]> git.proxmox.com Git - mirror_ubuntu-bionic-kernel.git/blob - arch/s390/mm/pgtable.c
Merge tag 'for-linus' of git://git.kernel.org/pub/scm/virt/kvm/kvm
[mirror_ubuntu-bionic-kernel.git] / arch / s390 / mm / pgtable.c
1 /*
2 * Copyright IBM Corp. 2007, 2011
3 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
4 */
5
6 #include <linux/sched.h>
7 #include <linux/kernel.h>
8 #include <linux/errno.h>
9 #include <linux/gfp.h>
10 #include <linux/mm.h>
11 #include <linux/swap.h>
12 #include <linux/smp.h>
13 #include <linux/highmem.h>
14 #include <linux/pagemap.h>
15 #include <linux/spinlock.h>
16 #include <linux/module.h>
17 #include <linux/quicklist.h>
18 #include <linux/rcupdate.h>
19 #include <linux/slab.h>
20 #include <linux/swapops.h>
21 #include <linux/ksm.h>
22 #include <linux/mman.h>
23
24 #include <asm/pgtable.h>
25 #include <asm/pgalloc.h>
26 #include <asm/tlb.h>
27 #include <asm/tlbflush.h>
28 #include <asm/mmu_context.h>
29
30 #ifndef CONFIG_64BIT
31 #define ALLOC_ORDER 1
32 #define FRAG_MASK 0x0f
33 #else
34 #define ALLOC_ORDER 2
35 #define FRAG_MASK 0x03
36 #endif
37
38
39 unsigned long *crst_table_alloc(struct mm_struct *mm)
40 {
41 struct page *page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
42
43 if (!page)
44 return NULL;
45 return (unsigned long *) page_to_phys(page);
46 }
47
48 void crst_table_free(struct mm_struct *mm, unsigned long *table)
49 {
50 free_pages((unsigned long) table, ALLOC_ORDER);
51 }
52
53 #ifdef CONFIG_64BIT
54 static void __crst_table_upgrade(void *arg)
55 {
56 struct mm_struct *mm = arg;
57
58 if (current->active_mm == mm) {
59 clear_user_asce();
60 set_user_asce(mm);
61 }
62 __tlb_flush_local();
63 }
64
65 int crst_table_upgrade(struct mm_struct *mm, unsigned long limit)
66 {
67 unsigned long *table, *pgd;
68 unsigned long entry;
69 int flush;
70
71 BUG_ON(limit > (1UL << 53));
72 flush = 0;
73 repeat:
74 table = crst_table_alloc(mm);
75 if (!table)
76 return -ENOMEM;
77 spin_lock_bh(&mm->page_table_lock);
78 if (mm->context.asce_limit < limit) {
79 pgd = (unsigned long *) mm->pgd;
80 if (mm->context.asce_limit <= (1UL << 31)) {
81 entry = _REGION3_ENTRY_EMPTY;
82 mm->context.asce_limit = 1UL << 42;
83 mm->context.asce_bits = _ASCE_TABLE_LENGTH |
84 _ASCE_USER_BITS |
85 _ASCE_TYPE_REGION3;
86 } else {
87 entry = _REGION2_ENTRY_EMPTY;
88 mm->context.asce_limit = 1UL << 53;
89 mm->context.asce_bits = _ASCE_TABLE_LENGTH |
90 _ASCE_USER_BITS |
91 _ASCE_TYPE_REGION2;
92 }
93 crst_table_init(table, entry);
94 pgd_populate(mm, (pgd_t *) table, (pud_t *) pgd);
95 mm->pgd = (pgd_t *) table;
96 mm->task_size = mm->context.asce_limit;
97 table = NULL;
98 flush = 1;
99 }
100 spin_unlock_bh(&mm->page_table_lock);
101 if (table)
102 crst_table_free(mm, table);
103 if (mm->context.asce_limit < limit)
104 goto repeat;
105 if (flush)
106 on_each_cpu(__crst_table_upgrade, mm, 0);
107 return 0;
108 }
109
110 void crst_table_downgrade(struct mm_struct *mm, unsigned long limit)
111 {
112 pgd_t *pgd;
113
114 if (current->active_mm == mm) {
115 clear_user_asce();
116 __tlb_flush_mm(mm);
117 }
118 while (mm->context.asce_limit > limit) {
119 pgd = mm->pgd;
120 switch (pgd_val(*pgd) & _REGION_ENTRY_TYPE_MASK) {
121 case _REGION_ENTRY_TYPE_R2:
122 mm->context.asce_limit = 1UL << 42;
123 mm->context.asce_bits = _ASCE_TABLE_LENGTH |
124 _ASCE_USER_BITS |
125 _ASCE_TYPE_REGION3;
126 break;
127 case _REGION_ENTRY_TYPE_R3:
128 mm->context.asce_limit = 1UL << 31;
129 mm->context.asce_bits = _ASCE_TABLE_LENGTH |
130 _ASCE_USER_BITS |
131 _ASCE_TYPE_SEGMENT;
132 break;
133 default:
134 BUG();
135 }
136 mm->pgd = (pgd_t *) (pgd_val(*pgd) & _REGION_ENTRY_ORIGIN);
137 mm->task_size = mm->context.asce_limit;
138 crst_table_free(mm, (unsigned long *) pgd);
139 }
140 if (current->active_mm == mm)
141 set_user_asce(mm);
142 }
143 #endif
144
145 #ifdef CONFIG_PGSTE
146
147 /**
148 * gmap_alloc - allocate a guest address space
149 * @mm: pointer to the parent mm_struct
150 * @limit: maximum size of the gmap address space
151 *
152 * Returns a guest address space structure.
153 */
154 struct gmap *gmap_alloc(struct mm_struct *mm, unsigned long limit)
155 {
156 struct gmap *gmap;
157 struct page *page;
158 unsigned long *table;
159 unsigned long etype, atype;
160
161 if (limit < (1UL << 31)) {
162 limit = (1UL << 31) - 1;
163 atype = _ASCE_TYPE_SEGMENT;
164 etype = _SEGMENT_ENTRY_EMPTY;
165 } else if (limit < (1UL << 42)) {
166 limit = (1UL << 42) - 1;
167 atype = _ASCE_TYPE_REGION3;
168 etype = _REGION3_ENTRY_EMPTY;
169 } else if (limit < (1UL << 53)) {
170 limit = (1UL << 53) - 1;
171 atype = _ASCE_TYPE_REGION2;
172 etype = _REGION2_ENTRY_EMPTY;
173 } else {
174 limit = -1UL;
175 atype = _ASCE_TYPE_REGION1;
176 etype = _REGION1_ENTRY_EMPTY;
177 }
178 gmap = kzalloc(sizeof(struct gmap), GFP_KERNEL);
179 if (!gmap)
180 goto out;
181 INIT_LIST_HEAD(&gmap->crst_list);
182 INIT_RADIX_TREE(&gmap->guest_to_host, GFP_KERNEL);
183 INIT_RADIX_TREE(&gmap->host_to_guest, GFP_ATOMIC);
184 spin_lock_init(&gmap->guest_table_lock);
185 gmap->mm = mm;
186 page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
187 if (!page)
188 goto out_free;
189 page->index = 0;
190 list_add(&page->lru, &gmap->crst_list);
191 table = (unsigned long *) page_to_phys(page);
192 crst_table_init(table, etype);
193 gmap->table = table;
194 gmap->asce = atype | _ASCE_TABLE_LENGTH |
195 _ASCE_USER_BITS | __pa(table);
196 gmap->asce_end = limit;
197 down_write(&mm->mmap_sem);
198 list_add(&gmap->list, &mm->context.gmap_list);
199 up_write(&mm->mmap_sem);
200 return gmap;
201
202 out_free:
203 kfree(gmap);
204 out:
205 return NULL;
206 }
207 EXPORT_SYMBOL_GPL(gmap_alloc);
208
209 static void gmap_flush_tlb(struct gmap *gmap)
210 {
211 if (MACHINE_HAS_IDTE)
212 __tlb_flush_asce(gmap->mm, gmap->asce);
213 else
214 __tlb_flush_global();
215 }
216
217 static void gmap_radix_tree_free(struct radix_tree_root *root)
218 {
219 struct radix_tree_iter iter;
220 unsigned long indices[16];
221 unsigned long index;
222 void **slot;
223 int i, nr;
224
225 /* A radix tree is freed by deleting all of its entries */
226 index = 0;
227 do {
228 nr = 0;
229 radix_tree_for_each_slot(slot, root, &iter, index) {
230 indices[nr] = iter.index;
231 if (++nr == 16)
232 break;
233 }
234 for (i = 0; i < nr; i++) {
235 index = indices[i];
236 radix_tree_delete(root, index);
237 }
238 } while (nr > 0);
239 }
240
241 /**
242 * gmap_free - free a guest address space
243 * @gmap: pointer to the guest address space structure
244 */
245 void gmap_free(struct gmap *gmap)
246 {
247 struct page *page, *next;
248
249 /* Flush tlb. */
250 if (MACHINE_HAS_IDTE)
251 __tlb_flush_asce(gmap->mm, gmap->asce);
252 else
253 __tlb_flush_global();
254
255 /* Free all segment & region tables. */
256 list_for_each_entry_safe(page, next, &gmap->crst_list, lru)
257 __free_pages(page, ALLOC_ORDER);
258 gmap_radix_tree_free(&gmap->guest_to_host);
259 gmap_radix_tree_free(&gmap->host_to_guest);
260 down_write(&gmap->mm->mmap_sem);
261 list_del(&gmap->list);
262 up_write(&gmap->mm->mmap_sem);
263 kfree(gmap);
264 }
265 EXPORT_SYMBOL_GPL(gmap_free);
266
267 /**
268 * gmap_enable - switch primary space to the guest address space
269 * @gmap: pointer to the guest address space structure
270 */
271 void gmap_enable(struct gmap *gmap)
272 {
273 S390_lowcore.gmap = (unsigned long) gmap;
274 }
275 EXPORT_SYMBOL_GPL(gmap_enable);
276
277 /**
278 * gmap_disable - switch back to the standard primary address space
279 * @gmap: pointer to the guest address space structure
280 */
281 void gmap_disable(struct gmap *gmap)
282 {
283 S390_lowcore.gmap = 0UL;
284 }
285 EXPORT_SYMBOL_GPL(gmap_disable);
286
287 /*
288 * gmap_alloc_table is assumed to be called with mmap_sem held
289 */
290 static int gmap_alloc_table(struct gmap *gmap, unsigned long *table,
291 unsigned long init, unsigned long gaddr)
292 {
293 struct page *page;
294 unsigned long *new;
295
296 /* since we dont free the gmap table until gmap_free we can unlock */
297 page = alloc_pages(GFP_KERNEL, ALLOC_ORDER);
298 if (!page)
299 return -ENOMEM;
300 new = (unsigned long *) page_to_phys(page);
301 crst_table_init(new, init);
302 spin_lock(&gmap->mm->page_table_lock);
303 if (*table & _REGION_ENTRY_INVALID) {
304 list_add(&page->lru, &gmap->crst_list);
305 *table = (unsigned long) new | _REGION_ENTRY_LENGTH |
306 (*table & _REGION_ENTRY_TYPE_MASK);
307 page->index = gaddr;
308 page = NULL;
309 }
310 spin_unlock(&gmap->mm->page_table_lock);
311 if (page)
312 __free_pages(page, ALLOC_ORDER);
313 return 0;
314 }
315
316 /**
317 * __gmap_segment_gaddr - find virtual address from segment pointer
318 * @entry: pointer to a segment table entry in the guest address space
319 *
320 * Returns the virtual address in the guest address space for the segment
321 */
322 static unsigned long __gmap_segment_gaddr(unsigned long *entry)
323 {
324 struct page *page;
325 unsigned long offset;
326
327 offset = (unsigned long) entry / sizeof(unsigned long);
328 offset = (offset & (PTRS_PER_PMD - 1)) * PMD_SIZE;
329 page = pmd_to_page((pmd_t *) entry);
330 return page->index + offset;
331 }
332
333 /**
334 * __gmap_unlink_by_vmaddr - unlink a single segment via a host address
335 * @gmap: pointer to the guest address space structure
336 * @vmaddr: address in the host process address space
337 *
338 * Returns 1 if a TLB flush is required
339 */
340 static int __gmap_unlink_by_vmaddr(struct gmap *gmap, unsigned long vmaddr)
341 {
342 unsigned long *entry;
343 int flush = 0;
344
345 spin_lock(&gmap->guest_table_lock);
346 entry = radix_tree_delete(&gmap->host_to_guest, vmaddr >> PMD_SHIFT);
347 if (entry) {
348 flush = (*entry != _SEGMENT_ENTRY_INVALID);
349 *entry = _SEGMENT_ENTRY_INVALID;
350 }
351 spin_unlock(&gmap->guest_table_lock);
352 return flush;
353 }
354
355 /**
356 * __gmap_unmap_by_gaddr - unmap a single segment via a guest address
357 * @gmap: pointer to the guest address space structure
358 * @gaddr: address in the guest address space
359 *
360 * Returns 1 if a TLB flush is required
361 */
362 static int __gmap_unmap_by_gaddr(struct gmap *gmap, unsigned long gaddr)
363 {
364 unsigned long vmaddr;
365
366 vmaddr = (unsigned long) radix_tree_delete(&gmap->guest_to_host,
367 gaddr >> PMD_SHIFT);
368 return vmaddr ? __gmap_unlink_by_vmaddr(gmap, vmaddr) : 0;
369 }
370
371 /**
372 * gmap_unmap_segment - unmap segment from the guest address space
373 * @gmap: pointer to the guest address space structure
374 * @to: address in the guest address space
375 * @len: length of the memory area to unmap
376 *
377 * Returns 0 if the unmap succeeded, -EINVAL if not.
378 */
379 int gmap_unmap_segment(struct gmap *gmap, unsigned long to, unsigned long len)
380 {
381 unsigned long off;
382 int flush;
383
384 if ((to | len) & (PMD_SIZE - 1))
385 return -EINVAL;
386 if (len == 0 || to + len < to)
387 return -EINVAL;
388
389 flush = 0;
390 down_write(&gmap->mm->mmap_sem);
391 for (off = 0; off < len; off += PMD_SIZE)
392 flush |= __gmap_unmap_by_gaddr(gmap, to + off);
393 up_write(&gmap->mm->mmap_sem);
394 if (flush)
395 gmap_flush_tlb(gmap);
396 return 0;
397 }
398 EXPORT_SYMBOL_GPL(gmap_unmap_segment);
399
400 /**
401 * gmap_mmap_segment - map a segment to the guest address space
402 * @gmap: pointer to the guest address space structure
403 * @from: source address in the parent address space
404 * @to: target address in the guest address space
405 * @len: length of the memory area to map
406 *
407 * Returns 0 if the mmap succeeded, -EINVAL or -ENOMEM if not.
408 */
409 int gmap_map_segment(struct gmap *gmap, unsigned long from,
410 unsigned long to, unsigned long len)
411 {
412 unsigned long off;
413 int flush;
414
415 if ((from | to | len) & (PMD_SIZE - 1))
416 return -EINVAL;
417 if (len == 0 || from + len < from || to + len < to ||
418 from + len > TASK_MAX_SIZE || to + len > gmap->asce_end)
419 return -EINVAL;
420
421 flush = 0;
422 down_write(&gmap->mm->mmap_sem);
423 for (off = 0; off < len; off += PMD_SIZE) {
424 /* Remove old translation */
425 flush |= __gmap_unmap_by_gaddr(gmap, to + off);
426 /* Store new translation */
427 if (radix_tree_insert(&gmap->guest_to_host,
428 (to + off) >> PMD_SHIFT,
429 (void *) from + off))
430 break;
431 }
432 up_write(&gmap->mm->mmap_sem);
433 if (flush)
434 gmap_flush_tlb(gmap);
435 if (off >= len)
436 return 0;
437 gmap_unmap_segment(gmap, to, len);
438 return -ENOMEM;
439 }
440 EXPORT_SYMBOL_GPL(gmap_map_segment);
441
442 /**
443 * __gmap_translate - translate a guest address to a user space address
444 * @gmap: pointer to guest mapping meta data structure
445 * @gaddr: guest address
446 *
447 * Returns user space address which corresponds to the guest address or
448 * -EFAULT if no such mapping exists.
449 * This function does not establish potentially missing page table entries.
450 * The mmap_sem of the mm that belongs to the address space must be held
451 * when this function gets called.
452 */
453 unsigned long __gmap_translate(struct gmap *gmap, unsigned long gaddr)
454 {
455 unsigned long vmaddr;
456
457 vmaddr = (unsigned long)
458 radix_tree_lookup(&gmap->guest_to_host, gaddr >> PMD_SHIFT);
459 return vmaddr ? (vmaddr | (gaddr & ~PMD_MASK)) : -EFAULT;
460 }
461 EXPORT_SYMBOL_GPL(__gmap_translate);
462
463 /**
464 * gmap_translate - translate a guest address to a user space address
465 * @gmap: pointer to guest mapping meta data structure
466 * @gaddr: guest address
467 *
468 * Returns user space address which corresponds to the guest address or
469 * -EFAULT if no such mapping exists.
470 * This function does not establish potentially missing page table entries.
471 */
472 unsigned long gmap_translate(struct gmap *gmap, unsigned long gaddr)
473 {
474 unsigned long rc;
475
476 down_read(&gmap->mm->mmap_sem);
477 rc = __gmap_translate(gmap, gaddr);
478 up_read(&gmap->mm->mmap_sem);
479 return rc;
480 }
481 EXPORT_SYMBOL_GPL(gmap_translate);
482
483 /**
484 * gmap_unlink - disconnect a page table from the gmap shadow tables
485 * @gmap: pointer to guest mapping meta data structure
486 * @table: pointer to the host page table
487 * @vmaddr: vm address associated with the host page table
488 */
489 static void gmap_unlink(struct mm_struct *mm, unsigned long *table,
490 unsigned long vmaddr)
491 {
492 struct gmap *gmap;
493 int flush;
494
495 list_for_each_entry(gmap, &mm->context.gmap_list, list) {
496 flush = __gmap_unlink_by_vmaddr(gmap, vmaddr);
497 if (flush)
498 gmap_flush_tlb(gmap);
499 }
500 }
501
502 /**
503 * gmap_link - set up shadow page tables to connect a host to a guest address
504 * @gmap: pointer to guest mapping meta data structure
505 * @gaddr: guest address
506 * @vmaddr: vm address
507 *
508 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
509 * if the vm address is already mapped to a different guest segment.
510 * The mmap_sem of the mm that belongs to the address space must be held
511 * when this function gets called.
512 */
513 int __gmap_link(struct gmap *gmap, unsigned long gaddr, unsigned long vmaddr)
514 {
515 struct mm_struct *mm;
516 unsigned long *table;
517 spinlock_t *ptl;
518 pgd_t *pgd;
519 pud_t *pud;
520 pmd_t *pmd;
521 int rc;
522
523 /* Create higher level tables in the gmap page table */
524 table = gmap->table;
525 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION1) {
526 table += (gaddr >> 53) & 0x7ff;
527 if ((*table & _REGION_ENTRY_INVALID) &&
528 gmap_alloc_table(gmap, table, _REGION2_ENTRY_EMPTY,
529 gaddr & 0xffe0000000000000))
530 return -ENOMEM;
531 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
532 }
533 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION2) {
534 table += (gaddr >> 42) & 0x7ff;
535 if ((*table & _REGION_ENTRY_INVALID) &&
536 gmap_alloc_table(gmap, table, _REGION3_ENTRY_EMPTY,
537 gaddr & 0xfffffc0000000000))
538 return -ENOMEM;
539 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
540 }
541 if ((gmap->asce & _ASCE_TYPE_MASK) >= _ASCE_TYPE_REGION3) {
542 table += (gaddr >> 31) & 0x7ff;
543 if ((*table & _REGION_ENTRY_INVALID) &&
544 gmap_alloc_table(gmap, table, _SEGMENT_ENTRY_EMPTY,
545 gaddr & 0xffffffff80000000))
546 return -ENOMEM;
547 table = (unsigned long *)(*table & _REGION_ENTRY_ORIGIN);
548 }
549 table += (gaddr >> 20) & 0x7ff;
550 /* Walk the parent mm page table */
551 mm = gmap->mm;
552 pgd = pgd_offset(mm, vmaddr);
553 VM_BUG_ON(pgd_none(*pgd));
554 pud = pud_offset(pgd, vmaddr);
555 VM_BUG_ON(pud_none(*pud));
556 pmd = pmd_offset(pud, vmaddr);
557 VM_BUG_ON(pmd_none(*pmd));
558 /* large pmds cannot yet be handled */
559 if (pmd_large(*pmd))
560 return -EFAULT;
561 /* Link gmap segment table entry location to page table. */
562 rc = radix_tree_preload(GFP_KERNEL);
563 if (rc)
564 return rc;
565 ptl = pmd_lock(mm, pmd);
566 spin_lock(&gmap->guest_table_lock);
567 if (*table == _SEGMENT_ENTRY_INVALID) {
568 rc = radix_tree_insert(&gmap->host_to_guest,
569 vmaddr >> PMD_SHIFT, table);
570 if (!rc)
571 *table = pmd_val(*pmd);
572 } else
573 rc = 0;
574 spin_unlock(&gmap->guest_table_lock);
575 spin_unlock(ptl);
576 radix_tree_preload_end();
577 return rc;
578 }
579
580 /**
581 * gmap_fault - resolve a fault on a guest address
582 * @gmap: pointer to guest mapping meta data structure
583 * @gaddr: guest address
584 * @fault_flags: flags to pass down to handle_mm_fault()
585 *
586 * Returns 0 on success, -ENOMEM for out of memory conditions, and -EFAULT
587 * if the vm address is already mapped to a different guest segment.
588 */
589 int gmap_fault(struct gmap *gmap, unsigned long gaddr,
590 unsigned int fault_flags)
591 {
592 unsigned long vmaddr;
593 int rc;
594
595 down_read(&gmap->mm->mmap_sem);
596 vmaddr = __gmap_translate(gmap, gaddr);
597 if (IS_ERR_VALUE(vmaddr)) {
598 rc = vmaddr;
599 goto out_up;
600 }
601 if (fixup_user_fault(current, gmap->mm, vmaddr, fault_flags)) {
602 rc = -EFAULT;
603 goto out_up;
604 }
605 rc = __gmap_link(gmap, gaddr, vmaddr);
606 out_up:
607 up_read(&gmap->mm->mmap_sem);
608 return rc;
609 }
610 EXPORT_SYMBOL_GPL(gmap_fault);
611
612 static void gmap_zap_swap_entry(swp_entry_t entry, struct mm_struct *mm)
613 {
614 if (!non_swap_entry(entry))
615 dec_mm_counter(mm, MM_SWAPENTS);
616 else if (is_migration_entry(entry)) {
617 struct page *page = migration_entry_to_page(entry);
618
619 if (PageAnon(page))
620 dec_mm_counter(mm, MM_ANONPAGES);
621 else
622 dec_mm_counter(mm, MM_FILEPAGES);
623 }
624 free_swap_and_cache(entry);
625 }
626
627 /*
628 * this function is assumed to be called with mmap_sem held
629 */
630 void __gmap_zap(struct gmap *gmap, unsigned long gaddr)
631 {
632 unsigned long vmaddr, ptev, pgstev;
633 pte_t *ptep, pte;
634 spinlock_t *ptl;
635 pgste_t pgste;
636
637 /* Find the vm address for the guest address */
638 vmaddr = (unsigned long) radix_tree_lookup(&gmap->guest_to_host,
639 gaddr >> PMD_SHIFT);
640 if (!vmaddr)
641 return;
642 vmaddr |= gaddr & ~PMD_MASK;
643 /* Get pointer to the page table entry */
644 ptep = get_locked_pte(gmap->mm, vmaddr, &ptl);
645 if (unlikely(!ptep))
646 return;
647 pte = *ptep;
648 if (!pte_swap(pte))
649 goto out_pte;
650 /* Zap unused and logically-zero pages */
651 pgste = pgste_get_lock(ptep);
652 pgstev = pgste_val(pgste);
653 ptev = pte_val(pte);
654 if (((pgstev & _PGSTE_GPS_USAGE_MASK) == _PGSTE_GPS_USAGE_UNUSED) ||
655 ((pgstev & _PGSTE_GPS_ZERO) && (ptev & _PAGE_INVALID))) {
656 gmap_zap_swap_entry(pte_to_swp_entry(pte), gmap->mm);
657 pte_clear(gmap->mm, vmaddr, ptep);
658 }
659 pgste_set_unlock(ptep, pgste);
660 out_pte:
661 pte_unmap_unlock(ptep, ptl);
662 }
663 EXPORT_SYMBOL_GPL(__gmap_zap);
664
665 void gmap_discard(struct gmap *gmap, unsigned long from, unsigned long to)
666 {
667 unsigned long gaddr, vmaddr, size;
668 struct vm_area_struct *vma;
669
670 down_read(&gmap->mm->mmap_sem);
671 for (gaddr = from; gaddr < to;
672 gaddr = (gaddr + PMD_SIZE) & PMD_MASK) {
673 /* Find the vm address for the guest address */
674 vmaddr = (unsigned long)
675 radix_tree_lookup(&gmap->guest_to_host,
676 gaddr >> PMD_SHIFT);
677 if (!vmaddr)
678 continue;
679 vmaddr |= gaddr & ~PMD_MASK;
680 /* Find vma in the parent mm */
681 vma = find_vma(gmap->mm, vmaddr);
682 size = min(to - gaddr, PMD_SIZE - (gaddr & ~PMD_MASK));
683 zap_page_range(vma, vmaddr, size, NULL);
684 }
685 up_read(&gmap->mm->mmap_sem);
686 }
687 EXPORT_SYMBOL_GPL(gmap_discard);
688
689 static LIST_HEAD(gmap_notifier_list);
690 static DEFINE_SPINLOCK(gmap_notifier_lock);
691
692 /**
693 * gmap_register_ipte_notifier - register a pte invalidation callback
694 * @nb: pointer to the gmap notifier block
695 */
696 void gmap_register_ipte_notifier(struct gmap_notifier *nb)
697 {
698 spin_lock(&gmap_notifier_lock);
699 list_add(&nb->list, &gmap_notifier_list);
700 spin_unlock(&gmap_notifier_lock);
701 }
702 EXPORT_SYMBOL_GPL(gmap_register_ipte_notifier);
703
704 /**
705 * gmap_unregister_ipte_notifier - remove a pte invalidation callback
706 * @nb: pointer to the gmap notifier block
707 */
708 void gmap_unregister_ipte_notifier(struct gmap_notifier *nb)
709 {
710 spin_lock(&gmap_notifier_lock);
711 list_del_init(&nb->list);
712 spin_unlock(&gmap_notifier_lock);
713 }
714 EXPORT_SYMBOL_GPL(gmap_unregister_ipte_notifier);
715
716 /**
717 * gmap_ipte_notify - mark a range of ptes for invalidation notification
718 * @gmap: pointer to guest mapping meta data structure
719 * @gaddr: virtual address in the guest address space
720 * @len: size of area
721 *
722 * Returns 0 if for each page in the given range a gmap mapping exists and
723 * the invalidation notification could be set. If the gmap mapping is missing
724 * for one or more pages -EFAULT is returned. If no memory could be allocated
725 * -ENOMEM is returned. This function establishes missing page table entries.
726 */
727 int gmap_ipte_notify(struct gmap *gmap, unsigned long gaddr, unsigned long len)
728 {
729 unsigned long addr;
730 spinlock_t *ptl;
731 pte_t *ptep, entry;
732 pgste_t pgste;
733 int rc = 0;
734
735 if ((gaddr & ~PAGE_MASK) || (len & ~PAGE_MASK))
736 return -EINVAL;
737 down_read(&gmap->mm->mmap_sem);
738 while (len) {
739 /* Convert gmap address and connect the page tables */
740 addr = __gmap_translate(gmap, gaddr);
741 if (IS_ERR_VALUE(addr)) {
742 rc = addr;
743 break;
744 }
745 /* Get the page mapped */
746 if (fixup_user_fault(current, gmap->mm, addr, FAULT_FLAG_WRITE)) {
747 rc = -EFAULT;
748 break;
749 }
750 rc = __gmap_link(gmap, gaddr, addr);
751 if (rc)
752 break;
753 /* Walk the process page table, lock and get pte pointer */
754 ptep = get_locked_pte(gmap->mm, addr, &ptl);
755 VM_BUG_ON(!ptep);
756 /* Set notification bit in the pgste of the pte */
757 entry = *ptep;
758 if ((pte_val(entry) & (_PAGE_INVALID | _PAGE_PROTECT)) == 0) {
759 pgste = pgste_get_lock(ptep);
760 pgste_val(pgste) |= PGSTE_IN_BIT;
761 pgste_set_unlock(ptep, pgste);
762 gaddr += PAGE_SIZE;
763 len -= PAGE_SIZE;
764 }
765 pte_unmap_unlock(ptep, ptl);
766 }
767 up_read(&gmap->mm->mmap_sem);
768 return rc;
769 }
770 EXPORT_SYMBOL_GPL(gmap_ipte_notify);
771
772 /**
773 * gmap_do_ipte_notify - call all invalidation callbacks for a specific pte.
774 * @mm: pointer to the process mm_struct
775 * @addr: virtual address in the process address space
776 * @pte: pointer to the page table entry
777 *
778 * This function is assumed to be called with the page table lock held
779 * for the pte to notify.
780 */
781 void gmap_do_ipte_notify(struct mm_struct *mm, unsigned long vmaddr, pte_t *pte)
782 {
783 unsigned long offset, gaddr;
784 unsigned long *table;
785 struct gmap_notifier *nb;
786 struct gmap *gmap;
787
788 offset = ((unsigned long) pte) & (255 * sizeof(pte_t));
789 offset = offset * (4096 / sizeof(pte_t));
790 spin_lock(&gmap_notifier_lock);
791 list_for_each_entry(gmap, &mm->context.gmap_list, list) {
792 table = radix_tree_lookup(&gmap->host_to_guest,
793 vmaddr >> PMD_SHIFT);
794 if (!table)
795 continue;
796 gaddr = __gmap_segment_gaddr(table) + offset;
797 list_for_each_entry(nb, &gmap_notifier_list, list)
798 nb->notifier_call(gmap, gaddr);
799 }
800 spin_unlock(&gmap_notifier_lock);
801 }
802 EXPORT_SYMBOL_GPL(gmap_do_ipte_notify);
803
804 static inline int page_table_with_pgste(struct page *page)
805 {
806 return atomic_read(&page->_mapcount) == 0;
807 }
808
809 static inline unsigned long *page_table_alloc_pgste(struct mm_struct *mm)
810 {
811 struct page *page;
812 unsigned long *table;
813
814 page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
815 if (!page)
816 return NULL;
817 if (!pgtable_page_ctor(page)) {
818 __free_page(page);
819 return NULL;
820 }
821 atomic_set(&page->_mapcount, 0);
822 table = (unsigned long *) page_to_phys(page);
823 clear_table(table, _PAGE_INVALID, PAGE_SIZE/2);
824 clear_table(table + PTRS_PER_PTE, 0, PAGE_SIZE/2);
825 return table;
826 }
827
828 static inline void page_table_free_pgste(unsigned long *table)
829 {
830 struct page *page;
831
832 page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
833 pgtable_page_dtor(page);
834 atomic_set(&page->_mapcount, -1);
835 __free_page(page);
836 }
837
838 int set_guest_storage_key(struct mm_struct *mm, unsigned long addr,
839 unsigned long key, bool nq)
840 {
841 spinlock_t *ptl;
842 pgste_t old, new;
843 pte_t *ptep;
844
845 down_read(&mm->mmap_sem);
846 retry:
847 ptep = get_locked_pte(mm, addr, &ptl);
848 if (unlikely(!ptep)) {
849 up_read(&mm->mmap_sem);
850 return -EFAULT;
851 }
852 if (!(pte_val(*ptep) & _PAGE_INVALID) &&
853 (pte_val(*ptep) & _PAGE_PROTECT)) {
854 pte_unmap_unlock(ptep, ptl);
855 if (fixup_user_fault(current, mm, addr, FAULT_FLAG_WRITE)) {
856 up_read(&mm->mmap_sem);
857 return -EFAULT;
858 }
859 goto retry;
860 }
861
862 new = old = pgste_get_lock(ptep);
863 pgste_val(new) &= ~(PGSTE_GR_BIT | PGSTE_GC_BIT |
864 PGSTE_ACC_BITS | PGSTE_FP_BIT);
865 pgste_val(new) |= (key & (_PAGE_CHANGED | _PAGE_REFERENCED)) << 48;
866 pgste_val(new) |= (key & (_PAGE_ACC_BITS | _PAGE_FP_BIT)) << 56;
867 if (!(pte_val(*ptep) & _PAGE_INVALID)) {
868 unsigned long address, bits, skey;
869
870 address = pte_val(*ptep) & PAGE_MASK;
871 skey = (unsigned long) page_get_storage_key(address);
872 bits = skey & (_PAGE_CHANGED | _PAGE_REFERENCED);
873 skey = key & (_PAGE_ACC_BITS | _PAGE_FP_BIT);
874 /* Set storage key ACC and FP */
875 page_set_storage_key(address, skey, !nq);
876 /* Merge host changed & referenced into pgste */
877 pgste_val(new) |= bits << 52;
878 }
879 /* changing the guest storage key is considered a change of the page */
880 if ((pgste_val(new) ^ pgste_val(old)) &
881 (PGSTE_ACC_BITS | PGSTE_FP_BIT | PGSTE_GR_BIT | PGSTE_GC_BIT))
882 pgste_val(new) |= PGSTE_UC_BIT;
883
884 pgste_set_unlock(ptep, new);
885 pte_unmap_unlock(ptep, ptl);
886 up_read(&mm->mmap_sem);
887 return 0;
888 }
889 EXPORT_SYMBOL(set_guest_storage_key);
890
891 unsigned long get_guest_storage_key(struct mm_struct *mm, unsigned long addr)
892 {
893 spinlock_t *ptl;
894 pgste_t pgste;
895 pte_t *ptep;
896 uint64_t physaddr;
897 unsigned long key = 0;
898
899 down_read(&mm->mmap_sem);
900 ptep = get_locked_pte(mm, addr, &ptl);
901 if (unlikely(!ptep)) {
902 up_read(&mm->mmap_sem);
903 return -EFAULT;
904 }
905 pgste = pgste_get_lock(ptep);
906
907 if (pte_val(*ptep) & _PAGE_INVALID) {
908 key |= (pgste_val(pgste) & PGSTE_ACC_BITS) >> 56;
909 key |= (pgste_val(pgste) & PGSTE_FP_BIT) >> 56;
910 key |= (pgste_val(pgste) & PGSTE_GR_BIT) >> 48;
911 key |= (pgste_val(pgste) & PGSTE_GC_BIT) >> 48;
912 } else {
913 physaddr = pte_val(*ptep) & PAGE_MASK;
914 key = page_get_storage_key(physaddr);
915
916 /* Reflect guest's logical view, not physical */
917 if (pgste_val(pgste) & PGSTE_GR_BIT)
918 key |= _PAGE_REFERENCED;
919 if (pgste_val(pgste) & PGSTE_GC_BIT)
920 key |= _PAGE_CHANGED;
921 }
922
923 pgste_set_unlock(ptep, pgste);
924 pte_unmap_unlock(ptep, ptl);
925 up_read(&mm->mmap_sem);
926 return key;
927 }
928 EXPORT_SYMBOL(get_guest_storage_key);
929
930 #else /* CONFIG_PGSTE */
931
932 static inline int page_table_with_pgste(struct page *page)
933 {
934 return 0;
935 }
936
937 static inline unsigned long *page_table_alloc_pgste(struct mm_struct *mm)
938 {
939 return NULL;
940 }
941
942 static inline void page_table_free_pgste(unsigned long *table)
943 {
944 }
945
946 static inline void gmap_unlink(struct mm_struct *mm, unsigned long *table,
947 unsigned long vmaddr)
948 {
949 }
950
951 #endif /* CONFIG_PGSTE */
952
953 static inline unsigned int atomic_xor_bits(atomic_t *v, unsigned int bits)
954 {
955 unsigned int old, new;
956
957 do {
958 old = atomic_read(v);
959 new = old ^ bits;
960 } while (atomic_cmpxchg(v, old, new) != old);
961 return new;
962 }
963
964 /*
965 * page table entry allocation/free routines.
966 */
967 unsigned long *page_table_alloc(struct mm_struct *mm)
968 {
969 unsigned long *uninitialized_var(table);
970 struct page *uninitialized_var(page);
971 unsigned int mask, bit;
972
973 if (mm_has_pgste(mm))
974 return page_table_alloc_pgste(mm);
975 /* Allocate fragments of a 4K page as 1K/2K page table */
976 spin_lock_bh(&mm->context.list_lock);
977 mask = FRAG_MASK;
978 if (!list_empty(&mm->context.pgtable_list)) {
979 page = list_first_entry(&mm->context.pgtable_list,
980 struct page, lru);
981 table = (unsigned long *) page_to_phys(page);
982 mask = atomic_read(&page->_mapcount);
983 mask = mask | (mask >> 4);
984 }
985 if ((mask & FRAG_MASK) == FRAG_MASK) {
986 spin_unlock_bh(&mm->context.list_lock);
987 page = alloc_page(GFP_KERNEL|__GFP_REPEAT);
988 if (!page)
989 return NULL;
990 if (!pgtable_page_ctor(page)) {
991 __free_page(page);
992 return NULL;
993 }
994 atomic_set(&page->_mapcount, 1);
995 table = (unsigned long *) page_to_phys(page);
996 clear_table(table, _PAGE_INVALID, PAGE_SIZE);
997 spin_lock_bh(&mm->context.list_lock);
998 list_add(&page->lru, &mm->context.pgtable_list);
999 } else {
1000 for (bit = 1; mask & bit; bit <<= 1)
1001 table += PTRS_PER_PTE;
1002 mask = atomic_xor_bits(&page->_mapcount, bit);
1003 if ((mask & FRAG_MASK) == FRAG_MASK)
1004 list_del(&page->lru);
1005 }
1006 spin_unlock_bh(&mm->context.list_lock);
1007 return table;
1008 }
1009
1010 void page_table_free(struct mm_struct *mm, unsigned long *table)
1011 {
1012 struct page *page;
1013 unsigned int bit, mask;
1014
1015 page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1016 if (page_table_with_pgste(page))
1017 return page_table_free_pgste(table);
1018 /* Free 1K/2K page table fragment of a 4K page */
1019 bit = 1 << ((__pa(table) & ~PAGE_MASK)/(PTRS_PER_PTE*sizeof(pte_t)));
1020 spin_lock_bh(&mm->context.list_lock);
1021 if ((atomic_read(&page->_mapcount) & FRAG_MASK) != FRAG_MASK)
1022 list_del(&page->lru);
1023 mask = atomic_xor_bits(&page->_mapcount, bit);
1024 if (mask & FRAG_MASK)
1025 list_add(&page->lru, &mm->context.pgtable_list);
1026 spin_unlock_bh(&mm->context.list_lock);
1027 if (mask == 0) {
1028 pgtable_page_dtor(page);
1029 atomic_set(&page->_mapcount, -1);
1030 __free_page(page);
1031 }
1032 }
1033
1034 static void __page_table_free_rcu(void *table, unsigned bit)
1035 {
1036 struct page *page;
1037
1038 if (bit == FRAG_MASK)
1039 return page_table_free_pgste(table);
1040 /* Free 1K/2K page table fragment of a 4K page */
1041 page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1042 if (atomic_xor_bits(&page->_mapcount, bit) == 0) {
1043 pgtable_page_dtor(page);
1044 atomic_set(&page->_mapcount, -1);
1045 __free_page(page);
1046 }
1047 }
1048
1049 void page_table_free_rcu(struct mmu_gather *tlb, unsigned long *table,
1050 unsigned long vmaddr)
1051 {
1052 struct mm_struct *mm;
1053 struct page *page;
1054 unsigned int bit, mask;
1055
1056 mm = tlb->mm;
1057 page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1058 if (page_table_with_pgste(page)) {
1059 gmap_unlink(mm, table, vmaddr);
1060 table = (unsigned long *) (__pa(table) | FRAG_MASK);
1061 tlb_remove_table(tlb, table);
1062 return;
1063 }
1064 bit = 1 << ((__pa(table) & ~PAGE_MASK) / (PTRS_PER_PTE*sizeof(pte_t)));
1065 spin_lock_bh(&mm->context.list_lock);
1066 if ((atomic_read(&page->_mapcount) & FRAG_MASK) != FRAG_MASK)
1067 list_del(&page->lru);
1068 mask = atomic_xor_bits(&page->_mapcount, bit | (bit << 4));
1069 if (mask & FRAG_MASK)
1070 list_add_tail(&page->lru, &mm->context.pgtable_list);
1071 spin_unlock_bh(&mm->context.list_lock);
1072 table = (unsigned long *) (__pa(table) | (bit << 4));
1073 tlb_remove_table(tlb, table);
1074 }
1075
1076 static void __tlb_remove_table(void *_table)
1077 {
1078 const unsigned long mask = (FRAG_MASK << 4) | FRAG_MASK;
1079 void *table = (void *)((unsigned long) _table & ~mask);
1080 unsigned type = (unsigned long) _table & mask;
1081
1082 if (type)
1083 __page_table_free_rcu(table, type);
1084 else
1085 free_pages((unsigned long) table, ALLOC_ORDER);
1086 }
1087
1088 static void tlb_remove_table_smp_sync(void *arg)
1089 {
1090 /* Simply deliver the interrupt */
1091 }
1092
1093 static void tlb_remove_table_one(void *table)
1094 {
1095 /*
1096 * This isn't an RCU grace period and hence the page-tables cannot be
1097 * assumed to be actually RCU-freed.
1098 *
1099 * It is however sufficient for software page-table walkers that rely
1100 * on IRQ disabling. See the comment near struct mmu_table_batch.
1101 */
1102 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
1103 __tlb_remove_table(table);
1104 }
1105
1106 static void tlb_remove_table_rcu(struct rcu_head *head)
1107 {
1108 struct mmu_table_batch *batch;
1109 int i;
1110
1111 batch = container_of(head, struct mmu_table_batch, rcu);
1112
1113 for (i = 0; i < batch->nr; i++)
1114 __tlb_remove_table(batch->tables[i]);
1115
1116 free_page((unsigned long)batch);
1117 }
1118
1119 void tlb_table_flush(struct mmu_gather *tlb)
1120 {
1121 struct mmu_table_batch **batch = &tlb->batch;
1122
1123 if (*batch) {
1124 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
1125 *batch = NULL;
1126 }
1127 }
1128
1129 void tlb_remove_table(struct mmu_gather *tlb, void *table)
1130 {
1131 struct mmu_table_batch **batch = &tlb->batch;
1132
1133 tlb->mm->context.flush_mm = 1;
1134 if (*batch == NULL) {
1135 *batch = (struct mmu_table_batch *)
1136 __get_free_page(GFP_NOWAIT | __GFP_NOWARN);
1137 if (*batch == NULL) {
1138 __tlb_flush_mm_lazy(tlb->mm);
1139 tlb_remove_table_one(table);
1140 return;
1141 }
1142 (*batch)->nr = 0;
1143 }
1144 (*batch)->tables[(*batch)->nr++] = table;
1145 if ((*batch)->nr == MAX_TABLE_BATCH)
1146 tlb_flush_mmu(tlb);
1147 }
1148
1149 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1150 static inline void thp_split_vma(struct vm_area_struct *vma)
1151 {
1152 unsigned long addr;
1153
1154 for (addr = vma->vm_start; addr < vma->vm_end; addr += PAGE_SIZE)
1155 follow_page(vma, addr, FOLL_SPLIT);
1156 }
1157
1158 static inline void thp_split_mm(struct mm_struct *mm)
1159 {
1160 struct vm_area_struct *vma;
1161
1162 for (vma = mm->mmap; vma != NULL; vma = vma->vm_next) {
1163 thp_split_vma(vma);
1164 vma->vm_flags &= ~VM_HUGEPAGE;
1165 vma->vm_flags |= VM_NOHUGEPAGE;
1166 }
1167 mm->def_flags |= VM_NOHUGEPAGE;
1168 }
1169 #else
1170 static inline void thp_split_mm(struct mm_struct *mm)
1171 {
1172 }
1173 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1174
1175 static unsigned long page_table_realloc_pmd(struct mmu_gather *tlb,
1176 struct mm_struct *mm, pud_t *pud,
1177 unsigned long addr, unsigned long end)
1178 {
1179 unsigned long next, *table, *new;
1180 struct page *page;
1181 spinlock_t *ptl;
1182 pmd_t *pmd;
1183
1184 pmd = pmd_offset(pud, addr);
1185 do {
1186 next = pmd_addr_end(addr, end);
1187 again:
1188 if (pmd_none_or_clear_bad(pmd))
1189 continue;
1190 table = (unsigned long *) pmd_deref(*pmd);
1191 page = pfn_to_page(__pa(table) >> PAGE_SHIFT);
1192 if (page_table_with_pgste(page))
1193 continue;
1194 /* Allocate new page table with pgstes */
1195 new = page_table_alloc_pgste(mm);
1196 if (!new)
1197 return -ENOMEM;
1198
1199 ptl = pmd_lock(mm, pmd);
1200 if (likely((unsigned long *) pmd_deref(*pmd) == table)) {
1201 /* Nuke pmd entry pointing to the "short" page table */
1202 pmdp_flush_lazy(mm, addr, pmd);
1203 pmd_clear(pmd);
1204 /* Copy ptes from old table to new table */
1205 memcpy(new, table, PAGE_SIZE/2);
1206 clear_table(table, _PAGE_INVALID, PAGE_SIZE/2);
1207 /* Establish new table */
1208 pmd_populate(mm, pmd, (pte_t *) new);
1209 /* Free old table with rcu, there might be a walker! */
1210 page_table_free_rcu(tlb, table, addr);
1211 new = NULL;
1212 }
1213 spin_unlock(ptl);
1214 if (new) {
1215 page_table_free_pgste(new);
1216 goto again;
1217 }
1218 } while (pmd++, addr = next, addr != end);
1219
1220 return addr;
1221 }
1222
1223 static unsigned long page_table_realloc_pud(struct mmu_gather *tlb,
1224 struct mm_struct *mm, pgd_t *pgd,
1225 unsigned long addr, unsigned long end)
1226 {
1227 unsigned long next;
1228 pud_t *pud;
1229
1230 pud = pud_offset(pgd, addr);
1231 do {
1232 next = pud_addr_end(addr, end);
1233 if (pud_none_or_clear_bad(pud))
1234 continue;
1235 next = page_table_realloc_pmd(tlb, mm, pud, addr, next);
1236 if (unlikely(IS_ERR_VALUE(next)))
1237 return next;
1238 } while (pud++, addr = next, addr != end);
1239
1240 return addr;
1241 }
1242
1243 static unsigned long page_table_realloc(struct mmu_gather *tlb, struct mm_struct *mm,
1244 unsigned long addr, unsigned long end)
1245 {
1246 unsigned long next;
1247 pgd_t *pgd;
1248
1249 pgd = pgd_offset(mm, addr);
1250 do {
1251 next = pgd_addr_end(addr, end);
1252 if (pgd_none_or_clear_bad(pgd))
1253 continue;
1254 next = page_table_realloc_pud(tlb, mm, pgd, addr, next);
1255 if (unlikely(IS_ERR_VALUE(next)))
1256 return next;
1257 } while (pgd++, addr = next, addr != end);
1258
1259 return 0;
1260 }
1261
1262 /*
1263 * switch on pgstes for its userspace process (for kvm)
1264 */
1265 int s390_enable_sie(void)
1266 {
1267 struct task_struct *tsk = current;
1268 struct mm_struct *mm = tsk->mm;
1269 struct mmu_gather tlb;
1270
1271 /* Do we have pgstes? if yes, we are done */
1272 if (mm_has_pgste(tsk->mm))
1273 return 0;
1274
1275 down_write(&mm->mmap_sem);
1276 /* split thp mappings and disable thp for future mappings */
1277 thp_split_mm(mm);
1278 /* Reallocate the page tables with pgstes */
1279 tlb_gather_mmu(&tlb, mm, 0, TASK_SIZE);
1280 if (!page_table_realloc(&tlb, mm, 0, TASK_SIZE))
1281 mm->context.has_pgste = 1;
1282 tlb_finish_mmu(&tlb, 0, TASK_SIZE);
1283 up_write(&mm->mmap_sem);
1284 return mm->context.has_pgste ? 0 : -ENOMEM;
1285 }
1286 EXPORT_SYMBOL_GPL(s390_enable_sie);
1287
1288 /*
1289 * Enable storage key handling from now on and initialize the storage
1290 * keys with the default key.
1291 */
1292 static int __s390_enable_skey(pte_t *pte, unsigned long addr,
1293 unsigned long next, struct mm_walk *walk)
1294 {
1295 unsigned long ptev;
1296 pgste_t pgste;
1297
1298 pgste = pgste_get_lock(pte);
1299 /*
1300 * Remove all zero page mappings,
1301 * after establishing a policy to forbid zero page mappings
1302 * following faults for that page will get fresh anonymous pages
1303 */
1304 if (is_zero_pfn(pte_pfn(*pte))) {
1305 ptep_flush_direct(walk->mm, addr, pte);
1306 pte_val(*pte) = _PAGE_INVALID;
1307 }
1308 /* Clear storage key */
1309 pgste_val(pgste) &= ~(PGSTE_ACC_BITS | PGSTE_FP_BIT |
1310 PGSTE_GR_BIT | PGSTE_GC_BIT);
1311 ptev = pte_val(*pte);
1312 if (!(ptev & _PAGE_INVALID) && (ptev & _PAGE_WRITE))
1313 page_set_storage_key(ptev & PAGE_MASK, PAGE_DEFAULT_KEY, 1);
1314 pgste_set_unlock(pte, pgste);
1315 return 0;
1316 }
1317
1318 int s390_enable_skey(void)
1319 {
1320 struct mm_walk walk = { .pte_entry = __s390_enable_skey };
1321 struct mm_struct *mm = current->mm;
1322 struct vm_area_struct *vma;
1323 int rc = 0;
1324
1325 down_write(&mm->mmap_sem);
1326 if (mm_use_skey(mm))
1327 goto out_up;
1328
1329 mm->context.use_skey = 1;
1330 for (vma = mm->mmap; vma; vma = vma->vm_next) {
1331 if (ksm_madvise(vma, vma->vm_start, vma->vm_end,
1332 MADV_UNMERGEABLE, &vma->vm_flags)) {
1333 mm->context.use_skey = 0;
1334 rc = -ENOMEM;
1335 goto out_up;
1336 }
1337 }
1338 mm->def_flags &= ~VM_MERGEABLE;
1339
1340 walk.mm = mm;
1341 walk_page_range(0, TASK_SIZE, &walk);
1342
1343 out_up:
1344 up_write(&mm->mmap_sem);
1345 return rc;
1346 }
1347 EXPORT_SYMBOL_GPL(s390_enable_skey);
1348
1349 /*
1350 * Reset CMMA state, make all pages stable again.
1351 */
1352 static int __s390_reset_cmma(pte_t *pte, unsigned long addr,
1353 unsigned long next, struct mm_walk *walk)
1354 {
1355 pgste_t pgste;
1356
1357 pgste = pgste_get_lock(pte);
1358 pgste_val(pgste) &= ~_PGSTE_GPS_USAGE_MASK;
1359 pgste_set_unlock(pte, pgste);
1360 return 0;
1361 }
1362
1363 void s390_reset_cmma(struct mm_struct *mm)
1364 {
1365 struct mm_walk walk = { .pte_entry = __s390_reset_cmma };
1366
1367 down_write(&mm->mmap_sem);
1368 walk.mm = mm;
1369 walk_page_range(0, TASK_SIZE, &walk);
1370 up_write(&mm->mmap_sem);
1371 }
1372 EXPORT_SYMBOL_GPL(s390_reset_cmma);
1373
1374 /*
1375 * Test and reset if a guest page is dirty
1376 */
1377 bool gmap_test_and_clear_dirty(unsigned long address, struct gmap *gmap)
1378 {
1379 pte_t *pte;
1380 spinlock_t *ptl;
1381 bool dirty = false;
1382
1383 pte = get_locked_pte(gmap->mm, address, &ptl);
1384 if (unlikely(!pte))
1385 return false;
1386
1387 if (ptep_test_and_clear_user_dirty(gmap->mm, address, pte))
1388 dirty = true;
1389
1390 spin_unlock(ptl);
1391 return dirty;
1392 }
1393 EXPORT_SYMBOL_GPL(gmap_test_and_clear_dirty);
1394
1395 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1396 int pmdp_clear_flush_young(struct vm_area_struct *vma, unsigned long address,
1397 pmd_t *pmdp)
1398 {
1399 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1400 /* No need to flush TLB
1401 * On s390 reference bits are in storage key and never in TLB */
1402 return pmdp_test_and_clear_young(vma, address, pmdp);
1403 }
1404
1405 int pmdp_set_access_flags(struct vm_area_struct *vma,
1406 unsigned long address, pmd_t *pmdp,
1407 pmd_t entry, int dirty)
1408 {
1409 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1410
1411 entry = pmd_mkyoung(entry);
1412 if (dirty)
1413 entry = pmd_mkdirty(entry);
1414 if (pmd_same(*pmdp, entry))
1415 return 0;
1416 pmdp_invalidate(vma, address, pmdp);
1417 set_pmd_at(vma->vm_mm, address, pmdp, entry);
1418 return 1;
1419 }
1420
1421 static void pmdp_splitting_flush_sync(void *arg)
1422 {
1423 /* Simply deliver the interrupt */
1424 }
1425
1426 void pmdp_splitting_flush(struct vm_area_struct *vma, unsigned long address,
1427 pmd_t *pmdp)
1428 {
1429 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
1430 if (!test_and_set_bit(_SEGMENT_ENTRY_SPLIT_BIT,
1431 (unsigned long *) pmdp)) {
1432 /* need to serialize against gup-fast (IRQ disabled) */
1433 smp_call_function(pmdp_splitting_flush_sync, NULL, 1);
1434 }
1435 }
1436
1437 void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
1438 pgtable_t pgtable)
1439 {
1440 struct list_head *lh = (struct list_head *) pgtable;
1441
1442 assert_spin_locked(pmd_lockptr(mm, pmdp));
1443
1444 /* FIFO */
1445 if (!pmd_huge_pte(mm, pmdp))
1446 INIT_LIST_HEAD(lh);
1447 else
1448 list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
1449 pmd_huge_pte(mm, pmdp) = pgtable;
1450 }
1451
1452 pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
1453 {
1454 struct list_head *lh;
1455 pgtable_t pgtable;
1456 pte_t *ptep;
1457
1458 assert_spin_locked(pmd_lockptr(mm, pmdp));
1459
1460 /* FIFO */
1461 pgtable = pmd_huge_pte(mm, pmdp);
1462 lh = (struct list_head *) pgtable;
1463 if (list_empty(lh))
1464 pmd_huge_pte(mm, pmdp) = NULL;
1465 else {
1466 pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
1467 list_del(lh);
1468 }
1469 ptep = (pte_t *) pgtable;
1470 pte_val(*ptep) = _PAGE_INVALID;
1471 ptep++;
1472 pte_val(*ptep) = _PAGE_INVALID;
1473 return pgtable;
1474 }
1475 #endif /* CONFIG_TRANSPARENT_HUGEPAGE */