3624 struct kvm_s390_mem_op *mop)
3625 {
3626 void __user *uaddr = (void __user *)mop->buf;
3627 void *tmpbuf = NULL;
3628 int r, srcu_idx;
3629 const u64 supported_flags = KVM_S390_MEMOP_F_INJECT_EXCEPTION
3630 | KVM_S390_MEMOP_F_CHECK_ONLY;
3631
3632 if (mop->flags & ~supported_flags)
3633 return -EINVAL;
3634
3635 if (mop->size > MEM_OP_MAX_SIZE)
3636 return -E2BIG;
3637
3638 if (!(mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY)) {
3639 tmpbuf = vmalloc(mop->size);
3640 if (!tmpbuf)
3641 return -ENOMEM;
3642 }
3643
3644 srcu_idx = srcu_read_lock(&vcpu->kvm->srcu);
3645
3646 switch (mop->op) {
3647 case KVM_S390_MEMOP_LOGICAL_READ:
3648 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
3649 r = check_gva_range(vcpu, mop->gaddr, mop->ar,
3650 mop->size, GACC_FETCH);
3651 break;
3652 }
3653 r = read_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
3654 if (r == 0) {
3655 if (copy_to_user(uaddr, tmpbuf, mop->size))
3656 r = -EFAULT;
3657 }
3658 break;
3659 case KVM_S390_MEMOP_LOGICAL_WRITE:
3660 if (mop->flags & KVM_S390_MEMOP_F_CHECK_ONLY) {
3661 r = check_gva_range(vcpu, mop->gaddr, mop->ar,
3662 mop->size, GACC_STORE);
3663 break;
3664 }
3665 if (copy_from_user(tmpbuf, uaddr, mop->size)) {
3666 r = -EFAULT;
3667 break;
3668 }
3669 r = write_guest(vcpu, mop->gaddr, mop->ar, tmpbuf, mop->size);
3670 break;
3671 default:
3672 r = -EINVAL;
3673 }
3674
3675 srcu_read_unlock(&vcpu->kvm->srcu, srcu_idx);
3676
3677 if (r > 0 && (mop->flags & KVM_S390_MEMOP_F_INJECT_EXCEPTION) != 0)
3678 kvm_s390_inject_prog_irq(vcpu, &vcpu->arch.pgm);
3679
3680 vfree(tmpbuf);
3681 return r;
3682 }
3683
3684 long kvm_arch_vcpu_ioctl(struct file *filp,
3685 unsigned int ioctl, unsigned long arg)
3686 {
3687 struct kvm_vcpu *vcpu = filp->private_data;
3688 void __user *argp = (void __user *)arg;
3689 int idx;
3690 long r;
3691
3692 switch (ioctl) {
3693 case KVM_S390_IRQ: {
3694 struct kvm_s390_irq s390irq;
3695
3696 r = -EFAULT;
3697 if (copy_from_user(&s390irq, argp, sizeof(s390irq)))
3698 break;
3699 r = kvm_s390_inject_vcpu(vcpu, &s390irq);
3700 break;
3701 }
3702 case KVM_S390_INTERRUPT: {
3703 struct kvm_s390_interrupt s390int;
3704 struct kvm_s390_irq s390irq;
3705
3706 r = -EFAULT;
3707 if (copy_from_user(&s390int, argp, sizeof(s390int)))
3708 break;
3709 if (s390int_to_s390irq(&s390int, &s390irq))
3710 return -EINVAL;
3711 r = kvm_s390_inject_vcpu(vcpu, &s390irq);
3712 break;
3713 }
3714 case KVM_S390_STORE_STATUS:
3715 idx = srcu_read_lock(&vcpu->kvm->srcu);
3716 r = kvm_s390_vcpu_store_status(vcpu, arg);
3717 srcu_read_unlock(&vcpu->kvm->srcu, idx);
3718 break;
3719 case KVM_S390_SET_INITIAL_PSW: {
3720 psw_t psw;
3721
3722 r = -EFAULT;
3723 if (copy_from_user(&psw, argp, sizeof(psw)))
3724 break;
3725 r = kvm_arch_vcpu_ioctl_set_initial_psw(vcpu, psw);
3726 break;
3727 }
3728 case KVM_S390_INITIAL_RESET:
3729 r = kvm_arch_vcpu_ioctl_initial_reset(vcpu);
3730 break;
3731 case KVM_SET_ONE_REG:
3732 case KVM_GET_ONE_REG: {
3733 struct kvm_one_reg reg;
3734 r = -EFAULT;
3735 if (copy_from_user(&reg, argp, sizeof(reg)))
3736 break;
3737 if (ioctl == KVM_SET_ONE_REG)
3738 r = kvm_arch_vcpu_ioctl_set_one_reg(vcpu, &reg);
3739 else
3740 r = kvm_arch_vcpu_ioctl_get_one_reg(vcpu, &reg);
3741 break;
3742 }
3743 #ifdef CONFIG_KVM_S390_UCONTROL
3744 case KVM_S390_UCAS_MAP: {
3745 struct kvm_s390_ucas_mapping ucasmap;
3746
3747 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
3748 r = -EFAULT;
3749 break;
3750 }
3751
3752 if (!kvm_is_ucontrol(vcpu->kvm)) {
3753 r = -EINVAL;
3754 break;
3755 }
3756
3757 r = gmap_map_segment(vcpu->arch.gmap, ucasmap.user_addr,
3758 ucasmap.vcpu_addr, ucasmap.length);
3759 break;
3760 }
3761 case KVM_S390_UCAS_UNMAP: {
3762 struct kvm_s390_ucas_mapping ucasmap;
3763
3764 if (copy_from_user(&ucasmap, argp, sizeof(ucasmap))) {
3765 r = -EFAULT;
3766 break;
3767 }
3768
3769 if (!kvm_is_ucontrol(vcpu->kvm)) {
3770 r = -EINVAL;
3771 break;
3772 }
3773
3774 r = gmap_unmap_segment(vcpu->arch.gmap, ucasmap.vcpu_addr,
3775 ucasmap.length);
3776 break;
3777 }
3778 #endif
3779 case KVM_S390_VCPU_FAULT: {
3780 r = gmap_fault(vcpu->arch.gmap, arg, 0);
3781 break;
3782 }
3783 case KVM_ENABLE_CAP:
3784 {
3785 struct kvm_enable_cap cap;
3786 r = -EFAULT;
3787 if (copy_from_user(&cap, argp, sizeof(cap)))
3788 break;
3789 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
3790 break;
3791 }
3792 case KVM_S390_MEM_OP: {
3793 struct kvm_s390_mem_op mem_op;
3794
3795 if (copy_from_user(&mem_op, argp, sizeof(mem_op)) == 0)
3796 r = kvm_s390_guest_mem_op(vcpu, &mem_op);
3797 else
3798 r = -EFAULT;
3799 break;
3800 }
3801 case KVM_S390_SET_IRQ_STATE: {
3802 struct kvm_s390_irq_state irq_state;
3803
3804 r = -EFAULT;
3805 if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
3806 break;
3807 if (irq_state.len > VCPU_IRQS_MAX_BUF ||
3808 irq_state.len == 0 ||
3809 irq_state.len % sizeof(struct kvm_s390_irq) > 0) {
3810 r = -EINVAL;
3811 break;
3812 }
3813 r = kvm_s390_set_irq_state(vcpu,
3814 (void __user *) irq_state.buf,
3815 irq_state.len);
3816 break;
3817 }
3818 case KVM_S390_GET_IRQ_STATE: {
3819 struct kvm_s390_irq_state irq_state;
3820
3821 r = -EFAULT;
3822 if (copy_from_user(&irq_state, argp, sizeof(irq_state)))
3823 break;
3824 if (irq_state.len == 0) {
3825 r = -EINVAL;
3826 break;
3827 }
3828 r = kvm_s390_get_irq_state(vcpu,
3829 (__u8 __user *) irq_state.buf,
3830 irq_state.len);
3831 break;
3832 }
3833 default:
3834 r = -ENOTTY;
3835 }
3836 return r;
3837 }
3838
3839 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
3840 {
3841 #ifdef CONFIG_KVM_S390_UCONTROL
3842 if ((vmf->pgoff == KVM_S390_SIE_PAGE_OFFSET)
3843 && (kvm_is_ucontrol(vcpu->kvm))) {
3844 vmf->page = virt_to_page(vcpu->arch.sie_block);
3845 get_page(vmf->page);
3846 return 0;
3847 }
3848 #endif
3849 return VM_FAULT_SIGBUS;
3850 }
3851
3852 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
3853 unsigned long npages)
3854 {
3855 return 0;
3856 }
3857
3858 /* Section: memory related */
3859 int kvm_arch_prepare_memory_region(struct kvm *kvm,
3860 struct kvm_memory_slot *memslot,
3861 const struct kvm_userspace_memory_region *mem,
3862 enum kvm_mr_change change)
3863 {
3864 /* A few sanity checks. We can have memory slots which have to be
3865 located/ended at a segment boundary (1MB). The memory in userland is
3866 ok to be fragmented into various different vmas. It is okay to mmap()
3867 and munmap() stuff in this slot after doing this call at any time */
3868
3869 if (mem->userspace_addr & 0xffffful)
3870 return -EINVAL;
3871
3872 if (mem->memory_size & 0xffffful)
3873 return -EINVAL;
3874
3875 if (mem->guest_phys_addr + mem->memory_size > kvm->arch.mem_limit)
3876 return -EINVAL;
3877
3878 return 0;
3879 }
3880
3881 void kvm_arch_commit_memory_region(struct kvm *kvm,
3882 const struct kvm_userspace_memory_region *mem,
3883 const struct kvm_memory_slot *old,
3884 const struct kvm_memory_slot *new,
3885 enum kvm_mr_change change)
3886 {
3887 int rc;
3888
3889 /* If the basics of the memslot do not change, we do not want
3890 * to update the gmap. Every update causes several unnecessary
3891 * segment translation exceptions. This is usually handled just
3892 * fine by the normal fault handler + gmap, but it will also
3893 * cause faults on the prefix page of running guest CPUs.
3894 */
3895 if (old->userspace_addr == mem->userspace_addr &&
3896 old->base_gfn * PAGE_SIZE == mem->guest_phys_addr &&
3897 old->npages * PAGE_SIZE == mem->memory_size)
3898 return;
3899
3900 rc = gmap_map_segment(kvm->arch.gmap, mem->userspace_addr,
3901 mem->guest_phys_addr, mem->memory_size);
3902 if (rc)
3903 pr_warn("failed to commit memory region\n");
3904 return;
3905 }
3906
3907 static inline unsigned long nonhyp_mask(int i)
3908 {
3909 unsigned int nonhyp_fai = (sclp.hmfai << i * 2) >> 30;
3910
3911 return 0x0000ffffffffffffUL >> (nonhyp_fai << 4);
3912 }
3913
3914 void kvm_arch_vcpu_block_finish(struct kvm_vcpu *vcpu)
3915 {
3916 vcpu->valid_wakeup = false;
3917 }
3918
3919 static int __init kvm_s390_init(void)
3920 {
3921 int i;
3922
3923 if (!sclp.has_sief2) {
3924 pr_info("SIE not available\n");
3925 return -ENODEV;
3926 }
3927
3928 for (i = 0; i < 16; i++)
3929 kvm_s390_fac_list_mask[i] |=
3930 S390_lowcore.stfle_fac_list[i] & nonhyp_mask(i);
3931
3932 return kvm_init(NULL, sizeof(struct kvm_vcpu), 0, THIS_MODULE);
3933 }
3934
3935 static void __exit kvm_s390_exit(void)
3936 {
3937 kvm_exit();
3938 }
3939
3940 module_init(kvm_s390_init);
3941 module_exit(kvm_s390_exit);
3942
3943 /*
3944 * Enable autoloading of the kvm module.
3945 * Note that we add the module alias here instead of virt/kvm/kvm_main.c
3946 * since x86 takes a different approach.
3947 */
3948 #include <linux/miscdevice.h>
3949 MODULE_ALIAS_MISCDEV(KVM_MINOR);
3950 MODULE_ALIAS("devname:kvm");