]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/s390/mm/pgalloc.c
mmap locking API: convert mmap_sem comments
[mirror_ubuntu-hirsute-kernel.git] / arch / s390 / mm / pgalloc.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * Page table allocation functions
4 *
5 * Copyright IBM Corp. 2016
6 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
7 */
8
9 #include <linux/sysctl.h>
10 #include <linux/slab.h>
11 #include <linux/mm.h>
12 #include <asm/mmu_context.h>
13 #include <asm/pgalloc.h>
14 #include <asm/gmap.h>
15 #include <asm/tlb.h>
16 #include <asm/tlbflush.h>
17
18 #ifdef CONFIG_PGSTE
19
20 int page_table_allocate_pgste = 0;
21 EXPORT_SYMBOL(page_table_allocate_pgste);
22
23 static struct ctl_table page_table_sysctl[] = {
24 {
25 .procname = "allocate_pgste",
26 .data = &page_table_allocate_pgste,
27 .maxlen = sizeof(int),
28 .mode = S_IRUGO | S_IWUSR,
29 .proc_handler = proc_dointvec_minmax,
30 .extra1 = SYSCTL_ZERO,
31 .extra2 = SYSCTL_ONE,
32 },
33 { }
34 };
35
36 static struct ctl_table page_table_sysctl_dir[] = {
37 {
38 .procname = "vm",
39 .maxlen = 0,
40 .mode = 0555,
41 .child = page_table_sysctl,
42 },
43 { }
44 };
45
46 static int __init page_table_register_sysctl(void)
47 {
48 return register_sysctl_table(page_table_sysctl_dir) ? 0 : -ENOMEM;
49 }
50 __initcall(page_table_register_sysctl);
51
52 #endif /* CONFIG_PGSTE */
53
54 unsigned long *crst_table_alloc(struct mm_struct *mm)
55 {
56 struct page *page = alloc_pages(GFP_KERNEL, 2);
57
58 if (!page)
59 return NULL;
60 arch_set_page_dat(page, 2);
61 return (unsigned long *) page_to_phys(page);
62 }
63
64 void crst_table_free(struct mm_struct *mm, unsigned long *table)
65 {
66 free_pages((unsigned long) table, 2);
67 }
68
69 static void __crst_table_upgrade(void *arg)
70 {
71 struct mm_struct *mm = arg;
72
73 /* we must change all active ASCEs to avoid the creation of new TLBs */
74 if (current->active_mm == mm) {
75 S390_lowcore.user_asce = mm->context.asce;
76 if (current->thread.mm_segment == USER_DS) {
77 __ctl_load(S390_lowcore.user_asce, 1, 1);
78 /* Mark user-ASCE present in CR1 */
79 clear_cpu_flag(CIF_ASCE_PRIMARY);
80 }
81 if (current->thread.mm_segment == USER_DS_SACF) {
82 __ctl_load(S390_lowcore.user_asce, 7, 7);
83 /* enable_sacf_uaccess does all or nothing */
84 WARN_ON(!test_cpu_flag(CIF_ASCE_SECONDARY));
85 }
86 }
87 __tlb_flush_local();
88 }
89
90 int crst_table_upgrade(struct mm_struct *mm, unsigned long end)
91 {
92 unsigned long *pgd = NULL, *p4d = NULL, *__pgd;
93 unsigned long asce_limit = mm->context.asce_limit;
94
95 /* upgrade should only happen from 3 to 4, 3 to 5, or 4 to 5 levels */
96 VM_BUG_ON(asce_limit < _REGION2_SIZE);
97
98 if (end <= asce_limit)
99 return 0;
100
101 if (asce_limit == _REGION2_SIZE) {
102 p4d = crst_table_alloc(mm);
103 if (unlikely(!p4d))
104 goto err_p4d;
105 crst_table_init(p4d, _REGION2_ENTRY_EMPTY);
106 }
107 if (end > _REGION1_SIZE) {
108 pgd = crst_table_alloc(mm);
109 if (unlikely(!pgd))
110 goto err_pgd;
111 crst_table_init(pgd, _REGION1_ENTRY_EMPTY);
112 }
113
114 spin_lock_bh(&mm->page_table_lock);
115
116 /*
117 * This routine gets called with mmap_lock lock held and there is
118 * no reason to optimize for the case of otherwise. However, if
119 * that would ever change, the below check will let us know.
120 */
121 VM_BUG_ON(asce_limit != mm->context.asce_limit);
122
123 if (p4d) {
124 __pgd = (unsigned long *) mm->pgd;
125 p4d_populate(mm, (p4d_t *) p4d, (pud_t *) __pgd);
126 mm->pgd = (pgd_t *) p4d;
127 mm->context.asce_limit = _REGION1_SIZE;
128 mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH |
129 _ASCE_USER_BITS | _ASCE_TYPE_REGION2;
130 mm_inc_nr_puds(mm);
131 }
132 if (pgd) {
133 __pgd = (unsigned long *) mm->pgd;
134 pgd_populate(mm, (pgd_t *) pgd, (p4d_t *) __pgd);
135 mm->pgd = (pgd_t *) pgd;
136 mm->context.asce_limit = TASK_SIZE_MAX;
137 mm->context.asce = __pa(mm->pgd) | _ASCE_TABLE_LENGTH |
138 _ASCE_USER_BITS | _ASCE_TYPE_REGION1;
139 }
140
141 spin_unlock_bh(&mm->page_table_lock);
142
143 on_each_cpu(__crst_table_upgrade, mm, 0);
144
145 return 0;
146
147 err_pgd:
148 crst_table_free(mm, p4d);
149 err_p4d:
150 return -ENOMEM;
151 }
152
153 static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits)
154 {
155 unsigned int old, new;
156
157 do {
158 old = atomic_read(v);
159 new = old ^ bits;
160 } while (atomic_cmpxchg(v, old, new) != old);
161 return new;
162 }
163
164 #ifdef CONFIG_PGSTE
165
166 struct page *page_table_alloc_pgste(struct mm_struct *mm)
167 {
168 struct page *page;
169 u64 *table;
170
171 page = alloc_page(GFP_KERNEL);
172 if (page) {
173 table = (u64 *)page_to_phys(page);
174 memset64(table, _PAGE_INVALID, PTRS_PER_PTE);
175 memset64(table + PTRS_PER_PTE, 0, PTRS_PER_PTE);
176 }
177 return page;
178 }
179
180 void page_table_free_pgste(struct page *page)
181 {
182 __free_page(page);
183 }
184
185 #endif /* CONFIG_PGSTE */
186
187 /*
188 * page table entry allocation/free routines.
189 */
190 unsigned long *page_table_alloc(struct mm_struct *mm)
191 {
192 unsigned long *table;
193 struct page *page;
194 unsigned int mask, bit;
195
196 /* Try to get a fragment of a 4K page as a 2K page table */
197 if (!mm_alloc_pgste(mm)) {
198 table = NULL;
199 spin_lock_bh(&mm->context.lock);
200 if (!list_empty(&mm->context.pgtable_list)) {
201 page = list_first_entry(&mm->context.pgtable_list,
202 struct page, lru);
203 mask = atomic_read(&page->_refcount) >> 24;
204 mask = (mask | (mask >> 4)) & 3;
205 if (mask != 3) {
206 table = (unsigned long *) page_to_phys(page);
207 bit = mask & 1; /* =1 -> second 2K */
208 if (bit)
209 table += PTRS_PER_PTE;
210 atomic_xor_bits(&page->_refcount,
211 1U << (bit + 24));
212 list_del(&page->lru);
213 }
214 }
215 spin_unlock_bh(&mm->context.lock);
216 if (table)
217 return table;
218 }
219 /* Allocate a fresh page */
220 page = alloc_page(GFP_KERNEL);
221 if (!page)
222 return NULL;
223 if (!pgtable_pte_page_ctor(page)) {
224 __free_page(page);
225 return NULL;
226 }
227 arch_set_page_dat(page, 0);
228 /* Initialize page table */
229 table = (unsigned long *) page_to_phys(page);
230 if (mm_alloc_pgste(mm)) {
231 /* Return 4K page table with PGSTEs */
232 atomic_xor_bits(&page->_refcount, 3 << 24);
233 memset64((u64 *)table, _PAGE_INVALID, PTRS_PER_PTE);
234 memset64((u64 *)table + PTRS_PER_PTE, 0, PTRS_PER_PTE);
235 } else {
236 /* Return the first 2K fragment of the page */
237 atomic_xor_bits(&page->_refcount, 1 << 24);
238 memset64((u64 *)table, _PAGE_INVALID, 2 * PTRS_PER_PTE);
239 spin_lock_bh(&mm->context.lock);
240 list_add(&page->lru, &mm->context.pgtable_list);
241 spin_unlock_bh(&mm->context.lock);
242 }
243 return table;
244 }
245
246 void page_table_free(struct mm_struct *mm, unsigned long *table)
247 {
248 struct page *page;
249 unsigned int bit, mask;
250
251 page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
252 if (!mm_alloc_pgste(mm)) {
253 /* Free 2K page table fragment of a 4K page */
254 bit = (__pa(table) & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t));
255 spin_lock_bh(&mm->context.lock);
256 mask = atomic_xor_bits(&page->_refcount, 1U << (bit + 24));
257 mask >>= 24;
258 if (mask & 3)
259 list_add(&page->lru, &mm->context.pgtable_list);
260 else
261 list_del(&page->lru);
262 spin_unlock_bh(&mm->context.lock);
263 if (mask != 0)
264 return;
265 } else {
266 atomic_xor_bits(&page->_refcount, 3U << 24);
267 }
268
269 pgtable_pte_page_dtor(page);
270 __free_page(page);
271 }
272
273 void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table,
274 unsigned long vmaddr)
275 {
276 struct mm_struct *mm;
277 struct page *page;
278 unsigned int bit, mask;
279
280 mm = tlb->mm;
281 page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
282 if (mm_alloc_pgste(mm)) {
283 gmap_unlink(mm, table, vmaddr);
284 table = (unsigned long *) (__pa(table) | 3);
285 tlb_remove_table(tlb, table);
286 return;
287 }
288 bit = (__pa(table) & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t));
289 spin_lock_bh(&mm->context.lock);
290 mask = atomic_xor_bits(&page->_refcount, 0x11U << (bit + 24));
291 mask >>= 24;
292 if (mask & 3)
293 list_add_tail(&page->lru, &mm->context.pgtable_list);
294 else
295 list_del(&page->lru);
296 spin_unlock_bh(&mm->context.lock);
297 table = (unsigned long *) (__pa(table) | (1U << bit));
298 tlb_remove_table(tlb, table);
299 }
300
301 void __tlb_remove_table(void *_table)
302 {
303 unsigned int mask = (unsigned long) _table & 3;
304 void *table = (void *)((unsigned long) _table ^ mask);
305 struct page *page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
306
307 switch (mask) {
308 case 0: /* pmd, pud, or p4d */
309 free_pages((unsigned long) table, 2);
310 break;
311 case 1: /* lower 2K of a 4K page table */
312 case 2: /* higher 2K of a 4K page table */
313 mask = atomic_xor_bits(&page->_refcount, mask << (4 + 24));
314 mask >>= 24;
315 if (mask != 0)
316 break;
317 fallthrough;
318 case 3: /* 4K page table with pgstes */
319 if (mask & 3)
320 atomic_xor_bits(&page->_refcount, 3 << 24);
321 pgtable_pte_page_dtor(page);
322 __free_page(page);
323 break;
324 }
325 }
326
327 /*
328 * Base infrastructure required to generate basic asces, region, segment,
329 * and page tables that do not make use of enhanced features like EDAT1.
330 */
331
332 static struct kmem_cache *base_pgt_cache;
333
334 static unsigned long base_pgt_alloc(void)
335 {
336 u64 *table;
337
338 table = kmem_cache_alloc(base_pgt_cache, GFP_KERNEL);
339 if (table)
340 memset64(table, _PAGE_INVALID, PTRS_PER_PTE);
341 return (unsigned long) table;
342 }
343
344 static void base_pgt_free(unsigned long table)
345 {
346 kmem_cache_free(base_pgt_cache, (void *) table);
347 }
348
349 static unsigned long base_crst_alloc(unsigned long val)
350 {
351 unsigned long table;
352
353 table = __get_free_pages(GFP_KERNEL, CRST_ALLOC_ORDER);
354 if (table)
355 crst_table_init((unsigned long *)table, val);
356 return table;
357 }
358
359 static void base_crst_free(unsigned long table)
360 {
361 free_pages(table, CRST_ALLOC_ORDER);
362 }
363
364 #define BASE_ADDR_END_FUNC(NAME, SIZE) \
365 static inline unsigned long base_##NAME##_addr_end(unsigned long addr, \
366 unsigned long end) \
367 { \
368 unsigned long next = (addr + (SIZE)) & ~((SIZE) - 1); \
369 \
370 return (next - 1) < (end - 1) ? next : end; \
371 }
372
373 BASE_ADDR_END_FUNC(page, _PAGE_SIZE)
374 BASE_ADDR_END_FUNC(segment, _SEGMENT_SIZE)
375 BASE_ADDR_END_FUNC(region3, _REGION3_SIZE)
376 BASE_ADDR_END_FUNC(region2, _REGION2_SIZE)
377 BASE_ADDR_END_FUNC(region1, _REGION1_SIZE)
378
379 static inline unsigned long base_lra(unsigned long address)
380 {
381 unsigned long real;
382
383 asm volatile(
384 " lra %0,0(%1)\n"
385 : "=d" (real) : "a" (address) : "cc");
386 return real;
387 }
388
389 static int base_page_walk(unsigned long origin, unsigned long addr,
390 unsigned long end, int alloc)
391 {
392 unsigned long *pte, next;
393
394 if (!alloc)
395 return 0;
396 pte = (unsigned long *) origin;
397 pte += (addr & _PAGE_INDEX) >> _PAGE_SHIFT;
398 do {
399 next = base_page_addr_end(addr, end);
400 *pte = base_lra(addr);
401 } while (pte++, addr = next, addr < end);
402 return 0;
403 }
404
405 static int base_segment_walk(unsigned long origin, unsigned long addr,
406 unsigned long end, int alloc)
407 {
408 unsigned long *ste, next, table;
409 int rc;
410
411 ste = (unsigned long *) origin;
412 ste += (addr & _SEGMENT_INDEX) >> _SEGMENT_SHIFT;
413 do {
414 next = base_segment_addr_end(addr, end);
415 if (*ste & _SEGMENT_ENTRY_INVALID) {
416 if (!alloc)
417 continue;
418 table = base_pgt_alloc();
419 if (!table)
420 return -ENOMEM;
421 *ste = table | _SEGMENT_ENTRY;
422 }
423 table = *ste & _SEGMENT_ENTRY_ORIGIN;
424 rc = base_page_walk(table, addr, next, alloc);
425 if (rc)
426 return rc;
427 if (!alloc)
428 base_pgt_free(table);
429 cond_resched();
430 } while (ste++, addr = next, addr < end);
431 return 0;
432 }
433
434 static int base_region3_walk(unsigned long origin, unsigned long addr,
435 unsigned long end, int alloc)
436 {
437 unsigned long *rtte, next, table;
438 int rc;
439
440 rtte = (unsigned long *) origin;
441 rtte += (addr & _REGION3_INDEX) >> _REGION3_SHIFT;
442 do {
443 next = base_region3_addr_end(addr, end);
444 if (*rtte & _REGION_ENTRY_INVALID) {
445 if (!alloc)
446 continue;
447 table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY);
448 if (!table)
449 return -ENOMEM;
450 *rtte = table | _REGION3_ENTRY;
451 }
452 table = *rtte & _REGION_ENTRY_ORIGIN;
453 rc = base_segment_walk(table, addr, next, alloc);
454 if (rc)
455 return rc;
456 if (!alloc)
457 base_crst_free(table);
458 } while (rtte++, addr = next, addr < end);
459 return 0;
460 }
461
462 static int base_region2_walk(unsigned long origin, unsigned long addr,
463 unsigned long end, int alloc)
464 {
465 unsigned long *rste, next, table;
466 int rc;
467
468 rste = (unsigned long *) origin;
469 rste += (addr & _REGION2_INDEX) >> _REGION2_SHIFT;
470 do {
471 next = base_region2_addr_end(addr, end);
472 if (*rste & _REGION_ENTRY_INVALID) {
473 if (!alloc)
474 continue;
475 table = base_crst_alloc(_REGION3_ENTRY_EMPTY);
476 if (!table)
477 return -ENOMEM;
478 *rste = table | _REGION2_ENTRY;
479 }
480 table = *rste & _REGION_ENTRY_ORIGIN;
481 rc = base_region3_walk(table, addr, next, alloc);
482 if (rc)
483 return rc;
484 if (!alloc)
485 base_crst_free(table);
486 } while (rste++, addr = next, addr < end);
487 return 0;
488 }
489
490 static int base_region1_walk(unsigned long origin, unsigned long addr,
491 unsigned long end, int alloc)
492 {
493 unsigned long *rfte, next, table;
494 int rc;
495
496 rfte = (unsigned long *) origin;
497 rfte += (addr & _REGION1_INDEX) >> _REGION1_SHIFT;
498 do {
499 next = base_region1_addr_end(addr, end);
500 if (*rfte & _REGION_ENTRY_INVALID) {
501 if (!alloc)
502 continue;
503 table = base_crst_alloc(_REGION2_ENTRY_EMPTY);
504 if (!table)
505 return -ENOMEM;
506 *rfte = table | _REGION1_ENTRY;
507 }
508 table = *rfte & _REGION_ENTRY_ORIGIN;
509 rc = base_region2_walk(table, addr, next, alloc);
510 if (rc)
511 return rc;
512 if (!alloc)
513 base_crst_free(table);
514 } while (rfte++, addr = next, addr < end);
515 return 0;
516 }
517
518 /**
519 * base_asce_free - free asce and tables returned from base_asce_alloc()
520 * @asce: asce to be freed
521 *
522 * Frees all region, segment, and page tables that were allocated with a
523 * corresponding base_asce_alloc() call.
524 */
525 void base_asce_free(unsigned long asce)
526 {
527 unsigned long table = asce & _ASCE_ORIGIN;
528
529 if (!asce)
530 return;
531 switch (asce & _ASCE_TYPE_MASK) {
532 case _ASCE_TYPE_SEGMENT:
533 base_segment_walk(table, 0, _REGION3_SIZE, 0);
534 break;
535 case _ASCE_TYPE_REGION3:
536 base_region3_walk(table, 0, _REGION2_SIZE, 0);
537 break;
538 case _ASCE_TYPE_REGION2:
539 base_region2_walk(table, 0, _REGION1_SIZE, 0);
540 break;
541 case _ASCE_TYPE_REGION1:
542 base_region1_walk(table, 0, TASK_SIZE_MAX, 0);
543 break;
544 }
545 base_crst_free(table);
546 }
547
548 static int base_pgt_cache_init(void)
549 {
550 static DEFINE_MUTEX(base_pgt_cache_mutex);
551 unsigned long sz = _PAGE_TABLE_SIZE;
552
553 if (base_pgt_cache)
554 return 0;
555 mutex_lock(&base_pgt_cache_mutex);
556 if (!base_pgt_cache)
557 base_pgt_cache = kmem_cache_create("base_pgt", sz, sz, 0, NULL);
558 mutex_unlock(&base_pgt_cache_mutex);
559 return base_pgt_cache ? 0 : -ENOMEM;
560 }
561
562 /**
563 * base_asce_alloc - create kernel mapping without enhanced DAT features
564 * @addr: virtual start address of kernel mapping
565 * @num_pages: number of consecutive pages
566 *
567 * Generate an asce, including all required region, segment and page tables,
568 * that can be used to access the virtual kernel mapping. The difference is
569 * that the returned asce does not make use of any enhanced DAT features like
570 * e.g. large pages. This is required for some I/O functions that pass an
571 * asce, like e.g. some service call requests.
572 *
573 * Note: the returned asce may NEVER be attached to any cpu. It may only be
574 * used for I/O requests. tlb entries that might result because the
575 * asce was attached to a cpu won't be cleared.
576 */
577 unsigned long base_asce_alloc(unsigned long addr, unsigned long num_pages)
578 {
579 unsigned long asce, table, end;
580 int rc;
581
582 if (base_pgt_cache_init())
583 return 0;
584 end = addr + num_pages * PAGE_SIZE;
585 if (end <= _REGION3_SIZE) {
586 table = base_crst_alloc(_SEGMENT_ENTRY_EMPTY);
587 if (!table)
588 return 0;
589 rc = base_segment_walk(table, addr, end, 1);
590 asce = table | _ASCE_TYPE_SEGMENT | _ASCE_TABLE_LENGTH;
591 } else if (end <= _REGION2_SIZE) {
592 table = base_crst_alloc(_REGION3_ENTRY_EMPTY);
593 if (!table)
594 return 0;
595 rc = base_region3_walk(table, addr, end, 1);
596 asce = table | _ASCE_TYPE_REGION3 | _ASCE_TABLE_LENGTH;
597 } else if (end <= _REGION1_SIZE) {
598 table = base_crst_alloc(_REGION2_ENTRY_EMPTY);
599 if (!table)
600 return 0;
601 rc = base_region2_walk(table, addr, end, 1);
602 asce = table | _ASCE_TYPE_REGION2 | _ASCE_TABLE_LENGTH;
603 } else {
604 table = base_crst_alloc(_REGION1_ENTRY_EMPTY);
605 if (!table)
606 return 0;
607 rc = base_region1_walk(table, addr, end, 1);
608 asce = table | _ASCE_TYPE_REGION1 | _ASCE_TABLE_LENGTH;
609 }
610 if (rc) {
611 base_asce_free(asce);
612 asce = 0;
613 }
614 return asce;
615 }