]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/s390/mm/fault.c
Merge tag 'mvebu-fixes-4.7-2' of git://git.infradead.org/linux-mvebu into fixes
[mirror_ubuntu-artful-kernel.git] / arch / s390 / mm / fault.c
1 /*
2 * S390 version
3 * Copyright IBM Corp. 1999
4 * Author(s): Hartmut Penner (hp@de.ibm.com)
5 * Ulrich Weigand (uweigand@de.ibm.com)
6 *
7 * Derived from "arch/i386/mm/fault.c"
8 * Copyright (C) 1995 Linus Torvalds
9 */
10
11 #include <linux/kernel_stat.h>
12 #include <linux/perf_event.h>
13 #include <linux/signal.h>
14 #include <linux/sched.h>
15 #include <linux/kernel.h>
16 #include <linux/errno.h>
17 #include <linux/string.h>
18 #include <linux/types.h>
19 #include <linux/ptrace.h>
20 #include <linux/mman.h>
21 #include <linux/mm.h>
22 #include <linux/compat.h>
23 #include <linux/smp.h>
24 #include <linux/kdebug.h>
25 #include <linux/init.h>
26 #include <linux/console.h>
27 #include <linux/module.h>
28 #include <linux/hardirq.h>
29 #include <linux/kprobes.h>
30 #include <linux/uaccess.h>
31 #include <linux/hugetlb.h>
32 #include <asm/asm-offsets.h>
33 #include <asm/diag.h>
34 #include <asm/pgtable.h>
35 #include <asm/gmap.h>
36 #include <asm/irq.h>
37 #include <asm/mmu_context.h>
38 #include <asm/facility.h>
39 #include "../kernel/entry.h"
40
41 #define __FAIL_ADDR_MASK -4096L
42 #define __SUBCODE_MASK 0x0600
43 #define __PF_RES_FIELD 0x8000000000000000ULL
44
45 #define VM_FAULT_BADCONTEXT 0x010000
46 #define VM_FAULT_BADMAP 0x020000
47 #define VM_FAULT_BADACCESS 0x040000
48 #define VM_FAULT_SIGNAL 0x080000
49 #define VM_FAULT_PFAULT 0x100000
50
51 static unsigned long store_indication __read_mostly;
52
53 static int __init fault_init(void)
54 {
55 if (test_facility(75))
56 store_indication = 0xc00;
57 return 0;
58 }
59 early_initcall(fault_init);
60
61 static inline int notify_page_fault(struct pt_regs *regs)
62 {
63 int ret = 0;
64
65 /* kprobe_running() needs smp_processor_id() */
66 if (kprobes_built_in() && !user_mode(regs)) {
67 preempt_disable();
68 if (kprobe_running() && kprobe_fault_handler(regs, 14))
69 ret = 1;
70 preempt_enable();
71 }
72 return ret;
73 }
74
75
76 /*
77 * Unlock any spinlocks which will prevent us from getting the
78 * message out.
79 */
80 void bust_spinlocks(int yes)
81 {
82 if (yes) {
83 oops_in_progress = 1;
84 } else {
85 int loglevel_save = console_loglevel;
86 console_unblank();
87 oops_in_progress = 0;
88 /*
89 * OK, the message is on the console. Now we call printk()
90 * without oops_in_progress set so that printk will give klogd
91 * a poke. Hold onto your hats...
92 */
93 console_loglevel = 15;
94 printk(" ");
95 console_loglevel = loglevel_save;
96 }
97 }
98
99 /*
100 * Returns the address space associated with the fault.
101 * Returns 0 for kernel space and 1 for user space.
102 */
103 static inline int user_space_fault(struct pt_regs *regs)
104 {
105 unsigned long trans_exc_code;
106
107 /*
108 * The lowest two bits of the translation exception
109 * identification indicate which paging table was used.
110 */
111 trans_exc_code = regs->int_parm_long & 3;
112 if (trans_exc_code == 3) /* home space -> kernel */
113 return 0;
114 if (user_mode(regs))
115 return 1;
116 if (trans_exc_code == 2) /* secondary space -> set_fs */
117 return current->thread.mm_segment.ar4;
118 if (current->flags & PF_VCPU)
119 return 1;
120 return 0;
121 }
122
123 static int bad_address(void *p)
124 {
125 unsigned long dummy;
126
127 return probe_kernel_address((unsigned long *)p, dummy);
128 }
129
130 static void dump_pagetable(unsigned long asce, unsigned long address)
131 {
132 unsigned long *table = __va(asce & PAGE_MASK);
133
134 pr_alert("AS:%016lx ", asce);
135 switch (asce & _ASCE_TYPE_MASK) {
136 case _ASCE_TYPE_REGION1:
137 table = table + ((address >> 53) & 0x7ff);
138 if (bad_address(table))
139 goto bad;
140 pr_cont("R1:%016lx ", *table);
141 if (*table & _REGION_ENTRY_INVALID)
142 goto out;
143 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
144 /* fallthrough */
145 case _ASCE_TYPE_REGION2:
146 table = table + ((address >> 42) & 0x7ff);
147 if (bad_address(table))
148 goto bad;
149 pr_cont("R2:%016lx ", *table);
150 if (*table & _REGION_ENTRY_INVALID)
151 goto out;
152 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
153 /* fallthrough */
154 case _ASCE_TYPE_REGION3:
155 table = table + ((address >> 31) & 0x7ff);
156 if (bad_address(table))
157 goto bad;
158 pr_cont("R3:%016lx ", *table);
159 if (*table & (_REGION_ENTRY_INVALID | _REGION3_ENTRY_LARGE))
160 goto out;
161 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
162 /* fallthrough */
163 case _ASCE_TYPE_SEGMENT:
164 table = table + ((address >> 20) & 0x7ff);
165 if (bad_address(table))
166 goto bad;
167 pr_cont("S:%016lx ", *table);
168 if (*table & (_SEGMENT_ENTRY_INVALID | _SEGMENT_ENTRY_LARGE))
169 goto out;
170 table = (unsigned long *)(*table & _SEGMENT_ENTRY_ORIGIN);
171 }
172 table = table + ((address >> 12) & 0xff);
173 if (bad_address(table))
174 goto bad;
175 pr_cont("P:%016lx ", *table);
176 out:
177 pr_cont("\n");
178 return;
179 bad:
180 pr_cont("BAD\n");
181 }
182
183 static void dump_fault_info(struct pt_regs *regs)
184 {
185 unsigned long asce;
186
187 pr_alert("Failing address: %016lx TEID: %016lx\n",
188 regs->int_parm_long & __FAIL_ADDR_MASK, regs->int_parm_long);
189 pr_alert("Fault in ");
190 switch (regs->int_parm_long & 3) {
191 case 3:
192 pr_cont("home space ");
193 break;
194 case 2:
195 pr_cont("secondary space ");
196 break;
197 case 1:
198 pr_cont("access register ");
199 break;
200 case 0:
201 pr_cont("primary space ");
202 break;
203 }
204 pr_cont("mode while using ");
205 if (!user_space_fault(regs)) {
206 asce = S390_lowcore.kernel_asce;
207 pr_cont("kernel ");
208 }
209 #ifdef CONFIG_PGSTE
210 else if ((current->flags & PF_VCPU) && S390_lowcore.gmap) {
211 struct gmap *gmap = (struct gmap *)S390_lowcore.gmap;
212 asce = gmap->asce;
213 pr_cont("gmap ");
214 }
215 #endif
216 else {
217 asce = S390_lowcore.user_asce;
218 pr_cont("user ");
219 }
220 pr_cont("ASCE.\n");
221 dump_pagetable(asce, regs->int_parm_long & __FAIL_ADDR_MASK);
222 }
223
224 int show_unhandled_signals = 1;
225
226 void report_user_fault(struct pt_regs *regs, long signr, int is_mm_fault)
227 {
228 if ((task_pid_nr(current) > 1) && !show_unhandled_signals)
229 return;
230 if (!unhandled_signal(current, signr))
231 return;
232 if (!printk_ratelimit())
233 return;
234 printk(KERN_ALERT "User process fault: interruption code %04x ilc:%d ",
235 regs->int_code & 0xffff, regs->int_code >> 17);
236 print_vma_addr(KERN_CONT "in ", regs->psw.addr);
237 printk(KERN_CONT "\n");
238 if (is_mm_fault)
239 dump_fault_info(regs);
240 show_regs(regs);
241 }
242
243 /*
244 * Send SIGSEGV to task. This is an external routine
245 * to keep the stack usage of do_page_fault small.
246 */
247 static noinline void do_sigsegv(struct pt_regs *regs, int si_code)
248 {
249 struct siginfo si;
250
251 report_user_fault(regs, SIGSEGV, 1);
252 si.si_signo = SIGSEGV;
253 si.si_errno = 0;
254 si.si_code = si_code;
255 si.si_addr = (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK);
256 force_sig_info(SIGSEGV, &si, current);
257 }
258
259 static noinline void do_no_context(struct pt_regs *regs)
260 {
261 const struct exception_table_entry *fixup;
262
263 /* Are we prepared to handle this kernel fault? */
264 fixup = search_exception_tables(regs->psw.addr);
265 if (fixup) {
266 regs->psw.addr = extable_fixup(fixup);
267 return;
268 }
269
270 /*
271 * Oops. The kernel tried to access some bad page. We'll have to
272 * terminate things with extreme prejudice.
273 */
274 if (!user_space_fault(regs))
275 printk(KERN_ALERT "Unable to handle kernel pointer dereference"
276 " in virtual kernel address space\n");
277 else
278 printk(KERN_ALERT "Unable to handle kernel paging request"
279 " in virtual user address space\n");
280 dump_fault_info(regs);
281 die(regs, "Oops");
282 do_exit(SIGKILL);
283 }
284
285 static noinline void do_low_address(struct pt_regs *regs)
286 {
287 /* Low-address protection hit in kernel mode means
288 NULL pointer write access in kernel mode. */
289 if (regs->psw.mask & PSW_MASK_PSTATE) {
290 /* Low-address protection hit in user mode 'cannot happen'. */
291 die (regs, "Low-address protection");
292 do_exit(SIGKILL);
293 }
294
295 do_no_context(regs);
296 }
297
298 static noinline void do_sigbus(struct pt_regs *regs)
299 {
300 struct task_struct *tsk = current;
301 struct siginfo si;
302
303 /*
304 * Send a sigbus, regardless of whether we were in kernel
305 * or user mode.
306 */
307 si.si_signo = SIGBUS;
308 si.si_errno = 0;
309 si.si_code = BUS_ADRERR;
310 si.si_addr = (void __user *)(regs->int_parm_long & __FAIL_ADDR_MASK);
311 force_sig_info(SIGBUS, &si, tsk);
312 }
313
314 static noinline void do_fault_error(struct pt_regs *regs, int fault)
315 {
316 int si_code;
317
318 switch (fault) {
319 case VM_FAULT_BADACCESS:
320 case VM_FAULT_BADMAP:
321 /* Bad memory access. Check if it is kernel or user space. */
322 if (user_mode(regs)) {
323 /* User mode accesses just cause a SIGSEGV */
324 si_code = (fault == VM_FAULT_BADMAP) ?
325 SEGV_MAPERR : SEGV_ACCERR;
326 do_sigsegv(regs, si_code);
327 return;
328 }
329 case VM_FAULT_BADCONTEXT:
330 case VM_FAULT_PFAULT:
331 do_no_context(regs);
332 break;
333 case VM_FAULT_SIGNAL:
334 if (!user_mode(regs))
335 do_no_context(regs);
336 break;
337 default: /* fault & VM_FAULT_ERROR */
338 if (fault & VM_FAULT_OOM) {
339 if (!user_mode(regs))
340 do_no_context(regs);
341 else
342 pagefault_out_of_memory();
343 } else if (fault & VM_FAULT_SIGSEGV) {
344 /* Kernel mode? Handle exceptions or die */
345 if (!user_mode(regs))
346 do_no_context(regs);
347 else
348 do_sigsegv(regs, SEGV_MAPERR);
349 } else if (fault & VM_FAULT_SIGBUS) {
350 /* Kernel mode? Handle exceptions or die */
351 if (!user_mode(regs))
352 do_no_context(regs);
353 else
354 do_sigbus(regs);
355 } else
356 BUG();
357 break;
358 }
359 }
360
361 /*
362 * This routine handles page faults. It determines the address,
363 * and the problem, and then passes it off to one of the appropriate
364 * routines.
365 *
366 * interruption code (int_code):
367 * 04 Protection -> Write-Protection (suprression)
368 * 10 Segment translation -> Not present (nullification)
369 * 11 Page translation -> Not present (nullification)
370 * 3b Region third trans. -> Not present (nullification)
371 */
372 static inline int do_exception(struct pt_regs *regs, int access)
373 {
374 #ifdef CONFIG_PGSTE
375 struct gmap *gmap;
376 #endif
377 struct task_struct *tsk;
378 struct mm_struct *mm;
379 struct vm_area_struct *vma;
380 unsigned long trans_exc_code;
381 unsigned long address;
382 unsigned int flags;
383 int fault;
384
385 tsk = current;
386 /*
387 * The instruction that caused the program check has
388 * been nullified. Don't signal single step via SIGTRAP.
389 */
390 clear_pt_regs_flag(regs, PIF_PER_TRAP);
391
392 if (notify_page_fault(regs))
393 return 0;
394
395 mm = tsk->mm;
396 trans_exc_code = regs->int_parm_long;
397
398 /*
399 * Verify that the fault happened in user space, that
400 * we are not in an interrupt and that there is a
401 * user context.
402 */
403 fault = VM_FAULT_BADCONTEXT;
404 if (unlikely(!user_space_fault(regs) || faulthandler_disabled() || !mm))
405 goto out;
406
407 address = trans_exc_code & __FAIL_ADDR_MASK;
408 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
409 flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
410 if (user_mode(regs))
411 flags |= FAULT_FLAG_USER;
412 if (access == VM_WRITE || (trans_exc_code & store_indication) == 0x400)
413 flags |= FAULT_FLAG_WRITE;
414 down_read(&mm->mmap_sem);
415
416 #ifdef CONFIG_PGSTE
417 gmap = (current->flags & PF_VCPU) ?
418 (struct gmap *) S390_lowcore.gmap : NULL;
419 if (gmap) {
420 current->thread.gmap_addr = address;
421 address = __gmap_translate(gmap, address);
422 if (address == -EFAULT) {
423 fault = VM_FAULT_BADMAP;
424 goto out_up;
425 }
426 if (gmap->pfault_enabled)
427 flags |= FAULT_FLAG_RETRY_NOWAIT;
428 }
429 #endif
430
431 retry:
432 fault = VM_FAULT_BADMAP;
433 vma = find_vma(mm, address);
434 if (!vma)
435 goto out_up;
436
437 if (unlikely(vma->vm_start > address)) {
438 if (!(vma->vm_flags & VM_GROWSDOWN))
439 goto out_up;
440 if (expand_stack(vma, address))
441 goto out_up;
442 }
443
444 /*
445 * Ok, we have a good vm_area for this memory access, so
446 * we can handle it..
447 */
448 fault = VM_FAULT_BADACCESS;
449 if (unlikely(!(vma->vm_flags & access)))
450 goto out_up;
451
452 if (is_vm_hugetlb_page(vma))
453 address &= HPAGE_MASK;
454 /*
455 * If for any reason at all we couldn't handle the fault,
456 * make sure we exit gracefully rather than endlessly redo
457 * the fault.
458 */
459 fault = handle_mm_fault(mm, vma, address, flags);
460 /* No reason to continue if interrupted by SIGKILL. */
461 if ((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)) {
462 fault = VM_FAULT_SIGNAL;
463 goto out;
464 }
465 if (unlikely(fault & VM_FAULT_ERROR))
466 goto out_up;
467
468 /*
469 * Major/minor page fault accounting is only done on the
470 * initial attempt. If we go through a retry, it is extremely
471 * likely that the page will be found in page cache at that point.
472 */
473 if (flags & FAULT_FLAG_ALLOW_RETRY) {
474 if (fault & VM_FAULT_MAJOR) {
475 tsk->maj_flt++;
476 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
477 regs, address);
478 } else {
479 tsk->min_flt++;
480 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
481 regs, address);
482 }
483 if (fault & VM_FAULT_RETRY) {
484 #ifdef CONFIG_PGSTE
485 if (gmap && (flags & FAULT_FLAG_RETRY_NOWAIT)) {
486 /* FAULT_FLAG_RETRY_NOWAIT has been set,
487 * mmap_sem has not been released */
488 current->thread.gmap_pfault = 1;
489 fault = VM_FAULT_PFAULT;
490 goto out_up;
491 }
492 #endif
493 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
494 * of starvation. */
495 flags &= ~(FAULT_FLAG_ALLOW_RETRY |
496 FAULT_FLAG_RETRY_NOWAIT);
497 flags |= FAULT_FLAG_TRIED;
498 down_read(&mm->mmap_sem);
499 goto retry;
500 }
501 }
502 #ifdef CONFIG_PGSTE
503 if (gmap) {
504 address = __gmap_link(gmap, current->thread.gmap_addr,
505 address);
506 if (address == -EFAULT) {
507 fault = VM_FAULT_BADMAP;
508 goto out_up;
509 }
510 if (address == -ENOMEM) {
511 fault = VM_FAULT_OOM;
512 goto out_up;
513 }
514 }
515 #endif
516 fault = 0;
517 out_up:
518 up_read(&mm->mmap_sem);
519 out:
520 return fault;
521 }
522
523 void do_protection_exception(struct pt_regs *regs)
524 {
525 unsigned long trans_exc_code;
526 int fault;
527
528 trans_exc_code = regs->int_parm_long;
529 /*
530 * Protection exceptions are suppressing, decrement psw address.
531 * The exception to this rule are aborted transactions, for these
532 * the PSW already points to the correct location.
533 */
534 if (!(regs->int_code & 0x200))
535 regs->psw.addr = __rewind_psw(regs->psw, regs->int_code >> 16);
536 /*
537 * Check for low-address protection. This needs to be treated
538 * as a special case because the translation exception code
539 * field is not guaranteed to contain valid data in this case.
540 */
541 if (unlikely(!(trans_exc_code & 4))) {
542 do_low_address(regs);
543 return;
544 }
545 fault = do_exception(regs, VM_WRITE);
546 if (unlikely(fault))
547 do_fault_error(regs, fault);
548 }
549 NOKPROBE_SYMBOL(do_protection_exception);
550
551 void do_dat_exception(struct pt_regs *regs)
552 {
553 int access, fault;
554
555 access = VM_READ | VM_EXEC | VM_WRITE;
556 fault = do_exception(regs, access);
557 if (unlikely(fault))
558 do_fault_error(regs, fault);
559 }
560 NOKPROBE_SYMBOL(do_dat_exception);
561
562 #ifdef CONFIG_PFAULT
563 /*
564 * 'pfault' pseudo page faults routines.
565 */
566 static int pfault_disable;
567
568 static int __init nopfault(char *str)
569 {
570 pfault_disable = 1;
571 return 1;
572 }
573
574 __setup("nopfault", nopfault);
575
576 struct pfault_refbk {
577 u16 refdiagc;
578 u16 reffcode;
579 u16 refdwlen;
580 u16 refversn;
581 u64 refgaddr;
582 u64 refselmk;
583 u64 refcmpmk;
584 u64 reserved;
585 } __attribute__ ((packed, aligned(8)));
586
587 int pfault_init(void)
588 {
589 struct pfault_refbk refbk = {
590 .refdiagc = 0x258,
591 .reffcode = 0,
592 .refdwlen = 5,
593 .refversn = 2,
594 .refgaddr = __LC_LPP,
595 .refselmk = 1ULL << 48,
596 .refcmpmk = 1ULL << 48,
597 .reserved = __PF_RES_FIELD };
598 int rc;
599
600 if (pfault_disable)
601 return -1;
602 diag_stat_inc(DIAG_STAT_X258);
603 asm volatile(
604 " diag %1,%0,0x258\n"
605 "0: j 2f\n"
606 "1: la %0,8\n"
607 "2:\n"
608 EX_TABLE(0b,1b)
609 : "=d" (rc) : "a" (&refbk), "m" (refbk) : "cc");
610 return rc;
611 }
612
613 void pfault_fini(void)
614 {
615 struct pfault_refbk refbk = {
616 .refdiagc = 0x258,
617 .reffcode = 1,
618 .refdwlen = 5,
619 .refversn = 2,
620 };
621
622 if (pfault_disable)
623 return;
624 diag_stat_inc(DIAG_STAT_X258);
625 asm volatile(
626 " diag %0,0,0x258\n"
627 "0:\n"
628 EX_TABLE(0b,0b)
629 : : "a" (&refbk), "m" (refbk) : "cc");
630 }
631
632 static DEFINE_SPINLOCK(pfault_lock);
633 static LIST_HEAD(pfault_list);
634
635 #define PF_COMPLETE 0x0080
636
637 /*
638 * The mechanism of our pfault code: if Linux is running as guest, runs a user
639 * space process and the user space process accesses a page that the host has
640 * paged out we get a pfault interrupt.
641 *
642 * This allows us, within the guest, to schedule a different process. Without
643 * this mechanism the host would have to suspend the whole virtual cpu until
644 * the page has been paged in.
645 *
646 * So when we get such an interrupt then we set the state of the current task
647 * to uninterruptible and also set the need_resched flag. Both happens within
648 * interrupt context(!). If we later on want to return to user space we
649 * recognize the need_resched flag and then call schedule(). It's not very
650 * obvious how this works...
651 *
652 * Of course we have a lot of additional fun with the completion interrupt (->
653 * host signals that a page of a process has been paged in and the process can
654 * continue to run). This interrupt can arrive on any cpu and, since we have
655 * virtual cpus, actually appear before the interrupt that signals that a page
656 * is missing.
657 */
658 static void pfault_interrupt(struct ext_code ext_code,
659 unsigned int param32, unsigned long param64)
660 {
661 struct task_struct *tsk;
662 __u16 subcode;
663 pid_t pid;
664
665 /*
666 * Get the external interruption subcode & pfault initial/completion
667 * signal bit. VM stores this in the 'cpu address' field associated
668 * with the external interrupt.
669 */
670 subcode = ext_code.subcode;
671 if ((subcode & 0xff00) != __SUBCODE_MASK)
672 return;
673 inc_irq_stat(IRQEXT_PFL);
674 /* Get the token (= pid of the affected task). */
675 pid = param64 & LPP_PFAULT_PID_MASK;
676 rcu_read_lock();
677 tsk = find_task_by_pid_ns(pid, &init_pid_ns);
678 if (tsk)
679 get_task_struct(tsk);
680 rcu_read_unlock();
681 if (!tsk)
682 return;
683 spin_lock(&pfault_lock);
684 if (subcode & PF_COMPLETE) {
685 /* signal bit is set -> a page has been swapped in by VM */
686 if (tsk->thread.pfault_wait == 1) {
687 /* Initial interrupt was faster than the completion
688 * interrupt. pfault_wait is valid. Set pfault_wait
689 * back to zero and wake up the process. This can
690 * safely be done because the task is still sleeping
691 * and can't produce new pfaults. */
692 tsk->thread.pfault_wait = 0;
693 list_del(&tsk->thread.list);
694 wake_up_process(tsk);
695 put_task_struct(tsk);
696 } else {
697 /* Completion interrupt was faster than initial
698 * interrupt. Set pfault_wait to -1 so the initial
699 * interrupt doesn't put the task to sleep.
700 * If the task is not running, ignore the completion
701 * interrupt since it must be a leftover of a PFAULT
702 * CANCEL operation which didn't remove all pending
703 * completion interrupts. */
704 if (tsk->state == TASK_RUNNING)
705 tsk->thread.pfault_wait = -1;
706 }
707 } else {
708 /* signal bit not set -> a real page is missing. */
709 if (WARN_ON_ONCE(tsk != current))
710 goto out;
711 if (tsk->thread.pfault_wait == 1) {
712 /* Already on the list with a reference: put to sleep */
713 goto block;
714 } else if (tsk->thread.pfault_wait == -1) {
715 /* Completion interrupt was faster than the initial
716 * interrupt (pfault_wait == -1). Set pfault_wait
717 * back to zero and exit. */
718 tsk->thread.pfault_wait = 0;
719 } else {
720 /* Initial interrupt arrived before completion
721 * interrupt. Let the task sleep.
722 * An extra task reference is needed since a different
723 * cpu may set the task state to TASK_RUNNING again
724 * before the scheduler is reached. */
725 get_task_struct(tsk);
726 tsk->thread.pfault_wait = 1;
727 list_add(&tsk->thread.list, &pfault_list);
728 block:
729 /* Since this must be a userspace fault, there
730 * is no kernel task state to trample. Rely on the
731 * return to userspace schedule() to block. */
732 __set_current_state(TASK_UNINTERRUPTIBLE);
733 set_tsk_need_resched(tsk);
734 }
735 }
736 out:
737 spin_unlock(&pfault_lock);
738 put_task_struct(tsk);
739 }
740
741 static int pfault_cpu_notify(struct notifier_block *self, unsigned long action,
742 void *hcpu)
743 {
744 struct thread_struct *thread, *next;
745 struct task_struct *tsk;
746
747 switch (action & ~CPU_TASKS_FROZEN) {
748 case CPU_DEAD:
749 spin_lock_irq(&pfault_lock);
750 list_for_each_entry_safe(thread, next, &pfault_list, list) {
751 thread->pfault_wait = 0;
752 list_del(&thread->list);
753 tsk = container_of(thread, struct task_struct, thread);
754 wake_up_process(tsk);
755 put_task_struct(tsk);
756 }
757 spin_unlock_irq(&pfault_lock);
758 break;
759 default:
760 break;
761 }
762 return NOTIFY_OK;
763 }
764
765 static int __init pfault_irq_init(void)
766 {
767 int rc;
768
769 rc = register_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
770 if (rc)
771 goto out_extint;
772 rc = pfault_init() == 0 ? 0 : -EOPNOTSUPP;
773 if (rc)
774 goto out_pfault;
775 irq_subclass_register(IRQ_SUBCLASS_SERVICE_SIGNAL);
776 hotcpu_notifier(pfault_cpu_notify, 0);
777 return 0;
778
779 out_pfault:
780 unregister_external_irq(EXT_IRQ_CP_SERVICE, pfault_interrupt);
781 out_extint:
782 pfault_disable = 1;
783 return rc;
784 }
785 early_initcall(pfault_irq_init);
786
787 #endif /* CONFIG_PFAULT */