]> git.proxmox.com Git - mirror_ubuntu-zesty-kernel.git/blob - arch/s390/mm/pgtable.c
Merge remote-tracking branches 'asoc/topic/atmel', 'asoc/topic/bcm2835' and 'asoc...
[mirror_ubuntu-zesty-kernel.git] / arch / s390 / mm / pgtable.c
1 /*
2 * Copyright IBM Corp. 2007, 2011
3 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
4 */
5
6 #include <linux/sched.h>
7 #include <linux/kernel.h>
8 #include <linux/errno.h>
9 #include <linux/gfp.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/smp.h>
13 #include <linux/spinlock.h>
14 #include <linux/rcupdate.h>
15 #include <linux/slab.h>
16 #include <linux/swapops.h>
17 #include <linux/sysctl.h>
18 #include <linux/ksm.h>
19 #include <linux/mman.h>
20
21 #include <asm/pgtable.h>
22 #include <asm/pgalloc.h>
23 #include <asm/tlb.h>
24 #include <asm/tlbflush.h>
25 #include <asm/mmu_context.h>
26
27 unsigned long *crst_table_alloc(struct mm_struct *mm)
28 {
29 struct page *page = alloc_pages(GFP_KERNEL, 2);
30
31 if (!page)
32 return NULL;
33 return (unsigned long *) page_to_phys(page);
34 }
35
36 void crst_table_free(struct mm_struct *mm, unsigned long *table)
37 {
38 free_pages((unsigned long) table, 2);
39 }
40
41 static void __crst_table_upgrade(void *arg)
42 {
43 struct mm_struct *mm = arg;
44
45 if (current->active_mm == mm) {
46 clear_user_asce();
47 set_user_asce(mm);
48 }
49 __tlb_flush_local();
50 }
51
52 int crst_table_upgrade(struct mm_struct *mm, unsigned long limit)
53 {
54 unsigned long *table, *pgd;
55 unsigned long entry;
56 int flush;
57
58 BUG_ON(limit > TASK_MAX_SIZE);
59 flush = 0;
60 repeat:
61 table = crst_table_alloc(mm);
62 if (!table)
63 return -ENOMEM;
64 spin_lock_bh(&mm->page_table_lock);
65 if (mm->context.asce_limit < limit) {
66 pgd = (unsigned long *) mm->pgd;
67 if (mm->context.asce_limit <= (1UL << 31)) {
68 entry = _REGION3_ENTRY_EMPTY;
69 mm->context.asce_limit = 1UL << 42;
70 mm->context.asce_bits = _ASCE_TABLE_LENGTH |
71 _ASCE_USER_BITS |
72 _ASCE_TYPE_REGION3;
73 } else {
74 entry = _REGION2_ENTRY_EMPTY;
75 mm->context.asce_limit = 1UL << 53;
76 mm->context.asce_bits = _ASCE_TABLE_LENGTH |
77 _ASCE_USER_BITS |
78 _ASCE_TYPE_REGION2;
79 }
80 crst_table_init(table, entry);
81 pgd_populate(mm, (pgd_t *) table, (pud_t *) pgd);
82 mm->pgd = (pgd_t *) table;
83 mm->task_size = mm->context.asce_limit;
84 table = NULL;
85 flush = 1;
86 }
87 spin_unlock_bh(&mm->page_table_lock);
88 if (table)
89 crst_table_free(mm, table);
90 if (mm->context.asce_limit < limit)
91 goto repeat;
92 if (flush)
93 on_each_cpu(__crst_table_upgrade, mm, 0);
94 return 0;
95 }
96
97 void crst_table_downgrade(struct mm_struct *mm, unsigned long limit)
98 {
99 pgd_t *pgd;
100
101 if (current->active_mm == mm) {
102 clear_user_asce();
103 __tlb_flush_mm(mm);
104 }
105 while (mm->context.asce_limit > limit) {
106 pgd = mm->pgd;
107 switch (pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) {
108 case _REGION_ENTRY_TYPE_R2:
109 mm->context.asce_limit = 1UL << 42;
110 mm->context.asce_bits = _ASCE_TABLE_LENGTH |
111 _ASCE_USER_BITS |
112 _ASCE_TYPE_REGION3;
113 break;
114 case _REGION_ENTRY_TYPE_R3:
115 mm->context.asce_limit = 1UL << 31;
116 mm->context.asce_bits = _ASCE_TABLE_LENGTH |
117 _ASCE_USER_BITS |
118 _ASCE_TYPE_SEGMENT;
119 break;
120 default:
121 BUG();
122 }
123 mm->pgd = (pgd_t *) (pgd_val(*pgd) & _REGION_ENTRY_ORIGIN);
124 mm->task_size = mm->context.asce_limit;
125 crst_table_free(mm, (unsigned long *) pgd);
126 }
127 if (current->active_mm == mm)
128 set_user_asce(mm);
129 }
130
131 #ifdef CONFIG_PGSTE
132
133 /**
134 * gmap_alloc - allocate a guest address space
135 * @mm: pointer to the parent mm_struct
136 * @limit: maximum address of the gmap address space
137 *
138 * Returns a guest address space structure.
139 */
140 struct gmap *gmap_alloc(struct mm_struct *mm, unsigned long limit)
141 {
142 struct gmap *gmap;
143 struct page *page;
144 unsigned long *table;
145 unsigned long etype, atype;
146
147 if (limit < (1UL << 31)) {
148 limit = (1UL << 31) - 1;
149 atype = _ASCE_TYPE_SEGMENT;
150 etype = _SEGMENT_ENTRY_EMPTY;
151 } else if (limit < (1UL << 42)) {
152 limit = (1UL << 42) - 1;
153 atype = _ASCE_TYPE_REGION3;
154 etype = _REGION3_ENTRY_EMPTY;
155 } else if (limit < (1UL << 53)) {
156 limit = (1UL << 53) - 1;
157 atype = _ASCE_TYPE_REGION2;
158 etype = _REGION2_ENTRY_EMPTY;
159 } else {
160 limit = -1UL;
161 atype = _ASCE_TYPE_REGION1;
162 etype = _REGION1_ENTRY_EMPTY;
163 }
164 gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL);
165 if (!gmap)
166 goto out;
167 INIT_LIST_HEAD(&gmap->crst_list);
168 INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL);
169 INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC);
170 spin_lock_init(&gmap->guest_table_lock);
171 gmap->mm = mm;
172 page = alloc_pages(GFP_KERNEL, 2);
173 if (!page)
174 goto out_free;
175 page->index = 0;
176 list_add(&page->lru, &gmap->crst_list);
177 table = (unsigned long *) page_to_phys(page);
178 crst_table_init(table, etype);
179 gmap->table = table;
180 gmap->asce = atype | _ASCE_TABLE_LENGTH |
181 _ASCE_USER_BITS | __pa(table);
182 gmap->asce_end = limit;
183 down_write(&mm->mmap_sem);
184 list_add(&gmap->list, &mm->context.gmap_list);
185 up_write(&mm->mmap_sem);
186 return gmap;
187
188 out_free:
189 kfree(gmap);
190 out:
191 return NULL;
192 }
193 EXPORT_SYMBOL_GPL(gmap_alloc);
194
195 static void gmap_flush_tlb(struct gmap *gmap)
196 {
197 if (MACHINE_HAS_IDTE)
198 __tlb_flush_asce(gmap->mm, gmap->asce);
199 else
200 __tlb_flush_global();
201 }
202
203 static void gmap_radix_tree_free(struct radix_tree_root *root)
204 {
205 struct radix_tree_iter iter;
206 unsigned long indices[16];
207 unsigned long index;
208 void **slot;
209 int i, nr;
210
211 /* A radix tree is freed by deleting all of its entries */
212 index = 0;
213 do {
214 nr = 0;
215 radix_tree_for_each_slot(slot, root, &iter, index) {
216 indices[nr] = iter.index;
217 if (++nr == 16)
218 break;
219 }
220 for (i = 0; i < nr; i++) {
221 index = indices[i];
222 radix_tree_delete(root, index);
223 }
224 } while (nr > 0);
225 }
226
227 /**
228 * gmap_free - free a guest address space
229 * @gmap: pointer to the guest address space structure
230 */
231 void gmap_free(struct gmap *gmap)
232 {
233 struct page *page, *next;
234
235 /* Flush tlb. */
236 if (MACHINE_HAS_IDTE)
237 __tlb_flush_asce(gmap->mm, gmap->asce);
238 else
239 __tlb_flush_global();
240
241 /* Free all segment & region tables. */
242 list_for_each_entry_safe(page, next, &gmap->crst_list, lru)
243 __free_pages(page, 2);
244 gmap_radix_tree_free(&gmap->guest_to_host);
245 gmap_radix_tree_free(&gmap->host_to_guest);
246 down_write(&gmap->mm->mmap_sem);
247 list_del(&gmap->list);
248 up_write(&gmap->mm->mmap_sem);
249 kfree(gmap);
250 }
251 EXPORT_SYMBOL_GPL(gmap_free);
252
253 /**
254 * gmap_enable - switch primary space to the guest address space
255 * @gmap: pointer to the guest address space structure
256 */
257 void gmap_enable(struct gmap *gmap)
258 {
259 S390_lowcore.gmap = (unsigned long) gmap;
260 }
261 EXPORT_SYMBOL_GPL(gmap_enable);
262
263 /**
264 * gmap_disable - switch back to the standard primary address space
265 * @gmap: pointer to the guest address space structure
266 */
267 void gmap_disable(struct gmap *gmap)
268 {
269 S390_lowcore.gmap = 0UL;
270 }
271 EXPORT_SYMBOL_GPL(gmap_disable);
272
273 /*
274 * gmap_alloc_table is assumed to be called with mmap_sem held
275 */
276 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
277 unsigned long init, unsigned long gaddr)
278 {
279 struct page *page;
280 unsigned long *new;
281
282 /* since we dont free the gmap table until gmap_free we can unlock */
283 page = alloc_pages(GFP_KERNEL, 2);
284 if (!page)
285 return -ENOMEM;
286 new = (unsigned long *) page_to_phys(page);
287 crst_table_init(new, init);
288 spin_lock(&gmap->mm->page_table_lock);
289 if (*table & _REGION_ENTRY_INVALID) {
290 list_add(&page->lru, &gmap->crst_list);
291 *table = (unsigned long) new | _REGION_ENTRY_LENGTH |
292 (*table & _REGION_ENTRY_TYPE_MASK);
293 page->index = gaddr;
294 page = NULL;
295 }
296 spin_unlock(&gmap->mm->page_table_lock);
297 if (page)
298 __free_pages(page, 2);
299 return 0;
300 }
301
302 /**
303 * __gmap_segment_gaddr - find virtual address from segment pointer
304 * @entry: pointer to a segment table entry in the guest address space
305 *
306 * Returns the virtual address in the guest address space for the segment
307 */
308 static unsigned long __gmap_segment_gaddr(unsigned long *entry)
309 {
310 struct page *page;
311 unsigned long offset, mask;
312
313 offset = (unsigned long) entry / sizeof(unsigned long);
314 offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE;
315 mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
316 page = virt_to_page((void *)((unsigned long) entry & mask));
317 return page->index + offset;
318 }
319
320 /**
321 * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
322 * @gmap: pointer to the guest address space structure
323 * @vmaddr: address in the host process address space
324 *
325 * Returns 1 if a TLB flush is required
326 */
327 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
328 {
329 unsigned long *entry;
330 int flush = 0;
331
332 spin_lock(&gmap->guest_table_lock);
333 entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
334 if (entry) {
335 flush = (*entry != _SEGMENT_ENTRY_INVALID);
336 *entry = _SEGMENT_ENTRY_INVALID;
337 }
338 spin_unlock(&gmap->guest_table_lock);
339 return flush;
340 }
341
342 /**
343 * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
344 * @gmap: pointer to the guest address space structure
345 * @gaddr: address in the guest address space
346 *
347 * Returns 1 if a TLB flush is required
348 */
349 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr)
350 {
351 unsigned long vmaddr;
352
353 vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host,
354 gaddr >> PMD_SHIFT);
355 return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0;
356 }
357
358 /**
359 * gmap_unmap_segment - unmap segment from the guest address space
360 * @gmap: pointer to the guest address space structure
361 * @to: address in the guest address space
362 * @len: length of the memory area to unmap
363 *
364 * Returns 0 if the unmap succeeded, -EINVAL if not.
365 */
366 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
367 {
368 unsigned long off;
369 int flush;
370
371 if ((to | len) & (PMD_SIZE - 1))
372 return -EINVAL;
373 if (len == 0 || to + len < to)
374 return -EINVAL;
375
376 flush = 0;
377 down_write(&gmap->mm->mmap_sem);
378 for (off = 0; off < len; off += PMD_SIZE)
379 flush |= __gmap_unmap_by_gaddr(gmap, to + off);
380 up_write(&gmap->mm->mmap_sem);
381 if (flush)
382 gmap_flush_tlb(gmap);
383 return 0;
384 }
385 EXPORT_SYMBOL_GPL(gmap_unmap_segment);
386
387 /**
388 * gmap_mmap_segment - map a segment to the guest address space
389 * @gmap: pointer to the guest address space structure
390 * @from: source address in the parent address space
391 * @to: target address in the guest address space
392 * @len: length of the memory area to map
393 *
394 * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
395 */
396 int gmap_map_segment(struct gmap *gmap, unsigned long from,
397 unsigned long to, unsigned long len)
398 {
399 unsigned long off;
400 int flush;
401
402 if ((from | to | len) & (PMD_SIZE - 1))
403 return -EINVAL;
404 if (len == 0 || from + len < from || to + len < to ||
405 from + len - 1 > TASK_MAX_SIZE || to + len - 1 > gmap->asce_end)
406 return -EINVAL;
407
408 flush = 0;
409 down_write(&gmap->mm->mmap_sem);
410 for (off = 0; off < len; off += PMD_SIZE) {
411 /* Remove old translation */
412 flush |= __gmap_unmap_by_gaddr(gmap, to + off);
413 /* Store new translation */
414 if (radix_tree_insert(&gmap->guest_to_host,
415 (to + off) >> PMD_SHIFT,
416 (void *) from + off))
417 break;
418 }
419 up_write(&gmap->mm->mmap_sem);
420 if (flush)
421 gmap_flush_tlb(gmap);
422 if (off >= len)
423 return 0;
424 gmap_unmap_segment(gmap, to, len);
425 return -ENOMEM;
426 }
427 EXPORT_SYMBOL_GPL(gmap_map_segment);
428
429 /**
430 * __gmap_translate - translate a guest address to a user space address
431 * @gmap: pointer to guest mapping meta data structure
432 * @gaddr: guest address
433 *
434 * Returns user space address which corresponds to the guest address or
435 * -EFAULT if no such mapping exists.
436 * This function does not establish potentially missing page table entries.
437 * The mmap_sem of the mm that belongs to the address space must be held
438 * when this function gets called.
439 */
440 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
441 {
442 unsigned long vmaddr;
443
444 vmaddr = (unsigned long)
445 radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
446 return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
447 }
448 EXPORT_SYMBOL_GPL(__gmap_translate);
449
450 /**
451 * gmap_translate - translate a guest address to a user space address
452 * @gmap: pointer to guest mapping meta data structure
453 * @gaddr: guest address
454 *
455 * Returns user space address which corresponds to the guest address or
456 * -EFAULT if no such mapping exists.
457 * This function does not establish potentially missing page table entries.
458 */
459 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr)
460 {
461 unsigned long rc;
462
463 down_read(&gmap->mm->mmap_sem);
464 rc = __gmap_translate(gmap, gaddr);
465 up_read(&gmap->mm->mmap_sem);
466 return rc;
467 }
468 EXPORT_SYMBOL_GPL(gmap_translate);
469
470 /**
471 * gmap_unlink - disconnect a page table from the gmap shadow tables
472 * @gmap: pointer to guest mapping meta data structure
473 * @table: pointer to the host page table
474 * @vmaddr: vm address associated with the host page table
475 */
476 static void gmap_unlink(struct mm_struct *mm, unsigned long *table,
477 unsigned long vmaddr)
478 {
479 struct gmap *gmap;
480 int flush;
481
482 list_for_each_entry(gmap, &mm->context.gmap_list, list) {
483 flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
484 if (flush)
485 gmap_flush_tlb(gmap);
486 }
487 }
488
489 /**
490 * gmap_link - set up shadow page tables to connect a host to a guest address
491 * @gmap: pointer to guest mapping meta data structure
492 * @gaddr: guest address
493 * @vmaddr: vm address
494 *
495 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
496 * if the vm address is already mapped to a different guest segment.
497 * The mmap_sem of the mm that belongs to the address space must be held
498 * when this function gets called.
499 */
500 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
501 {
502 struct mm_struct *mm;
503 unsigned long *table;
504 spinlock_t *ptl;
505 pgd_t *pgd;
506 pud_t *pud;
507 pmd_t *pmd;
508 int rc;
509
510 /* Create higher level tables in the gmap page table */
511 table = gmap->table;
512 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
513 table += (gaddr >> 53) & 0x7ff;
514 if ((*table & _REGION_ENTRY_INVALID) &&
515 gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
516 gaddr & 0xffe0000000000000UL))
517 return -ENOMEM;
518 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
519 }
520 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
521 table += (gaddr >> 42) & 0x7ff;
522 if ((*table & _REGION_ENTRY_INVALID) &&
523 gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
524 gaddr & 0xfffffc0000000000UL))
525 return -ENOMEM;
526 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
527 }
528 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
529 table += (gaddr >> 31) & 0x7ff;
530 if ((*table & _REGION_ENTRY_INVALID) &&
531 gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
532 gaddr & 0xffffffff80000000UL))
533 return -ENOMEM;
534 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
535 }
536 table += (gaddr >> 20) & 0x7ff;
537 /* Walk the parent mm page table */
538 mm = gmap->mm;
539 pgd = pgd_offset(mm, vmaddr);
540 VM_BUG_ON(pgd_none(*pgd));
541 pud = pud_offset(pgd, vmaddr);
542 VM_BUG_ON(pud_none(*pud));
543 pmd = pmd_offset(pud, vmaddr);
544 VM_BUG_ON(pmd_none(*pmd));
545 /* large pmds cannot yet be handled */
546 if (pmd_large(*pmd))
547 return -EFAULT;
548 /* Link gmap segment table entry location to page table. */
549 rc = radix_tree_preload(GFP_KERNEL);
550 if (rc)
551 return rc;
552 ptl = pmd_lock(mm, pmd);
553 spin_lock(&gmap->guest_table_lock);
554 if (*table == _SEGMENT_ENTRY_INVALID) {
555 rc = radix_tree_insert(&gmap->host_to_guest,
556 vmaddr >> PMD_SHIFT, table);
557 if (!rc)
558 *table = pmd_val(*pmd);
559 } else
560 rc = 0;
561 spin_unlock(&gmap->guest_table_lock);
562 spin_unlock(ptl);
563 radix_tree_preload_end();
564 return rc;
565 }
566
567 /**
568 * gmap_fault - resolve a fault on a guest address
569 * @gmap: pointer to guest mapping meta data structure
570 * @gaddr: guest address
571 * @fault_flags: flags to pass down to handle_mm_fault()
572 *
573 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
574 * if the vm address is already mapped to a different guest segment.
575 */
576 int gmap_fault(struct gmap *gmap, unsigned long gaddr,
577 unsigned int fault_flags)
578 {
579 unsigned long vmaddr;
580 int rc;
581 bool unlocked;
582
583 down_read(&gmap->mm->mmap_sem);
584
585 retry:
586 unlocked = false;
587 vmaddr = __gmap_translate(gmap, gaddr);
588 if (IS_ERR_VALUE(vmaddr)) {
589 rc = vmaddr;
590 goto out_up;
591 }
592 if (fixup_user_fault(current, gmap->mm, vmaddr, fault_flags,
593 &unlocked)) {
594 rc = -EFAULT;
595 goto out_up;
596 }
597 /*
598 * In the case that fixup_user_fault unlocked the mmap_sem during
599 * faultin redo __gmap_translate to not race with a map/unmap_segment.
600 */
601 if (unlocked)
602 goto retry;
603
604 rc = __gmap_link(gmap, gaddr, vmaddr);
605 out_up:
606 up_read(&gmap->mm->mmap_sem);
607 return rc;
608 }
609 EXPORT_SYMBOL_GPL(gmap_fault);
610
611 static void gmap_zap_swap_entry(swp_entry_t entry, struct mm_struct *mm)
612 {
613 if (!non_swap_entry(entry))
614 dec_mm_counter(mm, MM_SWAPENTS);
615 else if (is_migration_entry(entry)) {
616 struct page *page = migration_entry_to_page(entry);
617
618 dec_mm_counter(mm, mm_counter(page));
619 }
620 free_swap_and_cache(entry);
621 }
622
623 /*
624 * this function is assumed to be called with mmap_sem held
625 */
626 void __gmap_zap(struct gmap *gmap, unsigned long gaddr)
627 {
628 unsigned long vmaddr, ptev, pgstev;
629 pte_t *ptep, pte;
630 spinlock_t *ptl;
631 pgste_t pgste;
632
633 /* Find the vm address for the guest address */
634 vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host,
635 gaddr >> PMD_SHIFT);
636 if (!vmaddr)
637 return;
638 vmaddr |= gaddr & ~PMD_MASK;
639 /* Get pointer to the page table entry */
640 ptep = get_locked_pte(gmap->mm, vmaddr, &ptl);
641 if (unlikely(!ptep))
642 return;
643 pte = *ptep;
644 if (!pte_swap(pte))
645 goto out_pte;
646 /* Zap unused and logically-zero pages */
647 pgste = pgste_get_lock(ptep);
648 pgstev = pgste_val(pgste);
649 ptev = pte_val(pte);
650 if (((pgstev & _PGSTE_GPS_USAGE_MASK) == _PGSTE_GPS_USAGE_UNUSED) ||
651 ((pgstev & _PGSTE_GPS_ZERO) && (ptev & _PAGE_INVALID))) {
652 gmap_zap_swap_entry(pte_to_swp_entry(pte), gmap->mm);
653 pte_clear(gmap->mm, vmaddr, ptep);
654 }
655 pgste_set_unlock(ptep, pgste);
656 out_pte:
657 pte_unmap_unlock(ptep, ptl);
658 }
659 EXPORT_SYMBOL_GPL(__gmap_zap);
660
661 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to)
662 {
663 unsigned long gaddr, vmaddr, size;
664 struct vm_area_struct *vma;
665
666 down_read(&gmap->mm->mmap_sem);
667 for (gaddr = from; gaddr < to;
668 gaddr = (gaddr + PMD_SIZE) & PMD_MASK) {
669 /* Find the vm address for the guest address */
670 vmaddr = (unsigned long)
671 radix_tree_lookup(&gmap->guest_to_host,
672 gaddr >> PMD_SHIFT);
673 if (!vmaddr)
674 continue;
675 vmaddr |= gaddr & ~PMD_MASK;
676 /* Find vma in the parent mm */
677 vma = find_vma(gmap->mm, vmaddr);
678 size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK));
679 zap_page_range(vma, vmaddr, size, NULL);
680 }
681 up_read(&gmap->mm->mmap_sem);
682 }
683 EXPORT_SYMBOL_GPL(gmap_discard);
684
685 static LIST_HEAD(gmap_notifier_list);
686 static DEFINE_SPINLOCK(gmap_notifier_lock);
687
688 /**
689 * gmap_register_ipte_notifier - register a pte invalidation callback
690 * @nb: pointer to the gmap notifier block
691 */
692 void gmap_register_ipte_notifier(struct gmap_notifier *nb)
693 {
694 spin_lock(&gmap_notifier_lock);
695 list_add(&nb->list, &gmap_notifier_list);
696 spin_unlock(&gmap_notifier_lock);
697 }
698 EXPORT_SYMBOL_GPL(gmap_register_ipte_notifier);
699
700 /**
701 * gmap_unregister_ipte_notifier - remove a pte invalidation callback
702 * @nb: pointer to the gmap notifier block
703 */
704 void gmap_unregister_ipte_notifier(struct gmap_notifier *nb)
705 {
706 spin_lock(&gmap_notifier_lock);
707 list_del_init(&nb->list);
708 spin_unlock(&gmap_notifier_lock);
709 }
710 EXPORT_SYMBOL_GPL(gmap_unregister_ipte_notifier);
711
712 /**
713 * gmap_ipte_notify - mark a range of ptes for invalidation notification
714 * @gmap: pointer to guest mapping meta data structure
715 * @gaddr: virtual address in the guest address space
716 * @len: size of area
717 *
718 * Returns 0 if for each page in the given range a gmap mapping exists and
719 * the invalidation notification could be set. If the gmap mapping is missing
720 * for one or more pages -EFAULT is returned. If no memory could be allocated
721 * -ENOMEM is returned. This function establishes missing page table entries.
722 */
723 int gmap_ipte_notify(struct gmap *gmap, unsigned long gaddr, unsigned long len)
724 {
725 unsigned long addr;
726 spinlock_t *ptl;
727 pte_t *ptep, entry;
728 pgste_t pgste;
729 bool unlocked;
730 int rc = 0;
731
732 if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK))
733 return -EINVAL;
734 down_read(&gmap->mm->mmap_sem);
735 while (len) {
736 unlocked = false;
737 /* Convert gmap address and connect the page tables */
738 addr = __gmap_translate(gmap, gaddr);
739 if (IS_ERR_VALUE(addr)) {
740 rc = addr;
741 break;
742 }
743 /* Get the page mapped */
744 if (fixup_user_fault(current, gmap->mm, addr, FAULT_FLAG_WRITE,
745 &unlocked)) {
746 rc = -EFAULT;
747 break;
748 }
749 /* While trying to map mmap_sem got unlocked. Let us retry */
750 if (unlocked)
751 continue;
752 rc = __gmap_link(gmap, gaddr, addr);
753 if (rc)
754 break;
755 /* Walk the process page table, lock and get pte pointer */
756 ptep = get_locked_pte(gmap->mm, addr, &ptl);
757 VM_BUG_ON(!ptep);
758 /* Set notification bit in the pgste of the pte */
759 entry = *ptep;
760 if ((pte_val(entry) & (_PAGE_INVALID | _PAGE_PROTECT)) == 0) {
761 pgste = pgste_get_lock(ptep);
762 pgste_val(pgste) |= PGSTE_IN_BIT;
763 pgste_set_unlock(ptep, pgste);
764 gaddr += PAGE_SIZE;
765 len -= PAGE_SIZE;
766 }
767 pte_unmap_unlock(ptep, ptl);
768 }
769 up_read(&gmap->mm->mmap_sem);
770 return rc;
771 }
772 EXPORT_SYMBOL_GPL(gmap_ipte_notify);
773
774 /**
775 * gmap_do_ipte_notify - call all invalidation callbacks for a specific pte.
776 * @mm: pointer to the process mm_struct
777 * @addr: virtual address in the process address space
778 * @pte: pointer to the page table entry
779 *
780 * This function is assumed to be called with the page table lock held
781 * for the pte to notify.
782 */
783 void gmap_do_ipte_notify(struct mm_struct *mm, unsigned long vmaddr, pte_t *pte)
784 {
785 unsigned long offset, gaddr;
786 unsigned long *table;
787 struct gmap_notifier *nb;
788 struct gmap *gmap;
789
790 offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
791 offset = offset * (4096 / sizeof(pte_t));
792 spin_lock(&gmap_notifier_lock);
793 list_for_each_entry(gmap, &mm->context.gmap_list, list) {
794 table = radix_tree_lookup(&gmap->host_to_guest,
795 vmaddr >> PMD_SHIFT);
796 if (!table)
797 continue;
798 gaddr = __gmap_segment_gaddr(table) + offset;
799 list_for_each_entry(nb, &gmap_notifier_list, list)
800 nb->notifier_call(gmap, gaddr);
801 }
802 spin_unlock(&gmap_notifier_lock);
803 }
804 EXPORT_SYMBOL_GPL(gmap_do_ipte_notify);
805
806 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
807 unsigned long key, bool nq)
808 {
809 spinlock_t *ptl;
810 pgste_t old, new;
811 pte_t *ptep;
812 bool unlocked;
813
814 down_read(&mm->mmap_sem);
815 retry:
816 unlocked = false;
817 ptep = get_locked_pte(mm, addr, &ptl);
818 if (unlikely(!ptep)) {
819 up_read(&mm->mmap_sem);
820 return -EFAULT;
821 }
822 if (!(pte_val(*ptep) & _PAGE_INVALID) &&
823 (pte_val(*ptep) & _PAGE_PROTECT)) {
824 pte_unmap_unlock(ptep, ptl);
825 /*
826 * We do not really care about unlocked. We will retry either
827 * way. But this allows fixup_user_fault to enable userfaultfd.
828 */
829 if (fixup_user_fault(current, mm, addr, FAULT_FLAG_WRITE,
830 &unlocked)) {
831 up_read(&mm->mmap_sem);
832 return -EFAULT;
833 }
834 goto retry;
835 }
836
837 new = old = pgste_get_lock(ptep);
838 pgste_val(new) &= ~(PGSTE_GR_BIT | PGSTE_GC_BIT |
839 PGSTE_ACC_BITS | PGSTE_FP_BIT);
840 pgste_val(new) |= (key & (_PAGE_CHANGED | _PAGE_REFERENCED)) << 48;
841 pgste_val(new) |= (key & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
842 if (!(pte_val(*ptep) & _PAGE_INVALID)) {
843 unsigned long address, bits, skey;
844
845 address = pte_val(*ptep) & PAGE_MASK;
846 skey = (unsigned long) page_get_storage_key(address);
847 bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
848 skey = key & (_PAGE_ACC_BITS | _PAGE_FP_BIT);
849 /* Set storage key ACC and FP */
850 page_set_storage_key(address, skey, !nq);
851 /* Merge host changed & referenced into pgste */
852 pgste_val(new) |= bits << 52;
853 }
854 /* changing the guest storage key is considered a change of the page */
855 if ((pgste_val(new) ^ pgste_val(old)) &
856 (PGSTE_ACC_BITS | PGSTE_FP_BIT | PGSTE_GR_BIT | PGSTE_GC_BIT))
857 pgste_val(new) |= PGSTE_UC_BIT;
858
859 pgste_set_unlock(ptep, new);
860 pte_unmap_unlock(ptep, ptl);
861 up_read(&mm->mmap_sem);
862 return 0;
863 }
864 EXPORT_SYMBOL(set_guest_storage_key);
865
866 unsigned long get_guest_storage_key(struct mm_struct *mm, unsigned long addr)
867 {
868 spinlock_t *ptl;
869 pgste_t pgste;
870 pte_t *ptep;
871 uint64_t physaddr;
872 unsigned long key = 0;
873
874 down_read(&mm->mmap_sem);
875 ptep = get_locked_pte(mm, addr, &ptl);
876 if (unlikely(!ptep)) {
877 up_read(&mm->mmap_sem);
878 return -EFAULT;
879 }
880 pgste = pgste_get_lock(ptep);
881
882 if (pte_val(*ptep) & _PAGE_INVALID) {
883 key |= (pgste_val(pgste) & PGSTE_ACC_BITS) >> 56;
884 key |= (pgste_val(pgste) & PGSTE_FP_BIT) >> 56;
885 key |= (pgste_val(pgste) & PGSTE_GR_BIT) >> 48;
886 key |= (pgste_val(pgste) & PGSTE_GC_BIT) >> 48;
887 } else {
888 physaddr = pte_val(*ptep) & PAGE_MASK;
889 key = page_get_storage_key(physaddr);
890
891 /* Reflect guest's logical view, not physical */
892 if (pgste_val(pgste) & PGSTE_GR_BIT)
893 key |= _PAGE_REFERENCED;
894 if (pgste_val(pgste) & PGSTE_GC_BIT)
895 key |= _PAGE_CHANGED;
896 }
897
898 pgste_set_unlock(ptep, pgste);
899 pte_unmap_unlock(ptep, ptl);
900 up_read(&mm->mmap_sem);
901 return key;
902 }
903 EXPORT_SYMBOL(get_guest_storage_key);
904
905 static int page_table_allocate_pgste_min = 0;
906 static int page_table_allocate_pgste_max = 1;
907 int page_table_allocate_pgste = 0;
908 EXPORT_SYMBOL(page_table_allocate_pgste);
909
910 static struct ctl_table page_table_sysctl[] = {
911 {
912 .procname = "allocate_pgste",
913 .data = &page_table_allocate_pgste,
914 .maxlen = sizeof(int),
915 .mode = S_IRUGO | S_IWUSR,
916 .proc_handler = proc_dointvec,
917 .extra1 = &page_table_allocate_pgste_min,
918 .extra2 = &page_table_allocate_pgste_max,
919 },
920 { }
921 };
922
923 static struct ctl_table page_table_sysctl_dir[] = {
924 {
925 .procname = "vm",
926 .maxlen = 0,
927 .mode = 0555,
928 .child = page_table_sysctl,
929 },
930 { }
931 };
932
933 static int __init page_table_register_sysctl(void)
934 {
935 return register_sysctl_table(page_table_sysctl_dir) ? 0 : -ENOMEM;
936 }
937 __initcall(page_table_register_sysctl);
938
939 #else /* CONFIG_PGSTE */
940
941 static inline void gmap_unlink(struct mm_struct *mm, unsigned long *table,
942 unsigned long vmaddr)
943 {
944 }
945
946 #endif /* CONFIG_PGSTE */
947
948 static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits)
949 {
950 unsigned int old, new;
951
952 do {
953 old = atomic_read(v);
954 new = old ^ bits;
955 } while (atomic_cmpxchg(v, old, new) != old);
956 return new;
957 }
958
959 /*
960 * page table entry allocation/free routines.
961 */
962 unsigned long *page_table_alloc(struct mm_struct *mm)
963 {
964 unsigned long *table;
965 struct page *page;
966 unsigned int mask, bit;
967
968 /* Try to get a fragment of a 4K page as a 2K page table */
969 if (!mm_alloc_pgste(mm)) {
970 table = NULL;
971 spin_lock_bh(&mm->context.list_lock);
972 if (!list_empty(&mm->context.pgtable_list)) {
973 page = list_first_entry(&mm->context.pgtable_list,
974 struct page, lru);
975 mask = atomic_read(&page->_mapcount);
976 mask = (mask | (mask >> 4)) & 3;
977 if (mask != 3) {
978 table = (unsigned long *) page_to_phys(page);
979 bit = mask & 1; /* =1 -> second 2K */
980 if (bit)
981 table += PTRS_PER_PTE;
982 atomic_xor_bits(&page->_mapcount, 1U << bit);
983 list_del(&page->lru);
984 }
985 }
986 spin_unlock_bh(&mm->context.list_lock);
987 if (table)
988 return table;
989 }
990 /* Allocate a fresh page */
991 page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
992 if (!page)
993 return NULL;
994 if (!pgtable_page_ctor(page)) {
995 __free_page(page);
996 return NULL;
997 }
998 /* Initialize page table */
999 table = (unsigned long *) page_to_phys(page);
1000 if (mm_alloc_pgste(mm)) {
1001 /* Return 4K page table with PGSTEs */
1002 atomic_set(&page->_mapcount, 3);
1003 clear_table(table, _PAGE_INVALID, PAGE_SIZE/2);
1004 clear_table(table + PTRS_PER_PTE, 0, PAGE_SIZE/2);
1005 } else {
1006 /* Return the first 2K fragment of the page */
1007 atomic_set(&page->_mapcount, 1);
1008 clear_table(table, _PAGE_INVALID, PAGE_SIZE);
1009 spin_lock_bh(&mm->context.list_lock);
1010 list_add(&page->lru, &mm->context.pgtable_list);
1011 spin_unlock_bh(&mm->context.list_lock);
1012 }
1013 return table;
1014 }
1015
1016 void page_table_free(struct mm_struct *mm, unsigned long *table)
1017 {
1018 struct page *page;
1019 unsigned int bit, mask;
1020
1021 page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1022 if (!mm_alloc_pgste(mm)) {
1023 /* Free 2K page table fragment of a 4K page */
1024 bit = (__pa(table) & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t));
1025 spin_lock_bh(&mm->context.list_lock);
1026 mask = atomic_xor_bits(&page->_mapcount, 1U << bit);
1027 if (mask & 3)
1028 list_add(&page->lru, &mm->context.pgtable_list);
1029 else
1030 list_del(&page->lru);
1031 spin_unlock_bh(&mm->context.list_lock);
1032 if (mask != 0)
1033 return;
1034 }
1035
1036 pgtable_page_dtor(page);
1037 atomic_set(&page->_mapcount, -1);
1038 __free_page(page);
1039 }
1040
1041 void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table,
1042 unsigned long vmaddr)
1043 {
1044 struct mm_struct *mm;
1045 struct page *page;
1046 unsigned int bit, mask;
1047
1048 mm = tlb->mm;
1049 page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1050 if (mm_alloc_pgste(mm)) {
1051 gmap_unlink(mm, table, vmaddr);
1052 table = (unsigned long *) (__pa(table) | 3);
1053 tlb_remove_table(tlb, table);
1054 return;
1055 }
1056 bit = (__pa(table) & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t));
1057 spin_lock_bh(&mm->context.list_lock);
1058 mask = atomic_xor_bits(&page->_mapcount, 0x11U << bit);
1059 if (mask & 3)
1060 list_add_tail(&page->lru, &mm->context.pgtable_list);
1061 else
1062 list_del(&page->lru);
1063 spin_unlock_bh(&mm->context.list_lock);
1064 table = (unsigned long *) (__pa(table) | (1U << bit));
1065 tlb_remove_table(tlb, table);
1066 }
1067
1068 static void __tlb_remove_table(void *_table)
1069 {
1070 unsigned int mask = (unsigned long) _table & 3;
1071 void *table = (void *)((unsigned long) _table ^ mask);
1072 struct page *page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1073
1074 switch (mask) {
1075 case 0: /* pmd or pud */
1076 free_pages((unsigned long) table, 2);
1077 break;
1078 case 1: /* lower 2K of a 4K page table */
1079 case 2: /* higher 2K of a 4K page table */
1080 if (atomic_xor_bits(&page->_mapcount, mask << 4) != 0)
1081 break;
1082 /* fallthrough */
1083 case 3: /* 4K page table with pgstes */
1084 pgtable_page_dtor(page);
1085 atomic_set(&page->_mapcount, -1);
1086 __free_page(page);
1087 break;
1088 }
1089 }
1090
1091 static void tlb_remove_table_smp_sync(void *arg)
1092 {
1093 /* Simply deliver the interrupt */
1094 }
1095
1096 static void tlb_remove_table_one(void *table)
1097 {
1098 /*
1099 * This isn't an RCU grace period and hence the page-tables cannot be
1100 * assumed to be actually RCU-freed.
1101 *
1102 * It is however sufficient for software page-table walkers that rely
1103 * on IRQ disabling. See the comment near struct mmu_table_batch.
1104 */
1105 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
1106 __tlb_remove_table(table);
1107 }
1108
1109 static void tlb_remove_table_rcu(struct rcu_head *head)
1110 {
1111 struct mmu_table_batch *batch;
1112 int i;
1113
1114 batch = container_of(head, struct mmu_table_batch, rcu);
1115
1116 for (i = 0; i < batch->nr; i++)
1117 __tlb_remove_table(batch->tables[i]);
1118
1119 free_page((unsigned long)batch);
1120 }
1121
1122 void tlb_table_flush(struct mmu_gather *tlb)
1123 {
1124 struct mmu_table_batch **batch = &tlb->batch;
1125
1126 if (*batch) {
1127 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
1128 *batch = NULL;
1129 }
1130 }
1131
1132 void tlb_remove_table(struct mmu_gather *tlb, void *table)
1133 {
1134 struct mmu_table_batch **batch = &tlb->batch;
1135
1136 tlb->mm->context.flush_mm = 1;
1137 if (*batch == NULL) {
1138 *batch = (struct mmu_table_batch *)
1139 __get_free_page(GFP_NOWAIT | __GFP_NOWARN);
1140 if (*batch == NULL) {
1141 __tlb_flush_mm_lazy(tlb->mm);
1142 tlb_remove_table_one(table);
1143 return;
1144 }
1145 (*batch)->nr = 0;
1146 }
1147 (*batch)->tables[(*batch)->nr++] = table;
1148 if ((*batch)->nr == MAX_TABLE_BATCH)
1149 tlb_flush_mmu(tlb);
1150 }
1151
1152 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1153 static inline void thp_split_vma(struct vm_area_struct *vma)
1154 {
1155 unsigned long addr;
1156
1157 for (addr = vma->vm_start; addr < vma->vm_end; addr += PAGE_SIZE)
1158 follow_page(vma, addr, FOLL_SPLIT);
1159 }
1160
1161 static inline void thp_split_mm(struct mm_struct *mm)
1162 {
1163 struct vm_area_struct *vma;
1164
1165 for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) {
1166 thp_split_vma(vma);
1167 vma->vm_flags &= ~VM_HUGEPAGE;
1168 vma->vm_flags |= VM_NOHUGEPAGE;
1169 }
1170 mm->def_flags |= VM_NOHUGEPAGE;
1171 }
1172 #else
1173 static inline void thp_split_mm(struct mm_struct *mm)
1174 {
1175 }
1176 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1177
1178 /*
1179 * switch on pgstes for its userspace process (for kvm)
1180 */
1181 int s390_enable_sie(void)
1182 {
1183 struct mm_struct *mm = current->mm;
1184
1185 /* Do we have pgstes? if yes, we are done */
1186 if (mm_has_pgste(mm))
1187 return 0;
1188 /* Fail if the page tables are 2K */
1189 if (!mm_alloc_pgste(mm))
1190 return -EINVAL;
1191 down_write(&mm->mmap_sem);
1192 mm->context.has_pgste = 1;
1193 /* split thp mappings and disable thp for future mappings */
1194 thp_split_mm(mm);
1195 up_write(&mm->mmap_sem);
1196 return 0;
1197 }
1198 EXPORT_SYMBOL_GPL(s390_enable_sie);
1199
1200 /*
1201 * Enable storage key handling from now on and initialize the storage
1202 * keys with the default key.
1203 */
1204 static int __s390_enable_skey(pte_t *pte, unsigned long addr,
1205 unsigned long next, struct mm_walk *walk)
1206 {
1207 unsigned long ptev;
1208 pgste_t pgste;
1209
1210 pgste = pgste_get_lock(pte);
1211 /*
1212 * Remove all zero page mappings,
1213 * after establishing a policy to forbid zero page mappings
1214 * following faults for that page will get fresh anonymous pages
1215 */
1216 if (is_zero_pfn(pte_pfn(*pte))) {
1217 ptep_flush_direct(walk->mm, addr, pte);
1218 pte_val(*pte) = _PAGE_INVALID;
1219 }
1220 /* Clear storage key */
1221 pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT |
1222 PGSTE_GR_BIT | PGSTE_GC_BIT);
1223 ptev = pte_val(*pte);
1224 if (!(ptev & _PAGE_INVALID) && (ptev & _PAGE_WRITE))
1225 page_set_storage_key(ptev & PAGE_MASK, PAGE_DEFAULT_KEY, 1);
1226 pgste_set_unlock(pte, pgste);
1227 return 0;
1228 }
1229
1230 int s390_enable_skey(void)
1231 {
1232 struct mm_walk walk = { .pte_entry = __s390_enable_skey };
1233 struct mm_struct *mm = current->mm;
1234 struct vm_area_struct *vma;
1235 int rc = 0;
1236
1237 down_write(&mm->mmap_sem);
1238 if (mm_use_skey(mm))
1239 goto out_up;
1240
1241 mm->context.use_skey = 1;
1242 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1243 if (ksm_madvise(vma, vma->vm_start, vma->vm_end,
1244 MADV_UNMERGEABLE, &vma->vm_flags)) {
1245 mm->context.use_skey = 0;
1246 rc = -ENOMEM;
1247 goto out_up;
1248 }
1249 }
1250 mm->def_flags &= ~VM_MERGEABLE;
1251
1252 walk.mm = mm;
1253 walk_page_range(0, TASK_SIZE, &walk);
1254
1255 out_up:
1256 up_write(&mm->mmap_sem);
1257 return rc;
1258 }
1259 EXPORT_SYMBOL_GPL(s390_enable_skey);
1260
1261 /*
1262 * Reset CMMA state, make all pages stable again.
1263 */
1264 static int __s390_reset_cmma(pte_t *pte, unsigned long addr,
1265 unsigned long next, struct mm_walk *walk)
1266 {
1267 pgste_t pgste;
1268
1269 pgste = pgste_get_lock(pte);
1270 pgste_val(pgste) &= ~_PGSTE_GPS_USAGE_MASK;
1271 pgste_set_unlock(pte, pgste);
1272 return 0;
1273 }
1274
1275 void s390_reset_cmma(struct mm_struct *mm)
1276 {
1277 struct mm_walk walk = { .pte_entry = __s390_reset_cmma };
1278
1279 down_write(&mm->mmap_sem);
1280 walk.mm = mm;
1281 walk_page_range(0, TASK_SIZE, &walk);
1282 up_write(&mm->mmap_sem);
1283 }
1284 EXPORT_SYMBOL_GPL(s390_reset_cmma);
1285
1286 /*
1287 * Test and reset if a guest page is dirty
1288 */
1289 bool gmap_test_and_clear_dirty(unsigned long address, struct gmap *gmap)
1290 {
1291 pte_t *pte;
1292 spinlock_t *ptl;
1293 bool dirty = false;
1294
1295 pte = get_locked_pte(gmap->mm, address, &ptl);
1296 if (unlikely(!pte))
1297 return false;
1298
1299 if (ptep_test_and_clear_user_dirty(gmap->mm, address, pte))
1300 dirty = true;
1301
1302 spin_unlock(ptl);
1303 return dirty;
1304 }
1305 EXPORT_SYMBOL_GPL(gmap_test_and_clear_dirty);
1306
1307 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1308 int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address,
1309 pmd_t *pmdp)
1310 {
1311 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1312 /* No need to flush TLB
1313 * On s390 reference bits are in storage key and never in TLB */
1314 return pmdp_test_and_clear_young(vma, address, pmdp);
1315 }
1316
1317 int pmdp_set_access_flags(struct vm_area_struct *vma,
1318 unsigned long address, pmd_t *pmdp,
1319 pmd_t entry, int dirty)
1320 {
1321 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1322
1323 entry = pmd_mkyoung(entry);
1324 if (dirty)
1325 entry = pmd_mkdirty(entry);
1326 if (pmd_same(*pmdp, entry))
1327 return 0;
1328 pmdp_invalidate(vma, address, pmdp);
1329 set_pmd_at(vma->vm_mm, address, pmdp, entry);
1330 return 1;
1331 }
1332
1333 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1334 pgtable_t pgtable)
1335 {
1336 struct list_head *lh = (struct list_head *) pgtable;
1337
1338 assert_spin_locked(pmd_lockptr(mm, pmdp));
1339
1340 /* FIFO */
1341 if (!pmd_huge_pte(mm, pmdp))
1342 INIT_LIST_HEAD(lh);
1343 else
1344 list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
1345 pmd_huge_pte(mm, pmdp) = pgtable;
1346 }
1347
1348 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
1349 {
1350 struct list_head *lh;
1351 pgtable_t pgtable;
1352 pte_t *ptep;
1353
1354 assert_spin_locked(pmd_lockptr(mm, pmdp));
1355
1356 /* FIFO */
1357 pgtable = pmd_huge_pte(mm, pmdp);
1358 lh = (struct list_head *) pgtable;
1359 if (list_empty(lh))
1360 pmd_huge_pte(mm, pmdp) = NULL;
1361 else {
1362 pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
1363 list_del(lh);
1364 }
1365 ptep = (pte_t *) pgtable;
1366 pte_val(*ptep) = _PAGE_INVALID;
1367 ptep++;
1368 pte_val(*ptep) = _PAGE_INVALID;
1369 return pgtable;
1370 }
1371 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */