]> git.proxmox.com Git - mirror_ubuntu-jammy-kernel.git/blob - arch/s390/mm/fault.c
Merge branch 'timers-urgent-for-linus' of git://git.kernel.org/pub/scm/linux/kernel...
[mirror_ubuntu-jammy-kernel.git] / arch / s390 / mm / fault.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * S390 version
4 * Copyright IBM Corp. 1999
5 * Author(s): Hartmut Penner (hp@de.ibm.com)
6 * Ulrich Weigand (uweigand@de.ibm.com)
7 *
8 * Derived from "arch/i386/mm/fault.c"
9 * Copyright (C) 1995 Linus Torvalds
10 */
11
12 #include <linux/kernel_stat.h>
13 #include <linux/perf_event.h>
14 #include <linux/signal.h>
15 #include <linux/sched.h>
16 #include <linux/sched/debug.h>
17 #include <linux/kernel.h>
18 #include <linux/errno.h>
19 #include <linux/string.h>
20 #include <linux/types.h>
21 #include <linux/ptrace.h>
22 #include <linux/mman.h>
23 #include <linux/mm.h>
24 #include <linux/compat.h>
25 #include <linux/smp.h>
26 #include <linux/kdebug.h>
27 #include <linux/init.h>
28 #include <linux/console.h>
29 #include <linux/extable.h>
30 #include <linux/hardirq.h>
31 #include <linux/kprobes.h>
32 #include <linux/uaccess.h>
33 #include <linux/hugetlb.h>
34 #include <asm/asm-offsets.h>
35 #include <asm/diag.h>
36 #include <asm/pgtable.h>
37 #include <asm/gmap.h>
38 #include <asm/irq.h>
39 #include <asm/mmu_context.h>
40 #include <asm/facility.h>
41 #include "../kernel/entry.h"
42
43 #define __FAIL_ADDR_MASK -4096L
44 #define __SUBCODE_MASK 0x0600
45 #define __PF_RES_FIELD 0x8000000000000000ULL
46
47 #define VM_FAULT_BADCONTEXT 0x010000
48 #define VM_FAULT_BADMAP 0x020000
49 #define VM_FAULT_BADACCESS 0x040000
50 #define VM_FAULT_SIGNAL 0x080000
51 #define VM_FAULT_PFAULT 0x100000
52
53 enum fault_type {
54 KERNEL_FAULT,
55 USER_FAULT,
56 VDSO_FAULT,
57 GMAP_FAULT,
58 };
59
60 static unsigned long store_indication __read_mostly;
61
62 static int __init fault_init(void)
63 {
64 if (test_facility(75))
65 store_indication = 0xc00;
66 return 0;
67 }
68 early_initcall(fault_init);
69
70 static inline int notify_page_fault(struct pt_regs *regs)
71 {
72 int ret = 0;
73
74 /* kprobe_running() needs smp_processor_id() */
75 if (kprobes_built_in() && !user_mode(regs)) {
76 preempt_disable();
77 if (kprobe_running() && kprobe_fault_handler(regs, 14))
78 ret = 1;
79 preempt_enable();
80 }
81 return ret;
82 }
83
84 /*
85 * Find out which address space caused the exception.
86 */
87 static enum fault_type get_fault_type(struct pt_regs *regs)
88 {
89 unsigned long trans_exc_code;
90
91 trans_exc_code = regs->int_parm_long & 3;
92 if (likely(trans_exc_code == 0)) {
93 /* primary space exception */
94 if (IS_ENABLED(CONFIG_PGSTE) &&
95 test_pt_regs_flag(regs, PIF_GUEST_FAULT))
96 return GMAP_FAULT;
97 if (current->thread.mm_segment == USER_DS)
98 return USER_FAULT;
99 return KERNEL_FAULT;
100 }
101 if (trans_exc_code == 2) {
102 /* secondary space exception */
103 if (current->thread.mm_segment & 1) {
104 if (current->thread.mm_segment == USER_DS_SACF)
105 return USER_FAULT;
106 return KERNEL_FAULT;
107 }
108 return VDSO_FAULT;
109 }
110 if (trans_exc_code == 1) {
111 /* access register mode, not used in the kernel */
112 return USER_FAULT;
113 }
114 /* home space exception -> access via kernel ASCE */
115 return KERNEL_FAULT;
116 }
117
118 static int bad_address(void *p)
119 {
120 unsigned long dummy;
121
122 return probe_kernel_address((unsigned long *)p, dummy);
123 }
124
125 static void dump_pagetable(unsigned long asce, unsigned long address)
126 {
127 unsigned long *table = __va(asce & _ASCE_ORIGIN);
128
129 pr_alert("AS:%016lx ", asce);
130 switch (asce & _ASCE_TYPE_MASK) {
131 case _ASCE_TYPE_REGION1:
132 table += (address & _REGION1_INDEX) >> _REGION1_SHIFT;
133 if (bad_address(table))
134 goto bad;
135 pr_cont("R1:%016lx ", *table);
136 if (*table & _REGION_ENTRY_INVALID)
137 goto out;
138 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
139 /* fallthrough */
140 case _ASCE_TYPE_REGION2:
141 table += (address & _REGION2_INDEX) >> _REGION2_SHIFT;
142 if (bad_address(table))
143 goto bad;
144 pr_cont("R2:%016lx ", *table);
145 if (*table & _REGION_ENTRY_INVALID)
146 goto out;
147 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
148 /* fallthrough */
149 case _ASCE_TYPE_REGION3:
150 table += (address & _REGION3_INDEX) >> _REGION3_SHIFT;
151 if (bad_address(table))
152 goto bad;
153 pr_cont("R3:%016lx ", *table);
154 if (*table & (_REGION_ENTRY_INVALID | _REGION3_ENTRY_LARGE))
155 goto out;
156 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
157 /* fallthrough */
158 case _ASCE_TYPE_SEGMENT:
159 table += (address & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
160 if (bad_address(table))
161 goto bad;
162 pr_cont("S:%016lx ", *table);
163 if (*table & (_SEGMENT_ENTRY_INVALID | _SEGMENT_ENTRY_LARGE))
164 goto out;
165 table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
166 }
167 table += (address & _PAGE_INDEX) >> _PAGE_SHIFT;
168 if (bad_address(table))
169 goto bad;
170 pr_cont("P:%016lx ", *table);
171 out:
172 pr_cont("\n");
173 return;
174 bad:
175 pr_cont("BAD\n");
176 }
177
178 static void dump_fault_info(struct pt_regs *regs)
179 {
180 unsigned long asce;
181
182 pr_alert("Failing address: %016lx TEID: %016lx\n",
183 regs->int_parm_long & __FAIL_ADDR_MASK, regs->int_parm_long);
184 pr_alert("Fault in ");
185 switch (regs->int_parm_long & 3) {
186 case 3:
187 pr_cont("home space ");
188 break;
189 case 2:
190 pr_cont("secondary space ");
191 break;
192 case 1:
193 pr_cont("access register ");
194 break;
195 case 0:
196 pr_cont("primary space ");
197 break;
198 }
199 pr_cont("mode while using ");
200 switch (get_fault_type(regs)) {
201 case USER_FAULT:
202 asce = S390_lowcore.user_asce;
203 pr_cont("user ");
204 break;
205 case VDSO_FAULT:
206 asce = S390_lowcore.vdso_asce;
207 pr_cont("vdso ");
208 break;
209 case GMAP_FAULT:
210 asce = ((struct gmap *) S390_lowcore.gmap)->asce;
211 pr_cont("gmap ");
212 break;
213 case KERNEL_FAULT:
214 asce = S390_lowcore.kernel_asce;
215 pr_cont("kernel ");
216 break;
217 default:
218 unreachable();
219 }
220 pr_cont("ASCE.\n");
221 dump_pagetable(asce, regs->int_parm_long & __FAIL_ADDR_MASK);
222 }
223
224 int show_unhandled_signals = 1;
225
226 void report_user_fault(struct pt_regs *regs, long signr, int is_mm_fault)
227 {
228 if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
229 return;
230 if (!unhandled_signal(current, signr))
231 return;
232 if (!printk_ratelimit())
233 return;
234 printk(KERN_ALERT "User process fault: interruption code %04x ilc:%d ",
235 regs->int_code & 0xffff, regs->int_code >> 17);
236 print_vma_addr(KERN_CONT "in ", regs->psw.addr);
237 printk(KERN_CONT "\n");
238 if (is_mm_fault)
239 dump_fault_info(regs);
240 show_regs(regs);
241 }
242
243 /*
244 * Send SIGSEGV to task. This is an external routine
245 * to keep the stack usage of do_page_fault small.
246 */
247 static noinline void do_sigsegv(struct pt_regs *regs, int si_code)
248 {
249 report_user_fault(regs, SIGSEGV, 1);
250 force_sig_fault(SIGSEGV, si_code,
251 (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK),
252 current);
253 }
254
255 const struct exception_table_entry *s390_search_extables(unsigned long addr)
256 {
257 const struct exception_table_entry *fixup;
258
259 fixup = search_extable(__start_dma_ex_table,
260 __stop_dma_ex_table - __start_dma_ex_table,
261 addr);
262 if (!fixup)
263 fixup = search_exception_tables(addr);
264 return fixup;
265 }
266
267 static noinline void do_no_context(struct pt_regs *regs)
268 {
269 const struct exception_table_entry *fixup;
270
271 /* Are we prepared to handle this kernel fault? */
272 fixup = s390_search_extables(regs->psw.addr);
273 if (fixup) {
274 regs->psw.addr = extable_fixup(fixup);
275 return;
276 }
277
278 /*
279 * Oops. The kernel tried to access some bad page. We'll have to
280 * terminate things with extreme prejudice.
281 */
282 if (get_fault_type(regs) == KERNEL_FAULT)
283 printk(KERN_ALERT "Unable to handle kernel pointer dereference"
284 " in virtual kernel address space\n");
285 else
286 printk(KERN_ALERT "Unable to handle kernel paging request"
287 " in virtual user address space\n");
288 dump_fault_info(regs);
289 die(regs, "Oops");
290 do_exit(SIGKILL);
291 }
292
293 static noinline void do_low_address(struct pt_regs *regs)
294 {
295 /* Low-address protection hit in kernel mode means
296 NULL pointer write access in kernel mode. */
297 if (regs->psw.mask & PSW_MASK_PSTATE) {
298 /* Low-address protection hit in user mode 'cannot happen'. */
299 die (regs, "Low-address protection");
300 do_exit(SIGKILL);
301 }
302
303 do_no_context(regs);
304 }
305
306 static noinline void do_sigbus(struct pt_regs *regs)
307 {
308 /*
309 * Send a sigbus, regardless of whether we were in kernel
310 * or user mode.
311 */
312 force_sig_fault(SIGBUS, BUS_ADRERR,
313 (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK),
314 current);
315 }
316
317 static noinline int signal_return(struct pt_regs *regs)
318 {
319 u16 instruction;
320 int rc;
321
322 rc = __get_user(instruction, (u16 __user *) regs->psw.addr);
323 if (rc)
324 return rc;
325 if (instruction == 0x0a77) {
326 set_pt_regs_flag(regs, PIF_SYSCALL);
327 regs->int_code = 0x00040077;
328 return 0;
329 } else if (instruction == 0x0aad) {
330 set_pt_regs_flag(regs, PIF_SYSCALL);
331 regs->int_code = 0x000400ad;
332 return 0;
333 }
334 return -EACCES;
335 }
336
337 static noinline void do_fault_error(struct pt_regs *regs, int access,
338 vm_fault_t fault)
339 {
340 int si_code;
341
342 switch (fault) {
343 case VM_FAULT_BADACCESS:
344 if (access == VM_EXEC && signal_return(regs) == 0)
345 break;
346 case VM_FAULT_BADMAP:
347 /* Bad memory access. Check if it is kernel or user space. */
348 if (user_mode(regs)) {
349 /* User mode accesses just cause a SIGSEGV */
350 si_code = (fault == VM_FAULT_BADMAP) ?
351 SEGV_MAPERR : SEGV_ACCERR;
352 do_sigsegv(regs, si_code);
353 break;
354 }
355 case VM_FAULT_BADCONTEXT:
356 case VM_FAULT_PFAULT:
357 do_no_context(regs);
358 break;
359 case VM_FAULT_SIGNAL:
360 if (!user_mode(regs))
361 do_no_context(regs);
362 break;
363 default: /* fault & VM_FAULT_ERROR */
364 if (fault & VM_FAULT_OOM) {
365 if (!user_mode(regs))
366 do_no_context(regs);
367 else
368 pagefault_out_of_memory();
369 } else if (fault & VM_FAULT_SIGSEGV) {
370 /* Kernel mode? Handle exceptions or die */
371 if (!user_mode(regs))
372 do_no_context(regs);
373 else
374 do_sigsegv(regs, SEGV_MAPERR);
375 } else if (fault & VM_FAULT_SIGBUS) {
376 /* Kernel mode? Handle exceptions or die */
377 if (!user_mode(regs))
378 do_no_context(regs);
379 else
380 do_sigbus(regs);
381 } else
382 BUG();
383 break;
384 }
385 }
386
387 /*
388 * This routine handles page faults. It determines the address,
389 * and the problem, and then passes it off to one of the appropriate
390 * routines.
391 *
392 * interruption code (int_code):
393 * 04 Protection -> Write-Protection (suprression)
394 * 10 Segment translation -> Not present (nullification)
395 * 11 Page translation -> Not present (nullification)
396 * 3b Region third trans. -> Not present (nullification)
397 */
398 static inline vm_fault_t do_exception(struct pt_regs *regs, int access)
399 {
400 struct gmap *gmap;
401 struct task_struct *tsk;
402 struct mm_struct *mm;
403 struct vm_area_struct *vma;
404 enum fault_type type;
405 unsigned long trans_exc_code;
406 unsigned long address;
407 unsigned int flags;
408 vm_fault_t fault;
409
410 tsk = current;
411 /*
412 * The instruction that caused the program check has
413 * been nullified. Don't signal single step via SIGTRAP.
414 */
415 clear_pt_regs_flag(regs, PIF_PER_TRAP);
416
417 if (notify_page_fault(regs))
418 return 0;
419
420 mm = tsk->mm;
421 trans_exc_code = regs->int_parm_long;
422
423 /*
424 * Verify that the fault happened in user space, that
425 * we are not in an interrupt and that there is a
426 * user context.
427 */
428 fault = VM_FAULT_BADCONTEXT;
429 type = get_fault_type(regs);
430 switch (type) {
431 case KERNEL_FAULT:
432 goto out;
433 case VDSO_FAULT:
434 fault = VM_FAULT_BADMAP;
435 goto out;
436 case USER_FAULT:
437 case GMAP_FAULT:
438 if (faulthandler_disabled() || !mm)
439 goto out;
440 break;
441 }
442
443 address = trans_exc_code & __FAIL_ADDR_MASK;
444 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
445 flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
446 if (user_mode(regs))
447 flags |= FAULT_FLAG_USER;
448 if (access == VM_WRITE || (trans_exc_code & store_indication) == 0x400)
449 flags |= FAULT_FLAG_WRITE;
450 down_read(&mm->mmap_sem);
451
452 gmap = NULL;
453 if (IS_ENABLED(CONFIG_PGSTE) && type == GMAP_FAULT) {
454 gmap = (struct gmap *) S390_lowcore.gmap;
455 current->thread.gmap_addr = address;
456 current->thread.gmap_write_flag = !!(flags & FAULT_FLAG_WRITE);
457 current->thread.gmap_int_code = regs->int_code & 0xffff;
458 address = __gmap_translate(gmap, address);
459 if (address == -EFAULT) {
460 fault = VM_FAULT_BADMAP;
461 goto out_up;
462 }
463 if (gmap->pfault_enabled)
464 flags |= FAULT_FLAG_RETRY_NOWAIT;
465 }
466
467 retry:
468 fault = VM_FAULT_BADMAP;
469 vma = find_vma(mm, address);
470 if (!vma)
471 goto out_up;
472
473 if (unlikely(vma->vm_start > address)) {
474 if (!(vma->vm_flags & VM_GROWSDOWN))
475 goto out_up;
476 if (expand_stack(vma, address))
477 goto out_up;
478 }
479
480 /*
481 * Ok, we have a good vm_area for this memory access, so
482 * we can handle it..
483 */
484 fault = VM_FAULT_BADACCESS;
485 if (unlikely(!(vma->vm_flags & access)))
486 goto out_up;
487
488 if (is_vm_hugetlb_page(vma))
489 address &= HPAGE_MASK;
490 /*
491 * If for any reason at all we couldn't handle the fault,
492 * make sure we exit gracefully rather than endlessly redo
493 * the fault.
494 */
495 fault = handle_mm_fault(vma, address, flags);
496 /* No reason to continue if interrupted by SIGKILL. */
497 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) {
498 fault = VM_FAULT_SIGNAL;
499 if (flags & FAULT_FLAG_RETRY_NOWAIT)
500 goto out_up;
501 goto out;
502 }
503 if (unlikely(fault & VM_FAULT_ERROR))
504 goto out_up;
505
506 /*
507 * Major/minor page fault accounting is only done on the
508 * initial attempt. If we go through a retry, it is extremely
509 * likely that the page will be found in page cache at that point.
510 */
511 if (flags & FAULT_FLAG_ALLOW_RETRY) {
512 if (fault & VM_FAULT_MAJOR) {
513 tsk->maj_flt++;
514 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
515 regs, address);
516 } else {
517 tsk->min_flt++;
518 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
519 regs, address);
520 }
521 if (fault & VM_FAULT_RETRY) {
522 if (IS_ENABLED(CONFIG_PGSTE) && gmap &&
523 (flags & FAULT_FLAG_RETRY_NOWAIT)) {
524 /* FAULT_FLAG_RETRY_NOWAIT has been set,
525 * mmap_sem has not been released */
526 current->thread.gmap_pfault = 1;
527 fault = VM_FAULT_PFAULT;
528 goto out_up;
529 }
530 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
531 * of starvation. */
532 flags &= ~(FAULT_FLAG_ALLOW_RETRY |
533 FAULT_FLAG_RETRY_NOWAIT);
534 flags |= FAULT_FLAG_TRIED;
535 down_read(&mm->mmap_sem);
536 goto retry;
537 }
538 }
539 if (IS_ENABLED(CONFIG_PGSTE) && gmap) {
540 address = __gmap_link(gmap, current->thread.gmap_addr,
541 address);
542 if (address == -EFAULT) {
543 fault = VM_FAULT_BADMAP;
544 goto out_up;
545 }
546 if (address == -ENOMEM) {
547 fault = VM_FAULT_OOM;
548 goto out_up;
549 }
550 }
551 fault = 0;
552 out_up:
553 up_read(&mm->mmap_sem);
554 out:
555 return fault;
556 }
557
558 void do_protection_exception(struct pt_regs *regs)
559 {
560 unsigned long trans_exc_code;
561 int access;
562 vm_fault_t fault;
563
564 trans_exc_code = regs->int_parm_long;
565 /*
566 * Protection exceptions are suppressing, decrement psw address.
567 * The exception to this rule are aborted transactions, for these
568 * the PSW already points to the correct location.
569 */
570 if (!(regs->int_code & 0x200))
571 regs->psw.addr = __rewind_psw(regs->psw, regs->int_code >> 16);
572 /*
573 * Check for low-address protection. This needs to be treated
574 * as a special case because the translation exception code
575 * field is not guaranteed to contain valid data in this case.
576 */
577 if (unlikely(!(trans_exc_code & 4))) {
578 do_low_address(regs);
579 return;
580 }
581 if (unlikely(MACHINE_HAS_NX && (trans_exc_code & 0x80))) {
582 regs->int_parm_long = (trans_exc_code & ~PAGE_MASK) |
583 (regs->psw.addr & PAGE_MASK);
584 access = VM_EXEC;
585 fault = VM_FAULT_BADACCESS;
586 } else {
587 access = VM_WRITE;
588 fault = do_exception(regs, access);
589 }
590 if (unlikely(fault))
591 do_fault_error(regs, access, fault);
592 }
593 NOKPROBE_SYMBOL(do_protection_exception);
594
595 void do_dat_exception(struct pt_regs *regs)
596 {
597 int access;
598 vm_fault_t fault;
599
600 access = VM_READ | VM_EXEC | VM_WRITE;
601 fault = do_exception(regs, access);
602 if (unlikely(fault))
603 do_fault_error(regs, access, fault);
604 }
605 NOKPROBE_SYMBOL(do_dat_exception);
606
607 #ifdef CONFIG_PFAULT
608 /*
609 * 'pfault' pseudo page faults routines.
610 */
611 static int pfault_disable;
612
613 static int __init nopfault(char *str)
614 {
615 pfault_disable = 1;
616 return 1;
617 }
618
619 __setup("nopfault", nopfault);
620
621 struct pfault_refbk {
622 u16 refdiagc;
623 u16 reffcode;
624 u16 refdwlen;
625 u16 refversn;
626 u64 refgaddr;
627 u64 refselmk;
628 u64 refcmpmk;
629 u64 reserved;
630 } __attribute__ ((packed, aligned(8)));
631
632 static struct pfault_refbk pfault_init_refbk = {
633 .refdiagc = 0x258,
634 .reffcode = 0,
635 .refdwlen = 5,
636 .refversn = 2,
637 .refgaddr = __LC_LPP,
638 .refselmk = 1ULL << 48,
639 .refcmpmk = 1ULL << 48,
640 .reserved = __PF_RES_FIELD
641 };
642
643 int pfault_init(void)
644 {
645 int rc;
646
647 if (pfault_disable)
648 return -1;
649 diag_stat_inc(DIAG_STAT_X258);
650 asm volatile(
651 " diag %1,%0,0x258\n"
652 "0: j 2f\n"
653 "1: la %0,8\n"
654 "2:\n"
655 EX_TABLE(0b,1b)
656 : "=d" (rc)
657 : "a" (&pfault_init_refbk), "m" (pfault_init_refbk) : "cc");
658 return rc;
659 }
660
661 static struct pfault_refbk pfault_fini_refbk = {
662 .refdiagc = 0x258,
663 .reffcode = 1,
664 .refdwlen = 5,
665 .refversn = 2,
666 };
667
668 void pfault_fini(void)
669 {
670
671 if (pfault_disable)
672 return;
673 diag_stat_inc(DIAG_STAT_X258);
674 asm volatile(
675 " diag %0,0,0x258\n"
676 "0: nopr %%r7\n"
677 EX_TABLE(0b,0b)
678 : : "a" (&pfault_fini_refbk), "m" (pfault_fini_refbk) : "cc");
679 }
680
681 static DEFINE_SPINLOCK(pfault_lock);
682 static LIST_HEAD(pfault_list);
683
684 #define PF_COMPLETE 0x0080
685
686 /*
687 * The mechanism of our pfault code: if Linux is running as guest, runs a user
688 * space process and the user space process accesses a page that the host has
689 * paged out we get a pfault interrupt.
690 *
691 * This allows us, within the guest, to schedule a different process. Without
692 * this mechanism the host would have to suspend the whole virtual cpu until
693 * the page has been paged in.
694 *
695 * So when we get such an interrupt then we set the state of the current task
696 * to uninterruptible and also set the need_resched flag. Both happens within
697 * interrupt context(!). If we later on want to return to user space we
698 * recognize the need_resched flag and then call schedule(). It's not very
699 * obvious how this works...
700 *
701 * Of course we have a lot of additional fun with the completion interrupt (->
702 * host signals that a page of a process has been paged in and the process can
703 * continue to run). This interrupt can arrive on any cpu and, since we have
704 * virtual cpus, actually appear before the interrupt that signals that a page
705 * is missing.
706 */
707 static void pfault_interrupt(struct ext_code ext_code,
708 unsigned int param32, unsigned long param64)
709 {
710 struct task_struct *tsk;
711 __u16 subcode;
712 pid_t pid;
713
714 /*
715 * Get the external interruption subcode & pfault initial/completion
716 * signal bit. VM stores this in the 'cpu address' field associated
717 * with the external interrupt.
718 */
719 subcode = ext_code.subcode;
720 if ((subcode & 0xff00) != __SUBCODE_MASK)
721 return;
722 inc_irq_stat(IRQEXT_PFL);
723 /* Get the token (= pid of the affected task). */
724 pid = param64 & LPP_PID_MASK;
725 rcu_read_lock();
726 tsk = find_task_by_pid_ns(pid, &init_pid_ns);
727 if (tsk)
728 get_task_struct(tsk);
729 rcu_read_unlock();
730 if (!tsk)
731 return;
732 spin_lock(&pfault_lock);
733 if (subcode & PF_COMPLETE) {
734 /* signal bit is set -> a page has been swapped in by VM */
735 if (tsk->thread.pfault_wait == 1) {
736 /* Initial interrupt was faster than the completion
737 * interrupt. pfault_wait is valid. Set pfault_wait
738 * back to zero and wake up the process. This can
739 * safely be done because the task is still sleeping
740 * and can't produce new pfaults. */
741 tsk->thread.pfault_wait = 0;
742 list_del(&tsk->thread.list);
743 wake_up_process(tsk);
744 put_task_struct(tsk);
745 } else {
746 /* Completion interrupt was faster than initial
747 * interrupt. Set pfault_wait to -1 so the initial
748 * interrupt doesn't put the task to sleep.
749 * If the task is not running, ignore the completion
750 * interrupt since it must be a leftover of a PFAULT
751 * CANCEL operation which didn't remove all pending
752 * completion interrupts. */
753 if (tsk->state == TASK_RUNNING)
754 tsk->thread.pfault_wait = -1;
755 }
756 } else {
757 /* signal bit not set -> a real page is missing. */
758 if (WARN_ON_ONCE(tsk != current))
759 goto out;
760 if (tsk->thread.pfault_wait == 1) {
761 /* Already on the list with a reference: put to sleep */
762 goto block;
763 } else if (tsk->thread.pfault_wait == -1) {
764 /* Completion interrupt was faster than the initial
765 * interrupt (pfault_wait == -1). Set pfault_wait
766 * back to zero and exit. */
767 tsk->thread.pfault_wait = 0;
768 } else {
769 /* Initial interrupt arrived before completion
770 * interrupt. Let the task sleep.
771 * An extra task reference is needed since a different
772 * cpu may set the task state to TASK_RUNNING again
773 * before the scheduler is reached. */
774 get_task_struct(tsk);
775 tsk->thread.pfault_wait = 1;
776 list_add(&tsk->thread.list, &pfault_list);
777 block:
778 /* Since this must be a userspace fault, there
779 * is no kernel task state to trample. Rely on the
780 * return to userspace schedule() to block. */
781 __set_current_state(TASK_UNINTERRUPTIBLE);
782 set_tsk_need_resched(tsk);
783 set_preempt_need_resched();
784 }
785 }
786 out:
787 spin_unlock(&pfault_lock);
788 put_task_struct(tsk);
789 }
790
791 static int pfault_cpu_dead(unsigned int cpu)
792 {
793 struct thread_struct *thread, *next;
794 struct task_struct *tsk;
795
796 spin_lock_irq(&pfault_lock);
797 list_for_each_entry_safe(thread, next, &pfault_list, list) {
798 thread->pfault_wait = 0;
799 list_del(&thread->list);
800 tsk = container_of(thread, struct task_struct, thread);
801 wake_up_process(tsk);
802 put_task_struct(tsk);
803 }
804 spin_unlock_irq(&pfault_lock);
805 return 0;
806 }
807
808 static int __init pfault_irq_init(void)
809 {
810 int rc;
811
812 rc = register_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
813 if (rc)
814 goto out_extint;
815 rc = pfault_init() == 0 ? 0 : -EOPNOTSUPP;
816 if (rc)
817 goto out_pfault;
818 irq_subclass_register(IRQ_SUBCLASS_SERVICE_SIGNAL);
819 cpuhp_setup_state_nocalls(CPUHP_S390_PFAULT_DEAD, "s390/pfault:dead",
820 NULL, pfault_cpu_dead);
821 return 0;
822
823 out_pfault:
824 unregister_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
825 out_extint:
826 pfault_disable = 1;
827 return rc;
828 }
829 early_initcall(pfault_irq_init);
830
831 #endif /* CONFIG_PFAULT */