]> git.proxmox.com Git - mirror_ubuntu-eoan-kernel.git/blob - arch/s390/mm/fault.c
Fix common misspellings
[mirror_ubuntu-eoan-kernel.git] / arch / s390 / mm / fault.c
1 /*
2 * arch/s390/mm/fault.c
3 *
4 * S390 version
5 * Copyright (C) 1999 IBM Deutschland Entwicklung GmbH, IBM Corporation
6 * Author(s): Hartmut Penner (hp@de.ibm.com)
7 * Ulrich Weigand (uweigand@de.ibm.com)
8 *
9 * Derived from "arch/i386/mm/fault.c"
10 * Copyright (C) 1995 Linus Torvalds
11 */
12
13 #include <linux/kernel_stat.h>
14 #include <linux/perf_event.h>
15 #include <linux/signal.h>
16 #include <linux/sched.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/string.h>
20 #include <linux/types.h>
21 #include <linux/ptrace.h>
22 #include <linux/mman.h>
23 #include <linux/mm.h>
24 #include <linux/compat.h>
25 #include <linux/smp.h>
26 #include <linux/kdebug.h>
27 #include <linux/init.h>
28 #include <linux/console.h>
29 #include <linux/module.h>
30 #include <linux/hardirq.h>
31 #include <linux/kprobes.h>
32 #include <linux/uaccess.h>
33 #include <linux/hugetlb.h>
34 #include <asm/asm-offsets.h>
35 #include <asm/system.h>
36 #include <asm/pgtable.h>
37 #include <asm/s390_ext.h>
38 #include <asm/mmu_context.h>
39 #include <asm/compat.h>
40 #include "../kernel/entry.h"
41
42 #ifndef CONFIG_64BIT
43 #define __FAIL_ADDR_MASK 0x7ffff000
44 #define __SUBCODE_MASK 0x0200
45 #define __PF_RES_FIELD 0ULL
46 #else /* CONFIG_64BIT */
47 #define __FAIL_ADDR_MASK -4096L
48 #define __SUBCODE_MASK 0x0600
49 #define __PF_RES_FIELD 0x8000000000000000ULL
50 #endif /* CONFIG_64BIT */
51
52 #define VM_FAULT_BADCONTEXT 0x010000
53 #define VM_FAULT_BADMAP 0x020000
54 #define VM_FAULT_BADACCESS 0x040000
55
56 static unsigned long store_indication;
57
58 void fault_init(void)
59 {
60 if (test_facility(2) && test_facility(75))
61 store_indication = 0xc00;
62 }
63
64 static inline int notify_page_fault(struct pt_regs *regs)
65 {
66 int ret = 0;
67
68 /* kprobe_running() needs smp_processor_id() */
69 if (kprobes_built_in() && !user_mode(regs)) {
70 preempt_disable();
71 if (kprobe_running() && kprobe_fault_handler(regs, 14))
72 ret = 1;
73 preempt_enable();
74 }
75 return ret;
76 }
77
78
79 /*
80 * Unlock any spinlocks which will prevent us from getting the
81 * message out.
82 */
83 void bust_spinlocks(int yes)
84 {
85 if (yes) {
86 oops_in_progress = 1;
87 } else {
88 int loglevel_save = console_loglevel;
89 console_unblank();
90 oops_in_progress = 0;
91 /*
92 * OK, the message is on the console. Now we call printk()
93 * without oops_in_progress set so that printk will give klogd
94 * a poke. Hold onto your hats...
95 */
96 console_loglevel = 15;
97 printk(" ");
98 console_loglevel = loglevel_save;
99 }
100 }
101
102 /*
103 * Returns the address space associated with the fault.
104 * Returns 0 for kernel space and 1 for user space.
105 */
106 static inline int user_space_fault(unsigned long trans_exc_code)
107 {
108 /*
109 * The lowest two bits of the translation exception
110 * identification indicate which paging table was used.
111 */
112 trans_exc_code &= 3;
113 if (trans_exc_code == 2)
114 /* Access via secondary space, set_fs setting decides */
115 return current->thread.mm_segment.ar4;
116 if (user_mode == HOME_SPACE_MODE)
117 /* User space if the access has been done via home space. */
118 return trans_exc_code == 3;
119 /*
120 * If the user space is not the home space the kernel runs in home
121 * space. Access via secondary space has already been covered,
122 * access via primary space or access register is from user space
123 * and access via home space is from the kernel.
124 */
125 return trans_exc_code != 3;
126 }
127
128 static inline void report_user_fault(struct pt_regs *regs, long int_code,
129 int signr, unsigned long address)
130 {
131 if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
132 return;
133 if (!unhandled_signal(current, signr))
134 return;
135 if (!printk_ratelimit())
136 return;
137 printk("User process fault: interruption code 0x%lX ", int_code);
138 print_vma_addr(KERN_CONT "in ", regs->psw.addr & PSW_ADDR_INSN);
139 printk("\n");
140 printk("failing address: %lX\n", address);
141 show_regs(regs);
142 }
143
144 /*
145 * Send SIGSEGV to task. This is an external routine
146 * to keep the stack usage of do_page_fault small.
147 */
148 static noinline void do_sigsegv(struct pt_regs *regs, long int_code,
149 int si_code, unsigned long trans_exc_code)
150 {
151 struct siginfo si;
152 unsigned long address;
153
154 address = trans_exc_code & __FAIL_ADDR_MASK;
155 current->thread.prot_addr = address;
156 current->thread.trap_no = int_code;
157 report_user_fault(regs, int_code, SIGSEGV, address);
158 si.si_signo = SIGSEGV;
159 si.si_code = si_code;
160 si.si_addr = (void __user *) address;
161 force_sig_info(SIGSEGV, &si, current);
162 }
163
164 static noinline void do_no_context(struct pt_regs *regs, long int_code,
165 unsigned long trans_exc_code)
166 {
167 const struct exception_table_entry *fixup;
168 unsigned long address;
169
170 /* Are we prepared to handle this kernel fault? */
171 fixup = search_exception_tables(regs->psw.addr & PSW_ADDR_INSN);
172 if (fixup) {
173 regs->psw.addr = fixup->fixup | PSW_ADDR_AMODE;
174 return;
175 }
176
177 /*
178 * Oops. The kernel tried to access some bad page. We'll have to
179 * terminate things with extreme prejudice.
180 */
181 address = trans_exc_code & __FAIL_ADDR_MASK;
182 if (!user_space_fault(trans_exc_code))
183 printk(KERN_ALERT "Unable to handle kernel pointer dereference"
184 " at virtual kernel address %p\n", (void *)address);
185 else
186 printk(KERN_ALERT "Unable to handle kernel paging request"
187 " at virtual user address %p\n", (void *)address);
188
189 die("Oops", regs, int_code);
190 do_exit(SIGKILL);
191 }
192
193 static noinline void do_low_address(struct pt_regs *regs, long int_code,
194 unsigned long trans_exc_code)
195 {
196 /* Low-address protection hit in kernel mode means
197 NULL pointer write access in kernel mode. */
198 if (regs->psw.mask & PSW_MASK_PSTATE) {
199 /* Low-address protection hit in user mode 'cannot happen'. */
200 die ("Low-address protection", regs, int_code);
201 do_exit(SIGKILL);
202 }
203
204 do_no_context(regs, int_code, trans_exc_code);
205 }
206
207 static noinline void do_sigbus(struct pt_regs *regs, long int_code,
208 unsigned long trans_exc_code)
209 {
210 struct task_struct *tsk = current;
211 unsigned long address;
212 struct siginfo si;
213
214 /*
215 * Send a sigbus, regardless of whether we were in kernel
216 * or user mode.
217 */
218 address = trans_exc_code & __FAIL_ADDR_MASK;
219 tsk->thread.prot_addr = address;
220 tsk->thread.trap_no = int_code;
221 si.si_signo = SIGBUS;
222 si.si_errno = 0;
223 si.si_code = BUS_ADRERR;
224 si.si_addr = (void __user *) address;
225 force_sig_info(SIGBUS, &si, tsk);
226 }
227
228 #ifdef CONFIG_S390_EXEC_PROTECT
229 static noinline int signal_return(struct pt_regs *regs, long int_code,
230 unsigned long trans_exc_code)
231 {
232 u16 instruction;
233 int rc;
234
235 rc = __get_user(instruction, (u16 __user *) regs->psw.addr);
236
237 if (!rc && instruction == 0x0a77) {
238 clear_tsk_thread_flag(current, TIF_PER_TRAP);
239 if (is_compat_task())
240 sys32_sigreturn();
241 else
242 sys_sigreturn();
243 } else if (!rc && instruction == 0x0aad) {
244 clear_tsk_thread_flag(current, TIF_PER_TRAP);
245 if (is_compat_task())
246 sys32_rt_sigreturn();
247 else
248 sys_rt_sigreturn();
249 } else
250 do_sigsegv(regs, int_code, SEGV_MAPERR, trans_exc_code);
251 return 0;
252 }
253 #endif /* CONFIG_S390_EXEC_PROTECT */
254
255 static noinline void do_fault_error(struct pt_regs *regs, long int_code,
256 unsigned long trans_exc_code, int fault)
257 {
258 int si_code;
259
260 switch (fault) {
261 case VM_FAULT_BADACCESS:
262 #ifdef CONFIG_S390_EXEC_PROTECT
263 if ((regs->psw.mask & PSW_MASK_ASC) == PSW_ASC_SECONDARY &&
264 (trans_exc_code & 3) == 0) {
265 signal_return(regs, int_code, trans_exc_code);
266 break;
267 }
268 #endif /* CONFIG_S390_EXEC_PROTECT */
269 case VM_FAULT_BADMAP:
270 /* Bad memory access. Check if it is kernel or user space. */
271 if (regs->psw.mask & PSW_MASK_PSTATE) {
272 /* User mode accesses just cause a SIGSEGV */
273 si_code = (fault == VM_FAULT_BADMAP) ?
274 SEGV_MAPERR : SEGV_ACCERR;
275 do_sigsegv(regs, int_code, si_code, trans_exc_code);
276 return;
277 }
278 case VM_FAULT_BADCONTEXT:
279 do_no_context(regs, int_code, trans_exc_code);
280 break;
281 default: /* fault & VM_FAULT_ERROR */
282 if (fault & VM_FAULT_OOM)
283 pagefault_out_of_memory();
284 else if (fault & VM_FAULT_SIGBUS) {
285 /* Kernel mode? Handle exceptions or die */
286 if (!(regs->psw.mask & PSW_MASK_PSTATE))
287 do_no_context(regs, int_code, trans_exc_code);
288 else
289 do_sigbus(regs, int_code, trans_exc_code);
290 } else
291 BUG();
292 break;
293 }
294 }
295
296 /*
297 * This routine handles page faults. It determines the address,
298 * and the problem, and then passes it off to one of the appropriate
299 * routines.
300 *
301 * interruption code (int_code):
302 * 04 Protection -> Write-Protection (suprression)
303 * 10 Segment translation -> Not present (nullification)
304 * 11 Page translation -> Not present (nullification)
305 * 3b Region third trans. -> Not present (nullification)
306 */
307 static inline int do_exception(struct pt_regs *regs, int access,
308 unsigned long trans_exc_code)
309 {
310 struct task_struct *tsk;
311 struct mm_struct *mm;
312 struct vm_area_struct *vma;
313 unsigned long address;
314 int fault, write;
315
316 if (notify_page_fault(regs))
317 return 0;
318
319 tsk = current;
320 mm = tsk->mm;
321
322 /*
323 * Verify that the fault happened in user space, that
324 * we are not in an interrupt and that there is a
325 * user context.
326 */
327 fault = VM_FAULT_BADCONTEXT;
328 if (unlikely(!user_space_fault(trans_exc_code) || in_atomic() || !mm))
329 goto out;
330
331 address = trans_exc_code & __FAIL_ADDR_MASK;
332 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, 0, regs, address);
333 down_read(&mm->mmap_sem);
334
335 fault = VM_FAULT_BADMAP;
336 vma = find_vma(mm, address);
337 if (!vma)
338 goto out_up;
339
340 if (unlikely(vma->vm_start > address)) {
341 if (!(vma->vm_flags & VM_GROWSDOWN))
342 goto out_up;
343 if (expand_stack(vma, address))
344 goto out_up;
345 }
346
347 /*
348 * Ok, we have a good vm_area for this memory access, so
349 * we can handle it..
350 */
351 fault = VM_FAULT_BADACCESS;
352 if (unlikely(!(vma->vm_flags & access)))
353 goto out_up;
354
355 if (is_vm_hugetlb_page(vma))
356 address &= HPAGE_MASK;
357 /*
358 * If for any reason at all we couldn't handle the fault,
359 * make sure we exit gracefully rather than endlessly redo
360 * the fault.
361 */
362 write = (access == VM_WRITE ||
363 (trans_exc_code & store_indication) == 0x400) ?
364 FAULT_FLAG_WRITE : 0;
365 fault = handle_mm_fault(mm, vma, address, write);
366 if (unlikely(fault & VM_FAULT_ERROR))
367 goto out_up;
368
369 if (fault & VM_FAULT_MAJOR) {
370 tsk->maj_flt++;
371 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, 0,
372 regs, address);
373 } else {
374 tsk->min_flt++;
375 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, 0,
376 regs, address);
377 }
378 /*
379 * The instruction that caused the program check will
380 * be repeated. Don't signal single step via SIGTRAP.
381 */
382 clear_tsk_thread_flag(tsk, TIF_PER_TRAP);
383 fault = 0;
384 out_up:
385 up_read(&mm->mmap_sem);
386 out:
387 return fault;
388 }
389
390 void __kprobes do_protection_exception(struct pt_regs *regs, long pgm_int_code,
391 unsigned long trans_exc_code)
392 {
393 int fault;
394
395 /* Protection exception is suppressing, decrement psw address. */
396 regs->psw.addr -= (pgm_int_code >> 16);
397 /*
398 * Check for low-address protection. This needs to be treated
399 * as a special case because the translation exception code
400 * field is not guaranteed to contain valid data in this case.
401 */
402 if (unlikely(!(trans_exc_code & 4))) {
403 do_low_address(regs, pgm_int_code, trans_exc_code);
404 return;
405 }
406 fault = do_exception(regs, VM_WRITE, trans_exc_code);
407 if (unlikely(fault))
408 do_fault_error(regs, 4, trans_exc_code, fault);
409 }
410
411 void __kprobes do_dat_exception(struct pt_regs *regs, long pgm_int_code,
412 unsigned long trans_exc_code)
413 {
414 int access, fault;
415
416 access = VM_READ | VM_EXEC | VM_WRITE;
417 #ifdef CONFIG_S390_EXEC_PROTECT
418 if ((regs->psw.mask & PSW_MASK_ASC) == PSW_ASC_SECONDARY &&
419 (trans_exc_code & 3) == 0)
420 access = VM_EXEC;
421 #endif
422 fault = do_exception(regs, access, trans_exc_code);
423 if (unlikely(fault))
424 do_fault_error(regs, pgm_int_code & 255, trans_exc_code, fault);
425 }
426
427 #ifdef CONFIG_64BIT
428 void __kprobes do_asce_exception(struct pt_regs *regs, long pgm_int_code,
429 unsigned long trans_exc_code)
430 {
431 struct mm_struct *mm = current->mm;
432 struct vm_area_struct *vma;
433
434 if (unlikely(!user_space_fault(trans_exc_code) || in_atomic() || !mm))
435 goto no_context;
436
437 down_read(&mm->mmap_sem);
438 vma = find_vma(mm, trans_exc_code & __FAIL_ADDR_MASK);
439 up_read(&mm->mmap_sem);
440
441 if (vma) {
442 update_mm(mm, current);
443 return;
444 }
445
446 /* User mode accesses just cause a SIGSEGV */
447 if (regs->psw.mask & PSW_MASK_PSTATE) {
448 do_sigsegv(regs, pgm_int_code, SEGV_MAPERR, trans_exc_code);
449 return;
450 }
451
452 no_context:
453 do_no_context(regs, pgm_int_code, trans_exc_code);
454 }
455 #endif
456
457 int __handle_fault(unsigned long uaddr, unsigned long pgm_int_code, int write)
458 {
459 struct pt_regs regs;
460 int access, fault;
461
462 regs.psw.mask = psw_kernel_bits;
463 if (!irqs_disabled())
464 regs.psw.mask |= PSW_MASK_IO | PSW_MASK_EXT;
465 regs.psw.addr = (unsigned long) __builtin_return_address(0);
466 regs.psw.addr |= PSW_ADDR_AMODE;
467 uaddr &= PAGE_MASK;
468 access = write ? VM_WRITE : VM_READ;
469 fault = do_exception(&regs, access, uaddr | 2);
470 if (unlikely(fault)) {
471 if (fault & VM_FAULT_OOM) {
472 pagefault_out_of_memory();
473 fault = 0;
474 } else if (fault & VM_FAULT_SIGBUS)
475 do_sigbus(&regs, pgm_int_code, uaddr);
476 }
477 return fault ? -EFAULT : 0;
478 }
479
480 #ifdef CONFIG_PFAULT
481 /*
482 * 'pfault' pseudo page faults routines.
483 */
484 static int pfault_disable;
485
486 static int __init nopfault(char *str)
487 {
488 pfault_disable = 1;
489 return 1;
490 }
491
492 __setup("nopfault", nopfault);
493
494 typedef struct {
495 __u16 refdiagc;
496 __u16 reffcode;
497 __u16 refdwlen;
498 __u16 refversn;
499 __u64 refgaddr;
500 __u64 refselmk;
501 __u64 refcmpmk;
502 __u64 reserved;
503 } __attribute__ ((packed, aligned(8))) pfault_refbk_t;
504
505 int pfault_init(void)
506 {
507 pfault_refbk_t refbk =
508 { 0x258, 0, 5, 2, __LC_CURRENT, 1ULL << 48, 1ULL << 48,
509 __PF_RES_FIELD };
510 int rc;
511
512 if (!MACHINE_IS_VM || pfault_disable)
513 return -1;
514 asm volatile(
515 " diag %1,%0,0x258\n"
516 "0: j 2f\n"
517 "1: la %0,8\n"
518 "2:\n"
519 EX_TABLE(0b,1b)
520 : "=d" (rc) : "a" (&refbk), "m" (refbk) : "cc");
521 __ctl_set_bit(0, 9);
522 return rc;
523 }
524
525 void pfault_fini(void)
526 {
527 pfault_refbk_t refbk =
528 { 0x258, 1, 5, 2, 0ULL, 0ULL, 0ULL, 0ULL };
529
530 if (!MACHINE_IS_VM || pfault_disable)
531 return;
532 __ctl_clear_bit(0,9);
533 asm volatile(
534 " diag %0,0,0x258\n"
535 "0:\n"
536 EX_TABLE(0b,0b)
537 : : "a" (&refbk), "m" (refbk) : "cc");
538 }
539
540 static void pfault_interrupt(unsigned int ext_int_code,
541 unsigned int param32, unsigned long param64)
542 {
543 struct task_struct *tsk;
544 __u16 subcode;
545
546 kstat_cpu(smp_processor_id()).irqs[EXTINT_PFL]++;
547 /*
548 * Get the external interruption subcode & pfault
549 * initial/completion signal bit. VM stores this
550 * in the 'cpu address' field associated with the
551 * external interrupt.
552 */
553 subcode = ext_int_code >> 16;
554 if ((subcode & 0xff00) != __SUBCODE_MASK)
555 return;
556
557 /*
558 * Get the token (= address of the task structure of the affected task).
559 */
560 #ifdef CONFIG_64BIT
561 tsk = *(struct task_struct **) param64;
562 #else
563 tsk = *(struct task_struct **) param32;
564 #endif
565
566 if (subcode & 0x0080) {
567 /* signal bit is set -> a page has been swapped in by VM */
568 if (xchg(&tsk->thread.pfault_wait, -1) != 0) {
569 /* Initial interrupt was faster than the completion
570 * interrupt. pfault_wait is valid. Set pfault_wait
571 * back to zero and wake up the process. This can
572 * safely be done because the task is still sleeping
573 * and can't produce new pfaults. */
574 tsk->thread.pfault_wait = 0;
575 wake_up_process(tsk);
576 put_task_struct(tsk);
577 }
578 } else {
579 /* signal bit not set -> a real page is missing. */
580 get_task_struct(tsk);
581 set_task_state(tsk, TASK_UNINTERRUPTIBLE);
582 if (xchg(&tsk->thread.pfault_wait, 1) != 0) {
583 /* Completion interrupt was faster than the initial
584 * interrupt (swapped in a -1 for pfault_wait). Set
585 * pfault_wait back to zero and exit. This can be
586 * done safely because tsk is running in kernel
587 * mode and can't produce new pfaults. */
588 tsk->thread.pfault_wait = 0;
589 set_task_state(tsk, TASK_RUNNING);
590 put_task_struct(tsk);
591 } else
592 set_tsk_need_resched(tsk);
593 }
594 }
595
596 static int __init pfault_irq_init(void)
597 {
598 int rc;
599
600 if (!MACHINE_IS_VM)
601 return 0;
602 /*
603 * Try to get pfault pseudo page faults going.
604 */
605 rc = register_external_interrupt(0x2603, pfault_interrupt);
606 if (rc) {
607 pfault_disable = 1;
608 return rc;
609 }
610 if (pfault_init() == 0)
611 return 0;
612
613 /* Tough luck, no pfault. */
614 pfault_disable = 1;
615 unregister_external_interrupt(0x2603, pfault_interrupt);
616 return 0;
617 }
618 early_initcall(pfault_irq_init);
619
620 #endif