]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/s390/net/bpf_jit_comp.c
Merge tag 'ovl-update-5.10' of git://git.kernel.org/pub/scm/linux/kernel/git/mszeredi/vfs
[mirror_ubuntu-hirsute-kernel.git] / arch / s390 / net / bpf_jit_comp.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3 * BPF Jit compiler for s390.
4 *
5 * Minimum build requirements:
6 *
7 * - HAVE_MARCH_Z196_FEATURES: laal, laalg
8 * - HAVE_MARCH_Z10_FEATURES: msfi, cgrj, clgrj
9 * - HAVE_MARCH_Z9_109_FEATURES: alfi, llilf, clfi, oilf, nilf
10 * - PACK_STACK
11 * - 64BIT
12 *
13 * Copyright IBM Corp. 2012,2015
14 *
15 * Author(s): Martin Schwidefsky <schwidefsky@de.ibm.com>
16 * Michael Holzheu <holzheu@linux.vnet.ibm.com>
17 */
18
19 #define KMSG_COMPONENT "bpf_jit"
20 #define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
21
22 #include <linux/netdevice.h>
23 #include <linux/filter.h>
24 #include <linux/init.h>
25 #include <linux/bpf.h>
26 #include <linux/mm.h>
27 #include <linux/kernel.h>
28 #include <asm/cacheflush.h>
29 #include <asm/dis.h>
30 #include <asm/facility.h>
31 #include <asm/nospec-branch.h>
32 #include <asm/set_memory.h>
33 #include "bpf_jit.h"
34
35 struct bpf_jit {
36 u32 seen; /* Flags to remember seen eBPF instructions */
37 u32 seen_reg[16]; /* Array to remember which registers are used */
38 u32 *addrs; /* Array with relative instruction addresses */
39 u8 *prg_buf; /* Start of program */
40 int size; /* Size of program and literal pool */
41 int size_prg; /* Size of program */
42 int prg; /* Current position in program */
43 int lit32_start; /* Start of 32-bit literal pool */
44 int lit32; /* Current position in 32-bit literal pool */
45 int lit64_start; /* Start of 64-bit literal pool */
46 int lit64; /* Current position in 64-bit literal pool */
47 int base_ip; /* Base address for literal pool */
48 int exit_ip; /* Address of exit */
49 int r1_thunk_ip; /* Address of expoline thunk for 'br %r1' */
50 int r14_thunk_ip; /* Address of expoline thunk for 'br %r14' */
51 int tail_call_start; /* Tail call start offset */
52 int excnt; /* Number of exception table entries */
53 };
54
55 #define SEEN_MEM BIT(0) /* use mem[] for temporary storage */
56 #define SEEN_LITERAL BIT(1) /* code uses literals */
57 #define SEEN_FUNC BIT(2) /* calls C functions */
58 #define SEEN_TAIL_CALL BIT(3) /* code uses tail calls */
59 #define SEEN_STACK (SEEN_FUNC | SEEN_MEM)
60
61 /*
62 * s390 registers
63 */
64 #define REG_W0 (MAX_BPF_JIT_REG + 0) /* Work register 1 (even) */
65 #define REG_W1 (MAX_BPF_JIT_REG + 1) /* Work register 2 (odd) */
66 #define REG_L (MAX_BPF_JIT_REG + 2) /* Literal pool register */
67 #define REG_15 (MAX_BPF_JIT_REG + 3) /* Register 15 */
68 #define REG_0 REG_W0 /* Register 0 */
69 #define REG_1 REG_W1 /* Register 1 */
70 #define REG_2 BPF_REG_1 /* Register 2 */
71 #define REG_14 BPF_REG_0 /* Register 14 */
72
73 /*
74 * Mapping of BPF registers to s390 registers
75 */
76 static const int reg2hex[] = {
77 /* Return code */
78 [BPF_REG_0] = 14,
79 /* Function parameters */
80 [BPF_REG_1] = 2,
81 [BPF_REG_2] = 3,
82 [BPF_REG_3] = 4,
83 [BPF_REG_4] = 5,
84 [BPF_REG_5] = 6,
85 /* Call saved registers */
86 [BPF_REG_6] = 7,
87 [BPF_REG_7] = 8,
88 [BPF_REG_8] = 9,
89 [BPF_REG_9] = 10,
90 /* BPF stack pointer */
91 [BPF_REG_FP] = 13,
92 /* Register for blinding */
93 [BPF_REG_AX] = 12,
94 /* Work registers for s390x backend */
95 [REG_W0] = 0,
96 [REG_W1] = 1,
97 [REG_L] = 11,
98 [REG_15] = 15,
99 };
100
101 static inline u32 reg(u32 dst_reg, u32 src_reg)
102 {
103 return reg2hex[dst_reg] << 4 | reg2hex[src_reg];
104 }
105
106 static inline u32 reg_high(u32 reg)
107 {
108 return reg2hex[reg] << 4;
109 }
110
111 static inline void reg_set_seen(struct bpf_jit *jit, u32 b1)
112 {
113 u32 r1 = reg2hex[b1];
114
115 if (!jit->seen_reg[r1] && r1 >= 6 && r1 <= 15)
116 jit->seen_reg[r1] = 1;
117 }
118
119 #define REG_SET_SEEN(b1) \
120 ({ \
121 reg_set_seen(jit, b1); \
122 })
123
124 #define REG_SEEN(b1) jit->seen_reg[reg2hex[(b1)]]
125
126 /*
127 * EMIT macros for code generation
128 */
129
130 #define _EMIT2(op) \
131 ({ \
132 if (jit->prg_buf) \
133 *(u16 *) (jit->prg_buf + jit->prg) = (op); \
134 jit->prg += 2; \
135 })
136
137 #define EMIT2(op, b1, b2) \
138 ({ \
139 _EMIT2((op) | reg(b1, b2)); \
140 REG_SET_SEEN(b1); \
141 REG_SET_SEEN(b2); \
142 })
143
144 #define _EMIT4(op) \
145 ({ \
146 if (jit->prg_buf) \
147 *(u32 *) (jit->prg_buf + jit->prg) = (op); \
148 jit->prg += 4; \
149 })
150
151 #define EMIT4(op, b1, b2) \
152 ({ \
153 _EMIT4((op) | reg(b1, b2)); \
154 REG_SET_SEEN(b1); \
155 REG_SET_SEEN(b2); \
156 })
157
158 #define EMIT4_RRF(op, b1, b2, b3) \
159 ({ \
160 _EMIT4((op) | reg_high(b3) << 8 | reg(b1, b2)); \
161 REG_SET_SEEN(b1); \
162 REG_SET_SEEN(b2); \
163 REG_SET_SEEN(b3); \
164 })
165
166 #define _EMIT4_DISP(op, disp) \
167 ({ \
168 unsigned int __disp = (disp) & 0xfff; \
169 _EMIT4((op) | __disp); \
170 })
171
172 #define EMIT4_DISP(op, b1, b2, disp) \
173 ({ \
174 _EMIT4_DISP((op) | reg_high(b1) << 16 | \
175 reg_high(b2) << 8, (disp)); \
176 REG_SET_SEEN(b1); \
177 REG_SET_SEEN(b2); \
178 })
179
180 #define EMIT4_IMM(op, b1, imm) \
181 ({ \
182 unsigned int __imm = (imm) & 0xffff; \
183 _EMIT4((op) | reg_high(b1) << 16 | __imm); \
184 REG_SET_SEEN(b1); \
185 })
186
187 #define EMIT4_PCREL(op, pcrel) \
188 ({ \
189 long __pcrel = ((pcrel) >> 1) & 0xffff; \
190 _EMIT4((op) | __pcrel); \
191 })
192
193 #define EMIT4_PCREL_RIC(op, mask, target) \
194 ({ \
195 int __rel = ((target) - jit->prg) / 2; \
196 _EMIT4((op) | (mask) << 20 | (__rel & 0xffff)); \
197 })
198
199 #define _EMIT6(op1, op2) \
200 ({ \
201 if (jit->prg_buf) { \
202 *(u32 *) (jit->prg_buf + jit->prg) = (op1); \
203 *(u16 *) (jit->prg_buf + jit->prg + 4) = (op2); \
204 } \
205 jit->prg += 6; \
206 })
207
208 #define _EMIT6_DISP(op1, op2, disp) \
209 ({ \
210 unsigned int __disp = (disp) & 0xfff; \
211 _EMIT6((op1) | __disp, op2); \
212 })
213
214 #define _EMIT6_DISP_LH(op1, op2, disp) \
215 ({ \
216 u32 _disp = (u32) (disp); \
217 unsigned int __disp_h = _disp & 0xff000; \
218 unsigned int __disp_l = _disp & 0x00fff; \
219 _EMIT6((op1) | __disp_l, (op2) | __disp_h >> 4); \
220 })
221
222 #define EMIT6_DISP_LH(op1, op2, b1, b2, b3, disp) \
223 ({ \
224 _EMIT6_DISP_LH((op1) | reg(b1, b2) << 16 | \
225 reg_high(b3) << 8, op2, disp); \
226 REG_SET_SEEN(b1); \
227 REG_SET_SEEN(b2); \
228 REG_SET_SEEN(b3); \
229 })
230
231 #define EMIT6_PCREL_RIEB(op1, op2, b1, b2, mask, target) \
232 ({ \
233 unsigned int rel = (int)((target) - jit->prg) / 2; \
234 _EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), \
235 (op2) | (mask) << 12); \
236 REG_SET_SEEN(b1); \
237 REG_SET_SEEN(b2); \
238 })
239
240 #define EMIT6_PCREL_RIEC(op1, op2, b1, imm, mask, target) \
241 ({ \
242 unsigned int rel = (int)((target) - jit->prg) / 2; \
243 _EMIT6((op1) | (reg_high(b1) | (mask)) << 16 | \
244 (rel & 0xffff), (op2) | ((imm) & 0xff) << 8); \
245 REG_SET_SEEN(b1); \
246 BUILD_BUG_ON(((unsigned long) (imm)) > 0xff); \
247 })
248
249 #define EMIT6_PCREL(op1, op2, b1, b2, i, off, mask) \
250 ({ \
251 /* Branch instruction needs 6 bytes */ \
252 int rel = (addrs[(i) + (off) + 1] - (addrs[(i) + 1] - 6)) / 2;\
253 _EMIT6((op1) | reg(b1, b2) << 16 | (rel & 0xffff), (op2) | (mask));\
254 REG_SET_SEEN(b1); \
255 REG_SET_SEEN(b2); \
256 })
257
258 #define EMIT6_PCREL_RILB(op, b, target) \
259 ({ \
260 unsigned int rel = (int)((target) - jit->prg) / 2; \
261 _EMIT6((op) | reg_high(b) << 16 | rel >> 16, rel & 0xffff);\
262 REG_SET_SEEN(b); \
263 })
264
265 #define EMIT6_PCREL_RIL(op, target) \
266 ({ \
267 unsigned int rel = (int)((target) - jit->prg) / 2; \
268 _EMIT6((op) | rel >> 16, rel & 0xffff); \
269 })
270
271 #define EMIT6_PCREL_RILC(op, mask, target) \
272 ({ \
273 EMIT6_PCREL_RIL((op) | (mask) << 20, (target)); \
274 })
275
276 #define _EMIT6_IMM(op, imm) \
277 ({ \
278 unsigned int __imm = (imm); \
279 _EMIT6((op) | (__imm >> 16), __imm & 0xffff); \
280 })
281
282 #define EMIT6_IMM(op, b1, imm) \
283 ({ \
284 _EMIT6_IMM((op) | reg_high(b1) << 16, imm); \
285 REG_SET_SEEN(b1); \
286 })
287
288 #define _EMIT_CONST_U32(val) \
289 ({ \
290 unsigned int ret; \
291 ret = jit->lit32; \
292 if (jit->prg_buf) \
293 *(u32 *)(jit->prg_buf + jit->lit32) = (u32)(val);\
294 jit->lit32 += 4; \
295 ret; \
296 })
297
298 #define EMIT_CONST_U32(val) \
299 ({ \
300 jit->seen |= SEEN_LITERAL; \
301 _EMIT_CONST_U32(val) - jit->base_ip; \
302 })
303
304 #define _EMIT_CONST_U64(val) \
305 ({ \
306 unsigned int ret; \
307 ret = jit->lit64; \
308 if (jit->prg_buf) \
309 *(u64 *)(jit->prg_buf + jit->lit64) = (u64)(val);\
310 jit->lit64 += 8; \
311 ret; \
312 })
313
314 #define EMIT_CONST_U64(val) \
315 ({ \
316 jit->seen |= SEEN_LITERAL; \
317 _EMIT_CONST_U64(val) - jit->base_ip; \
318 })
319
320 #define EMIT_ZERO(b1) \
321 ({ \
322 if (!fp->aux->verifier_zext) { \
323 /* llgfr %dst,%dst (zero extend to 64 bit) */ \
324 EMIT4(0xb9160000, b1, b1); \
325 REG_SET_SEEN(b1); \
326 } \
327 })
328
329 /*
330 * Return whether this is the first pass. The first pass is special, since we
331 * don't know any sizes yet, and thus must be conservative.
332 */
333 static bool is_first_pass(struct bpf_jit *jit)
334 {
335 return jit->size == 0;
336 }
337
338 /*
339 * Return whether this is the code generation pass. The code generation pass is
340 * special, since we should change as little as possible.
341 */
342 static bool is_codegen_pass(struct bpf_jit *jit)
343 {
344 return jit->prg_buf;
345 }
346
347 /*
348 * Return whether "rel" can be encoded as a short PC-relative offset
349 */
350 static bool is_valid_rel(int rel)
351 {
352 return rel >= -65536 && rel <= 65534;
353 }
354
355 /*
356 * Return whether "off" can be reached using a short PC-relative offset
357 */
358 static bool can_use_rel(struct bpf_jit *jit, int off)
359 {
360 return is_valid_rel(off - jit->prg);
361 }
362
363 /*
364 * Return whether given displacement can be encoded using
365 * Long-Displacement Facility
366 */
367 static bool is_valid_ldisp(int disp)
368 {
369 return disp >= -524288 && disp <= 524287;
370 }
371
372 /*
373 * Return whether the next 32-bit literal pool entry can be referenced using
374 * Long-Displacement Facility
375 */
376 static bool can_use_ldisp_for_lit32(struct bpf_jit *jit)
377 {
378 return is_valid_ldisp(jit->lit32 - jit->base_ip);
379 }
380
381 /*
382 * Return whether the next 64-bit literal pool entry can be referenced using
383 * Long-Displacement Facility
384 */
385 static bool can_use_ldisp_for_lit64(struct bpf_jit *jit)
386 {
387 return is_valid_ldisp(jit->lit64 - jit->base_ip);
388 }
389
390 /*
391 * Fill whole space with illegal instructions
392 */
393 static void jit_fill_hole(void *area, unsigned int size)
394 {
395 memset(area, 0, size);
396 }
397
398 /*
399 * Save registers from "rs" (register start) to "re" (register end) on stack
400 */
401 static void save_regs(struct bpf_jit *jit, u32 rs, u32 re)
402 {
403 u32 off = STK_OFF_R6 + (rs - 6) * 8;
404
405 if (rs == re)
406 /* stg %rs,off(%r15) */
407 _EMIT6(0xe300f000 | rs << 20 | off, 0x0024);
408 else
409 /* stmg %rs,%re,off(%r15) */
410 _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0024, off);
411 }
412
413 /*
414 * Restore registers from "rs" (register start) to "re" (register end) on stack
415 */
416 static void restore_regs(struct bpf_jit *jit, u32 rs, u32 re, u32 stack_depth)
417 {
418 u32 off = STK_OFF_R6 + (rs - 6) * 8;
419
420 if (jit->seen & SEEN_STACK)
421 off += STK_OFF + stack_depth;
422
423 if (rs == re)
424 /* lg %rs,off(%r15) */
425 _EMIT6(0xe300f000 | rs << 20 | off, 0x0004);
426 else
427 /* lmg %rs,%re,off(%r15) */
428 _EMIT6_DISP(0xeb00f000 | rs << 20 | re << 16, 0x0004, off);
429 }
430
431 /*
432 * Return first seen register (from start)
433 */
434 static int get_start(struct bpf_jit *jit, int start)
435 {
436 int i;
437
438 for (i = start; i <= 15; i++) {
439 if (jit->seen_reg[i])
440 return i;
441 }
442 return 0;
443 }
444
445 /*
446 * Return last seen register (from start) (gap >= 2)
447 */
448 static int get_end(struct bpf_jit *jit, int start)
449 {
450 int i;
451
452 for (i = start; i < 15; i++) {
453 if (!jit->seen_reg[i] && !jit->seen_reg[i + 1])
454 return i - 1;
455 }
456 return jit->seen_reg[15] ? 15 : 14;
457 }
458
459 #define REGS_SAVE 1
460 #define REGS_RESTORE 0
461 /*
462 * Save and restore clobbered registers (6-15) on stack.
463 * We save/restore registers in chunks with gap >= 2 registers.
464 */
465 static void save_restore_regs(struct bpf_jit *jit, int op, u32 stack_depth)
466 {
467 const int last = 15, save_restore_size = 6;
468 int re = 6, rs;
469
470 if (is_first_pass(jit)) {
471 /*
472 * We don't know yet which registers are used. Reserve space
473 * conservatively.
474 */
475 jit->prg += (last - re + 1) * save_restore_size;
476 return;
477 }
478
479 do {
480 rs = get_start(jit, re);
481 if (!rs)
482 break;
483 re = get_end(jit, rs + 1);
484 if (op == REGS_SAVE)
485 save_regs(jit, rs, re);
486 else
487 restore_regs(jit, rs, re, stack_depth);
488 re++;
489 } while (re <= last);
490 }
491
492 static void bpf_skip(struct bpf_jit *jit, int size)
493 {
494 if (size >= 6 && !is_valid_rel(size)) {
495 /* brcl 0xf,size */
496 EMIT6_PCREL_RIL(0xc0f4000000, size);
497 size -= 6;
498 } else if (size >= 4 && is_valid_rel(size)) {
499 /* brc 0xf,size */
500 EMIT4_PCREL(0xa7f40000, size);
501 size -= 4;
502 }
503 while (size >= 2) {
504 /* bcr 0,%0 */
505 _EMIT2(0x0700);
506 size -= 2;
507 }
508 }
509
510 /*
511 * Emit function prologue
512 *
513 * Save registers and create stack frame if necessary.
514 * See stack frame layout desription in "bpf_jit.h"!
515 */
516 static void bpf_jit_prologue(struct bpf_jit *jit, u32 stack_depth)
517 {
518 if (jit->seen & SEEN_TAIL_CALL) {
519 /* xc STK_OFF_TCCNT(4,%r15),STK_OFF_TCCNT(%r15) */
520 _EMIT6(0xd703f000 | STK_OFF_TCCNT, 0xf000 | STK_OFF_TCCNT);
521 } else {
522 /*
523 * There are no tail calls. Insert nops in order to have
524 * tail_call_start at a predictable offset.
525 */
526 bpf_skip(jit, 6);
527 }
528 /* Tail calls have to skip above initialization */
529 jit->tail_call_start = jit->prg;
530 /* Save registers */
531 save_restore_regs(jit, REGS_SAVE, stack_depth);
532 /* Setup literal pool */
533 if (is_first_pass(jit) || (jit->seen & SEEN_LITERAL)) {
534 if (!is_first_pass(jit) &&
535 is_valid_ldisp(jit->size - (jit->prg + 2))) {
536 /* basr %l,0 */
537 EMIT2(0x0d00, REG_L, REG_0);
538 jit->base_ip = jit->prg;
539 } else {
540 /* larl %l,lit32_start */
541 EMIT6_PCREL_RILB(0xc0000000, REG_L, jit->lit32_start);
542 jit->base_ip = jit->lit32_start;
543 }
544 }
545 /* Setup stack and backchain */
546 if (is_first_pass(jit) || (jit->seen & SEEN_STACK)) {
547 if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
548 /* lgr %w1,%r15 (backchain) */
549 EMIT4(0xb9040000, REG_W1, REG_15);
550 /* la %bfp,STK_160_UNUSED(%r15) (BPF frame pointer) */
551 EMIT4_DISP(0x41000000, BPF_REG_FP, REG_15, STK_160_UNUSED);
552 /* aghi %r15,-STK_OFF */
553 EMIT4_IMM(0xa70b0000, REG_15, -(STK_OFF + stack_depth));
554 if (is_first_pass(jit) || (jit->seen & SEEN_FUNC))
555 /* stg %w1,152(%r15) (backchain) */
556 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W1, REG_0,
557 REG_15, 152);
558 }
559 }
560
561 /*
562 * Function epilogue
563 */
564 static void bpf_jit_epilogue(struct bpf_jit *jit, u32 stack_depth)
565 {
566 jit->exit_ip = jit->prg;
567 /* Load exit code: lgr %r2,%b0 */
568 EMIT4(0xb9040000, REG_2, BPF_REG_0);
569 /* Restore registers */
570 save_restore_regs(jit, REGS_RESTORE, stack_depth);
571 if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable) {
572 jit->r14_thunk_ip = jit->prg;
573 /* Generate __s390_indirect_jump_r14 thunk */
574 if (test_facility(35)) {
575 /* exrl %r0,.+10 */
576 EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
577 } else {
578 /* larl %r1,.+14 */
579 EMIT6_PCREL_RILB(0xc0000000, REG_1, jit->prg + 14);
580 /* ex 0,0(%r1) */
581 EMIT4_DISP(0x44000000, REG_0, REG_1, 0);
582 }
583 /* j . */
584 EMIT4_PCREL(0xa7f40000, 0);
585 }
586 /* br %r14 */
587 _EMIT2(0x07fe);
588
589 if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable &&
590 (is_first_pass(jit) || (jit->seen & SEEN_FUNC))) {
591 jit->r1_thunk_ip = jit->prg;
592 /* Generate __s390_indirect_jump_r1 thunk */
593 if (test_facility(35)) {
594 /* exrl %r0,.+10 */
595 EMIT6_PCREL_RIL(0xc6000000, jit->prg + 10);
596 /* j . */
597 EMIT4_PCREL(0xa7f40000, 0);
598 /* br %r1 */
599 _EMIT2(0x07f1);
600 } else {
601 /* ex 0,S390_lowcore.br_r1_tampoline */
602 EMIT4_DISP(0x44000000, REG_0, REG_0,
603 offsetof(struct lowcore, br_r1_trampoline));
604 /* j . */
605 EMIT4_PCREL(0xa7f40000, 0);
606 }
607 }
608 }
609
610 static int get_probe_mem_regno(const u8 *insn)
611 {
612 /*
613 * insn must point to llgc, llgh, llgf or lg, which have destination
614 * register at the same position.
615 */
616 if (insn[0] != 0xe3) /* common llgc, llgh, llgf and lg prefix */
617 return -1;
618 if (insn[5] != 0x90 && /* llgc */
619 insn[5] != 0x91 && /* llgh */
620 insn[5] != 0x16 && /* llgf */
621 insn[5] != 0x04) /* lg */
622 return -1;
623 return insn[1] >> 4;
624 }
625
626 static bool ex_handler_bpf(const struct exception_table_entry *x,
627 struct pt_regs *regs)
628 {
629 int regno;
630 u8 *insn;
631
632 regs->psw.addr = extable_fixup(x);
633 insn = (u8 *)__rewind_psw(regs->psw, regs->int_code >> 16);
634 regno = get_probe_mem_regno(insn);
635 if (WARN_ON_ONCE(regno < 0))
636 /* JIT bug - unexpected instruction. */
637 return false;
638 regs->gprs[regno] = 0;
639 return true;
640 }
641
642 static int bpf_jit_probe_mem(struct bpf_jit *jit, struct bpf_prog *fp,
643 int probe_prg, int nop_prg)
644 {
645 struct exception_table_entry *ex;
646 s64 delta;
647 u8 *insn;
648 int prg;
649 int i;
650
651 if (!fp->aux->extable)
652 /* Do nothing during early JIT passes. */
653 return 0;
654 insn = jit->prg_buf + probe_prg;
655 if (WARN_ON_ONCE(get_probe_mem_regno(insn) < 0))
656 /* JIT bug - unexpected probe instruction. */
657 return -1;
658 if (WARN_ON_ONCE(probe_prg + insn_length(*insn) != nop_prg))
659 /* JIT bug - gap between probe and nop instructions. */
660 return -1;
661 for (i = 0; i < 2; i++) {
662 if (WARN_ON_ONCE(jit->excnt >= fp->aux->num_exentries))
663 /* Verifier bug - not enough entries. */
664 return -1;
665 ex = &fp->aux->extable[jit->excnt];
666 /* Add extable entries for probe and nop instructions. */
667 prg = i == 0 ? probe_prg : nop_prg;
668 delta = jit->prg_buf + prg - (u8 *)&ex->insn;
669 if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
670 /* JIT bug - code and extable must be close. */
671 return -1;
672 ex->insn = delta;
673 /*
674 * Always land on the nop. Note that extable infrastructure
675 * ignores fixup field, it is handled by ex_handler_bpf().
676 */
677 delta = jit->prg_buf + nop_prg - (u8 *)&ex->fixup;
678 if (WARN_ON_ONCE(delta < INT_MIN || delta > INT_MAX))
679 /* JIT bug - landing pad and extable must be close. */
680 return -1;
681 ex->fixup = delta;
682 ex->handler = (u8 *)ex_handler_bpf - (u8 *)&ex->handler;
683 jit->excnt++;
684 }
685 return 0;
686 }
687
688 /*
689 * Compile one eBPF instruction into s390x code
690 *
691 * NOTE: Use noinline because for gcov (-fprofile-arcs) gcc allocates a lot of
692 * stack space for the large switch statement.
693 */
694 static noinline int bpf_jit_insn(struct bpf_jit *jit, struct bpf_prog *fp,
695 int i, bool extra_pass, u32 stack_depth)
696 {
697 struct bpf_insn *insn = &fp->insnsi[i];
698 u32 dst_reg = insn->dst_reg;
699 u32 src_reg = insn->src_reg;
700 int last, insn_count = 1;
701 u32 *addrs = jit->addrs;
702 s32 imm = insn->imm;
703 s16 off = insn->off;
704 int probe_prg = -1;
705 unsigned int mask;
706 int nop_prg;
707 int err;
708
709 if (BPF_CLASS(insn->code) == BPF_LDX &&
710 BPF_MODE(insn->code) == BPF_PROBE_MEM)
711 probe_prg = jit->prg;
712
713 switch (insn->code) {
714 /*
715 * BPF_MOV
716 */
717 case BPF_ALU | BPF_MOV | BPF_X: /* dst = (u32) src */
718 /* llgfr %dst,%src */
719 EMIT4(0xb9160000, dst_reg, src_reg);
720 if (insn_is_zext(&insn[1]))
721 insn_count = 2;
722 break;
723 case BPF_ALU64 | BPF_MOV | BPF_X: /* dst = src */
724 /* lgr %dst,%src */
725 EMIT4(0xb9040000, dst_reg, src_reg);
726 break;
727 case BPF_ALU | BPF_MOV | BPF_K: /* dst = (u32) imm */
728 /* llilf %dst,imm */
729 EMIT6_IMM(0xc00f0000, dst_reg, imm);
730 if (insn_is_zext(&insn[1]))
731 insn_count = 2;
732 break;
733 case BPF_ALU64 | BPF_MOV | BPF_K: /* dst = imm */
734 /* lgfi %dst,imm */
735 EMIT6_IMM(0xc0010000, dst_reg, imm);
736 break;
737 /*
738 * BPF_LD 64
739 */
740 case BPF_LD | BPF_IMM | BPF_DW: /* dst = (u64) imm */
741 {
742 /* 16 byte instruction that uses two 'struct bpf_insn' */
743 u64 imm64;
744
745 imm64 = (u64)(u32) insn[0].imm | ((u64)(u32) insn[1].imm) << 32;
746 /* lgrl %dst,imm */
747 EMIT6_PCREL_RILB(0xc4080000, dst_reg, _EMIT_CONST_U64(imm64));
748 insn_count = 2;
749 break;
750 }
751 /*
752 * BPF_ADD
753 */
754 case BPF_ALU | BPF_ADD | BPF_X: /* dst = (u32) dst + (u32) src */
755 /* ar %dst,%src */
756 EMIT2(0x1a00, dst_reg, src_reg);
757 EMIT_ZERO(dst_reg);
758 break;
759 case BPF_ALU64 | BPF_ADD | BPF_X: /* dst = dst + src */
760 /* agr %dst,%src */
761 EMIT4(0xb9080000, dst_reg, src_reg);
762 break;
763 case BPF_ALU | BPF_ADD | BPF_K: /* dst = (u32) dst + (u32) imm */
764 if (!imm)
765 break;
766 /* alfi %dst,imm */
767 EMIT6_IMM(0xc20b0000, dst_reg, imm);
768 EMIT_ZERO(dst_reg);
769 break;
770 case BPF_ALU64 | BPF_ADD | BPF_K: /* dst = dst + imm */
771 if (!imm)
772 break;
773 /* agfi %dst,imm */
774 EMIT6_IMM(0xc2080000, dst_reg, imm);
775 break;
776 /*
777 * BPF_SUB
778 */
779 case BPF_ALU | BPF_SUB | BPF_X: /* dst = (u32) dst - (u32) src */
780 /* sr %dst,%src */
781 EMIT2(0x1b00, dst_reg, src_reg);
782 EMIT_ZERO(dst_reg);
783 break;
784 case BPF_ALU64 | BPF_SUB | BPF_X: /* dst = dst - src */
785 /* sgr %dst,%src */
786 EMIT4(0xb9090000, dst_reg, src_reg);
787 break;
788 case BPF_ALU | BPF_SUB | BPF_K: /* dst = (u32) dst - (u32) imm */
789 if (!imm)
790 break;
791 /* alfi %dst,-imm */
792 EMIT6_IMM(0xc20b0000, dst_reg, -imm);
793 EMIT_ZERO(dst_reg);
794 break;
795 case BPF_ALU64 | BPF_SUB | BPF_K: /* dst = dst - imm */
796 if (!imm)
797 break;
798 /* agfi %dst,-imm */
799 EMIT6_IMM(0xc2080000, dst_reg, -imm);
800 break;
801 /*
802 * BPF_MUL
803 */
804 case BPF_ALU | BPF_MUL | BPF_X: /* dst = (u32) dst * (u32) src */
805 /* msr %dst,%src */
806 EMIT4(0xb2520000, dst_reg, src_reg);
807 EMIT_ZERO(dst_reg);
808 break;
809 case BPF_ALU64 | BPF_MUL | BPF_X: /* dst = dst * src */
810 /* msgr %dst,%src */
811 EMIT4(0xb90c0000, dst_reg, src_reg);
812 break;
813 case BPF_ALU | BPF_MUL | BPF_K: /* dst = (u32) dst * (u32) imm */
814 if (imm == 1)
815 break;
816 /* msfi %r5,imm */
817 EMIT6_IMM(0xc2010000, dst_reg, imm);
818 EMIT_ZERO(dst_reg);
819 break;
820 case BPF_ALU64 | BPF_MUL | BPF_K: /* dst = dst * imm */
821 if (imm == 1)
822 break;
823 /* msgfi %dst,imm */
824 EMIT6_IMM(0xc2000000, dst_reg, imm);
825 break;
826 /*
827 * BPF_DIV / BPF_MOD
828 */
829 case BPF_ALU | BPF_DIV | BPF_X: /* dst = (u32) dst / (u32) src */
830 case BPF_ALU | BPF_MOD | BPF_X: /* dst = (u32) dst % (u32) src */
831 {
832 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
833
834 /* lhi %w0,0 */
835 EMIT4_IMM(0xa7080000, REG_W0, 0);
836 /* lr %w1,%dst */
837 EMIT2(0x1800, REG_W1, dst_reg);
838 /* dlr %w0,%src */
839 EMIT4(0xb9970000, REG_W0, src_reg);
840 /* llgfr %dst,%rc */
841 EMIT4(0xb9160000, dst_reg, rc_reg);
842 if (insn_is_zext(&insn[1]))
843 insn_count = 2;
844 break;
845 }
846 case BPF_ALU64 | BPF_DIV | BPF_X: /* dst = dst / src */
847 case BPF_ALU64 | BPF_MOD | BPF_X: /* dst = dst % src */
848 {
849 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
850
851 /* lghi %w0,0 */
852 EMIT4_IMM(0xa7090000, REG_W0, 0);
853 /* lgr %w1,%dst */
854 EMIT4(0xb9040000, REG_W1, dst_reg);
855 /* dlgr %w0,%dst */
856 EMIT4(0xb9870000, REG_W0, src_reg);
857 /* lgr %dst,%rc */
858 EMIT4(0xb9040000, dst_reg, rc_reg);
859 break;
860 }
861 case BPF_ALU | BPF_DIV | BPF_K: /* dst = (u32) dst / (u32) imm */
862 case BPF_ALU | BPF_MOD | BPF_K: /* dst = (u32) dst % (u32) imm */
863 {
864 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
865
866 if (imm == 1) {
867 if (BPF_OP(insn->code) == BPF_MOD)
868 /* lhgi %dst,0 */
869 EMIT4_IMM(0xa7090000, dst_reg, 0);
870 break;
871 }
872 /* lhi %w0,0 */
873 EMIT4_IMM(0xa7080000, REG_W0, 0);
874 /* lr %w1,%dst */
875 EMIT2(0x1800, REG_W1, dst_reg);
876 if (!is_first_pass(jit) && can_use_ldisp_for_lit32(jit)) {
877 /* dl %w0,<d(imm)>(%l) */
878 EMIT6_DISP_LH(0xe3000000, 0x0097, REG_W0, REG_0, REG_L,
879 EMIT_CONST_U32(imm));
880 } else {
881 /* lgfrl %dst,imm */
882 EMIT6_PCREL_RILB(0xc40c0000, dst_reg,
883 _EMIT_CONST_U32(imm));
884 jit->seen |= SEEN_LITERAL;
885 /* dlr %w0,%dst */
886 EMIT4(0xb9970000, REG_W0, dst_reg);
887 }
888 /* llgfr %dst,%rc */
889 EMIT4(0xb9160000, dst_reg, rc_reg);
890 if (insn_is_zext(&insn[1]))
891 insn_count = 2;
892 break;
893 }
894 case BPF_ALU64 | BPF_DIV | BPF_K: /* dst = dst / imm */
895 case BPF_ALU64 | BPF_MOD | BPF_K: /* dst = dst % imm */
896 {
897 int rc_reg = BPF_OP(insn->code) == BPF_DIV ? REG_W1 : REG_W0;
898
899 if (imm == 1) {
900 if (BPF_OP(insn->code) == BPF_MOD)
901 /* lhgi %dst,0 */
902 EMIT4_IMM(0xa7090000, dst_reg, 0);
903 break;
904 }
905 /* lghi %w0,0 */
906 EMIT4_IMM(0xa7090000, REG_W0, 0);
907 /* lgr %w1,%dst */
908 EMIT4(0xb9040000, REG_W1, dst_reg);
909 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
910 /* dlg %w0,<d(imm)>(%l) */
911 EMIT6_DISP_LH(0xe3000000, 0x0087, REG_W0, REG_0, REG_L,
912 EMIT_CONST_U64(imm));
913 } else {
914 /* lgrl %dst,imm */
915 EMIT6_PCREL_RILB(0xc4080000, dst_reg,
916 _EMIT_CONST_U64(imm));
917 jit->seen |= SEEN_LITERAL;
918 /* dlgr %w0,%dst */
919 EMIT4(0xb9870000, REG_W0, dst_reg);
920 }
921 /* lgr %dst,%rc */
922 EMIT4(0xb9040000, dst_reg, rc_reg);
923 break;
924 }
925 /*
926 * BPF_AND
927 */
928 case BPF_ALU | BPF_AND | BPF_X: /* dst = (u32) dst & (u32) src */
929 /* nr %dst,%src */
930 EMIT2(0x1400, dst_reg, src_reg);
931 EMIT_ZERO(dst_reg);
932 break;
933 case BPF_ALU64 | BPF_AND | BPF_X: /* dst = dst & src */
934 /* ngr %dst,%src */
935 EMIT4(0xb9800000, dst_reg, src_reg);
936 break;
937 case BPF_ALU | BPF_AND | BPF_K: /* dst = (u32) dst & (u32) imm */
938 /* nilf %dst,imm */
939 EMIT6_IMM(0xc00b0000, dst_reg, imm);
940 EMIT_ZERO(dst_reg);
941 break;
942 case BPF_ALU64 | BPF_AND | BPF_K: /* dst = dst & imm */
943 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
944 /* ng %dst,<d(imm)>(%l) */
945 EMIT6_DISP_LH(0xe3000000, 0x0080,
946 dst_reg, REG_0, REG_L,
947 EMIT_CONST_U64(imm));
948 } else {
949 /* lgrl %w0,imm */
950 EMIT6_PCREL_RILB(0xc4080000, REG_W0,
951 _EMIT_CONST_U64(imm));
952 jit->seen |= SEEN_LITERAL;
953 /* ngr %dst,%w0 */
954 EMIT4(0xb9800000, dst_reg, REG_W0);
955 }
956 break;
957 /*
958 * BPF_OR
959 */
960 case BPF_ALU | BPF_OR | BPF_X: /* dst = (u32) dst | (u32) src */
961 /* or %dst,%src */
962 EMIT2(0x1600, dst_reg, src_reg);
963 EMIT_ZERO(dst_reg);
964 break;
965 case BPF_ALU64 | BPF_OR | BPF_X: /* dst = dst | src */
966 /* ogr %dst,%src */
967 EMIT4(0xb9810000, dst_reg, src_reg);
968 break;
969 case BPF_ALU | BPF_OR | BPF_K: /* dst = (u32) dst | (u32) imm */
970 /* oilf %dst,imm */
971 EMIT6_IMM(0xc00d0000, dst_reg, imm);
972 EMIT_ZERO(dst_reg);
973 break;
974 case BPF_ALU64 | BPF_OR | BPF_K: /* dst = dst | imm */
975 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
976 /* og %dst,<d(imm)>(%l) */
977 EMIT6_DISP_LH(0xe3000000, 0x0081,
978 dst_reg, REG_0, REG_L,
979 EMIT_CONST_U64(imm));
980 } else {
981 /* lgrl %w0,imm */
982 EMIT6_PCREL_RILB(0xc4080000, REG_W0,
983 _EMIT_CONST_U64(imm));
984 jit->seen |= SEEN_LITERAL;
985 /* ogr %dst,%w0 */
986 EMIT4(0xb9810000, dst_reg, REG_W0);
987 }
988 break;
989 /*
990 * BPF_XOR
991 */
992 case BPF_ALU | BPF_XOR | BPF_X: /* dst = (u32) dst ^ (u32) src */
993 /* xr %dst,%src */
994 EMIT2(0x1700, dst_reg, src_reg);
995 EMIT_ZERO(dst_reg);
996 break;
997 case BPF_ALU64 | BPF_XOR | BPF_X: /* dst = dst ^ src */
998 /* xgr %dst,%src */
999 EMIT4(0xb9820000, dst_reg, src_reg);
1000 break;
1001 case BPF_ALU | BPF_XOR | BPF_K: /* dst = (u32) dst ^ (u32) imm */
1002 if (!imm)
1003 break;
1004 /* xilf %dst,imm */
1005 EMIT6_IMM(0xc0070000, dst_reg, imm);
1006 EMIT_ZERO(dst_reg);
1007 break;
1008 case BPF_ALU64 | BPF_XOR | BPF_K: /* dst = dst ^ imm */
1009 if (!is_first_pass(jit) && can_use_ldisp_for_lit64(jit)) {
1010 /* xg %dst,<d(imm)>(%l) */
1011 EMIT6_DISP_LH(0xe3000000, 0x0082,
1012 dst_reg, REG_0, REG_L,
1013 EMIT_CONST_U64(imm));
1014 } else {
1015 /* lgrl %w0,imm */
1016 EMIT6_PCREL_RILB(0xc4080000, REG_W0,
1017 _EMIT_CONST_U64(imm));
1018 jit->seen |= SEEN_LITERAL;
1019 /* xgr %dst,%w0 */
1020 EMIT4(0xb9820000, dst_reg, REG_W0);
1021 }
1022 break;
1023 /*
1024 * BPF_LSH
1025 */
1026 case BPF_ALU | BPF_LSH | BPF_X: /* dst = (u32) dst << (u32) src */
1027 /* sll %dst,0(%src) */
1028 EMIT4_DISP(0x89000000, dst_reg, src_reg, 0);
1029 EMIT_ZERO(dst_reg);
1030 break;
1031 case BPF_ALU64 | BPF_LSH | BPF_X: /* dst = dst << src */
1032 /* sllg %dst,%dst,0(%src) */
1033 EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, src_reg, 0);
1034 break;
1035 case BPF_ALU | BPF_LSH | BPF_K: /* dst = (u32) dst << (u32) imm */
1036 if (imm == 0)
1037 break;
1038 /* sll %dst,imm(%r0) */
1039 EMIT4_DISP(0x89000000, dst_reg, REG_0, imm);
1040 EMIT_ZERO(dst_reg);
1041 break;
1042 case BPF_ALU64 | BPF_LSH | BPF_K: /* dst = dst << imm */
1043 if (imm == 0)
1044 break;
1045 /* sllg %dst,%dst,imm(%r0) */
1046 EMIT6_DISP_LH(0xeb000000, 0x000d, dst_reg, dst_reg, REG_0, imm);
1047 break;
1048 /*
1049 * BPF_RSH
1050 */
1051 case BPF_ALU | BPF_RSH | BPF_X: /* dst = (u32) dst >> (u32) src */
1052 /* srl %dst,0(%src) */
1053 EMIT4_DISP(0x88000000, dst_reg, src_reg, 0);
1054 EMIT_ZERO(dst_reg);
1055 break;
1056 case BPF_ALU64 | BPF_RSH | BPF_X: /* dst = dst >> src */
1057 /* srlg %dst,%dst,0(%src) */
1058 EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, src_reg, 0);
1059 break;
1060 case BPF_ALU | BPF_RSH | BPF_K: /* dst = (u32) dst >> (u32) imm */
1061 if (imm == 0)
1062 break;
1063 /* srl %dst,imm(%r0) */
1064 EMIT4_DISP(0x88000000, dst_reg, REG_0, imm);
1065 EMIT_ZERO(dst_reg);
1066 break;
1067 case BPF_ALU64 | BPF_RSH | BPF_K: /* dst = dst >> imm */
1068 if (imm == 0)
1069 break;
1070 /* srlg %dst,%dst,imm(%r0) */
1071 EMIT6_DISP_LH(0xeb000000, 0x000c, dst_reg, dst_reg, REG_0, imm);
1072 break;
1073 /*
1074 * BPF_ARSH
1075 */
1076 case BPF_ALU | BPF_ARSH | BPF_X: /* ((s32) dst) >>= src */
1077 /* sra %dst,%dst,0(%src) */
1078 EMIT4_DISP(0x8a000000, dst_reg, src_reg, 0);
1079 EMIT_ZERO(dst_reg);
1080 break;
1081 case BPF_ALU64 | BPF_ARSH | BPF_X: /* ((s64) dst) >>= src */
1082 /* srag %dst,%dst,0(%src) */
1083 EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, src_reg, 0);
1084 break;
1085 case BPF_ALU | BPF_ARSH | BPF_K: /* ((s32) dst >> imm */
1086 if (imm == 0)
1087 break;
1088 /* sra %dst,imm(%r0) */
1089 EMIT4_DISP(0x8a000000, dst_reg, REG_0, imm);
1090 EMIT_ZERO(dst_reg);
1091 break;
1092 case BPF_ALU64 | BPF_ARSH | BPF_K: /* ((s64) dst) >>= imm */
1093 if (imm == 0)
1094 break;
1095 /* srag %dst,%dst,imm(%r0) */
1096 EMIT6_DISP_LH(0xeb000000, 0x000a, dst_reg, dst_reg, REG_0, imm);
1097 break;
1098 /*
1099 * BPF_NEG
1100 */
1101 case BPF_ALU | BPF_NEG: /* dst = (u32) -dst */
1102 /* lcr %dst,%dst */
1103 EMIT2(0x1300, dst_reg, dst_reg);
1104 EMIT_ZERO(dst_reg);
1105 break;
1106 case BPF_ALU64 | BPF_NEG: /* dst = -dst */
1107 /* lcgr %dst,%dst */
1108 EMIT4(0xb9030000, dst_reg, dst_reg);
1109 break;
1110 /*
1111 * BPF_FROM_BE/LE
1112 */
1113 case BPF_ALU | BPF_END | BPF_FROM_BE:
1114 /* s390 is big endian, therefore only clear high order bytes */
1115 switch (imm) {
1116 case 16: /* dst = (u16) cpu_to_be16(dst) */
1117 /* llghr %dst,%dst */
1118 EMIT4(0xb9850000, dst_reg, dst_reg);
1119 if (insn_is_zext(&insn[1]))
1120 insn_count = 2;
1121 break;
1122 case 32: /* dst = (u32) cpu_to_be32(dst) */
1123 if (!fp->aux->verifier_zext)
1124 /* llgfr %dst,%dst */
1125 EMIT4(0xb9160000, dst_reg, dst_reg);
1126 break;
1127 case 64: /* dst = (u64) cpu_to_be64(dst) */
1128 break;
1129 }
1130 break;
1131 case BPF_ALU | BPF_END | BPF_FROM_LE:
1132 switch (imm) {
1133 case 16: /* dst = (u16) cpu_to_le16(dst) */
1134 /* lrvr %dst,%dst */
1135 EMIT4(0xb91f0000, dst_reg, dst_reg);
1136 /* srl %dst,16(%r0) */
1137 EMIT4_DISP(0x88000000, dst_reg, REG_0, 16);
1138 /* llghr %dst,%dst */
1139 EMIT4(0xb9850000, dst_reg, dst_reg);
1140 if (insn_is_zext(&insn[1]))
1141 insn_count = 2;
1142 break;
1143 case 32: /* dst = (u32) cpu_to_le32(dst) */
1144 /* lrvr %dst,%dst */
1145 EMIT4(0xb91f0000, dst_reg, dst_reg);
1146 if (!fp->aux->verifier_zext)
1147 /* llgfr %dst,%dst */
1148 EMIT4(0xb9160000, dst_reg, dst_reg);
1149 break;
1150 case 64: /* dst = (u64) cpu_to_le64(dst) */
1151 /* lrvgr %dst,%dst */
1152 EMIT4(0xb90f0000, dst_reg, dst_reg);
1153 break;
1154 }
1155 break;
1156 /*
1157 * BPF_ST(X)
1158 */
1159 case BPF_STX | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = src_reg */
1160 /* stcy %src,off(%dst) */
1161 EMIT6_DISP_LH(0xe3000000, 0x0072, src_reg, dst_reg, REG_0, off);
1162 jit->seen |= SEEN_MEM;
1163 break;
1164 case BPF_STX | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = src */
1165 /* sthy %src,off(%dst) */
1166 EMIT6_DISP_LH(0xe3000000, 0x0070, src_reg, dst_reg, REG_0, off);
1167 jit->seen |= SEEN_MEM;
1168 break;
1169 case BPF_STX | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = src */
1170 /* sty %src,off(%dst) */
1171 EMIT6_DISP_LH(0xe3000000, 0x0050, src_reg, dst_reg, REG_0, off);
1172 jit->seen |= SEEN_MEM;
1173 break;
1174 case BPF_STX | BPF_MEM | BPF_DW: /* (u64 *)(dst + off) = src */
1175 /* stg %src,off(%dst) */
1176 EMIT6_DISP_LH(0xe3000000, 0x0024, src_reg, dst_reg, REG_0, off);
1177 jit->seen |= SEEN_MEM;
1178 break;
1179 case BPF_ST | BPF_MEM | BPF_B: /* *(u8 *)(dst + off) = imm */
1180 /* lhi %w0,imm */
1181 EMIT4_IMM(0xa7080000, REG_W0, (u8) imm);
1182 /* stcy %w0,off(dst) */
1183 EMIT6_DISP_LH(0xe3000000, 0x0072, REG_W0, dst_reg, REG_0, off);
1184 jit->seen |= SEEN_MEM;
1185 break;
1186 case BPF_ST | BPF_MEM | BPF_H: /* (u16 *)(dst + off) = imm */
1187 /* lhi %w0,imm */
1188 EMIT4_IMM(0xa7080000, REG_W0, (u16) imm);
1189 /* sthy %w0,off(dst) */
1190 EMIT6_DISP_LH(0xe3000000, 0x0070, REG_W0, dst_reg, REG_0, off);
1191 jit->seen |= SEEN_MEM;
1192 break;
1193 case BPF_ST | BPF_MEM | BPF_W: /* *(u32 *)(dst + off) = imm */
1194 /* llilf %w0,imm */
1195 EMIT6_IMM(0xc00f0000, REG_W0, (u32) imm);
1196 /* sty %w0,off(%dst) */
1197 EMIT6_DISP_LH(0xe3000000, 0x0050, REG_W0, dst_reg, REG_0, off);
1198 jit->seen |= SEEN_MEM;
1199 break;
1200 case BPF_ST | BPF_MEM | BPF_DW: /* *(u64 *)(dst + off) = imm */
1201 /* lgfi %w0,imm */
1202 EMIT6_IMM(0xc0010000, REG_W0, imm);
1203 /* stg %w0,off(%dst) */
1204 EMIT6_DISP_LH(0xe3000000, 0x0024, REG_W0, dst_reg, REG_0, off);
1205 jit->seen |= SEEN_MEM;
1206 break;
1207 /*
1208 * BPF_STX XADD (atomic_add)
1209 */
1210 case BPF_STX | BPF_XADD | BPF_W: /* *(u32 *)(dst + off) += src */
1211 /* laal %w0,%src,off(%dst) */
1212 EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W0, src_reg,
1213 dst_reg, off);
1214 jit->seen |= SEEN_MEM;
1215 break;
1216 case BPF_STX | BPF_XADD | BPF_DW: /* *(u64 *)(dst + off) += src */
1217 /* laalg %w0,%src,off(%dst) */
1218 EMIT6_DISP_LH(0xeb000000, 0x00ea, REG_W0, src_reg,
1219 dst_reg, off);
1220 jit->seen |= SEEN_MEM;
1221 break;
1222 /*
1223 * BPF_LDX
1224 */
1225 case BPF_LDX | BPF_MEM | BPF_B: /* dst = *(u8 *)(ul) (src + off) */
1226 case BPF_LDX | BPF_PROBE_MEM | BPF_B:
1227 /* llgc %dst,0(off,%src) */
1228 EMIT6_DISP_LH(0xe3000000, 0x0090, dst_reg, src_reg, REG_0, off);
1229 jit->seen |= SEEN_MEM;
1230 if (insn_is_zext(&insn[1]))
1231 insn_count = 2;
1232 break;
1233 case BPF_LDX | BPF_MEM | BPF_H: /* dst = *(u16 *)(ul) (src + off) */
1234 case BPF_LDX | BPF_PROBE_MEM | BPF_H:
1235 /* llgh %dst,0(off,%src) */
1236 EMIT6_DISP_LH(0xe3000000, 0x0091, dst_reg, src_reg, REG_0, off);
1237 jit->seen |= SEEN_MEM;
1238 if (insn_is_zext(&insn[1]))
1239 insn_count = 2;
1240 break;
1241 case BPF_LDX | BPF_MEM | BPF_W: /* dst = *(u32 *)(ul) (src + off) */
1242 case BPF_LDX | BPF_PROBE_MEM | BPF_W:
1243 /* llgf %dst,off(%src) */
1244 jit->seen |= SEEN_MEM;
1245 EMIT6_DISP_LH(0xe3000000, 0x0016, dst_reg, src_reg, REG_0, off);
1246 if (insn_is_zext(&insn[1]))
1247 insn_count = 2;
1248 break;
1249 case BPF_LDX | BPF_MEM | BPF_DW: /* dst = *(u64 *)(ul) (src + off) */
1250 case BPF_LDX | BPF_PROBE_MEM | BPF_DW:
1251 /* lg %dst,0(off,%src) */
1252 jit->seen |= SEEN_MEM;
1253 EMIT6_DISP_LH(0xe3000000, 0x0004, dst_reg, src_reg, REG_0, off);
1254 break;
1255 /*
1256 * BPF_JMP / CALL
1257 */
1258 case BPF_JMP | BPF_CALL:
1259 {
1260 u64 func;
1261 bool func_addr_fixed;
1262 int ret;
1263
1264 ret = bpf_jit_get_func_addr(fp, insn, extra_pass,
1265 &func, &func_addr_fixed);
1266 if (ret < 0)
1267 return -1;
1268
1269 REG_SET_SEEN(BPF_REG_5);
1270 jit->seen |= SEEN_FUNC;
1271 /* lgrl %w1,func */
1272 EMIT6_PCREL_RILB(0xc4080000, REG_W1, _EMIT_CONST_U64(func));
1273 if (__is_defined(CC_USING_EXPOLINE) && !nospec_disable) {
1274 /* brasl %r14,__s390_indirect_jump_r1 */
1275 EMIT6_PCREL_RILB(0xc0050000, REG_14, jit->r1_thunk_ip);
1276 } else {
1277 /* basr %r14,%w1 */
1278 EMIT2(0x0d00, REG_14, REG_W1);
1279 }
1280 /* lgr %b0,%r2: load return value into %b0 */
1281 EMIT4(0xb9040000, BPF_REG_0, REG_2);
1282 break;
1283 }
1284 case BPF_JMP | BPF_TAIL_CALL: {
1285 int patch_1_clrj, patch_2_clij, patch_3_brc;
1286
1287 /*
1288 * Implicit input:
1289 * B1: pointer to ctx
1290 * B2: pointer to bpf_array
1291 * B3: index in bpf_array
1292 */
1293 jit->seen |= SEEN_TAIL_CALL;
1294
1295 /*
1296 * if (index >= array->map.max_entries)
1297 * goto out;
1298 */
1299
1300 /* llgf %w1,map.max_entries(%b2) */
1301 EMIT6_DISP_LH(0xe3000000, 0x0016, REG_W1, REG_0, BPF_REG_2,
1302 offsetof(struct bpf_array, map.max_entries));
1303 /* if ((u32)%b3 >= (u32)%w1) goto out; */
1304 /* clrj %b3,%w1,0xa,out */
1305 patch_1_clrj = jit->prg;
1306 EMIT6_PCREL_RIEB(0xec000000, 0x0077, BPF_REG_3, REG_W1, 0xa,
1307 jit->prg);
1308
1309 /*
1310 * if (tail_call_cnt++ > MAX_TAIL_CALL_CNT)
1311 * goto out;
1312 */
1313
1314 if (jit->seen & SEEN_STACK)
1315 off = STK_OFF_TCCNT + STK_OFF + stack_depth;
1316 else
1317 off = STK_OFF_TCCNT;
1318 /* lhi %w0,1 */
1319 EMIT4_IMM(0xa7080000, REG_W0, 1);
1320 /* laal %w1,%w0,off(%r15) */
1321 EMIT6_DISP_LH(0xeb000000, 0x00fa, REG_W1, REG_W0, REG_15, off);
1322 /* clij %w1,MAX_TAIL_CALL_CNT,0x2,out */
1323 patch_2_clij = jit->prg;
1324 EMIT6_PCREL_RIEC(0xec000000, 0x007f, REG_W1, MAX_TAIL_CALL_CNT,
1325 2, jit->prg);
1326
1327 /*
1328 * prog = array->ptrs[index];
1329 * if (prog == NULL)
1330 * goto out;
1331 */
1332
1333 /* llgfr %r1,%b3: %r1 = (u32) index */
1334 EMIT4(0xb9160000, REG_1, BPF_REG_3);
1335 /* sllg %r1,%r1,3: %r1 *= 8 */
1336 EMIT6_DISP_LH(0xeb000000, 0x000d, REG_1, REG_1, REG_0, 3);
1337 /* ltg %r1,prog(%b2,%r1) */
1338 EMIT6_DISP_LH(0xe3000000, 0x0002, REG_1, BPF_REG_2,
1339 REG_1, offsetof(struct bpf_array, ptrs));
1340 /* brc 0x8,out */
1341 patch_3_brc = jit->prg;
1342 EMIT4_PCREL_RIC(0xa7040000, 8, jit->prg);
1343
1344 /*
1345 * Restore registers before calling function
1346 */
1347 save_restore_regs(jit, REGS_RESTORE, stack_depth);
1348
1349 /*
1350 * goto *(prog->bpf_func + tail_call_start);
1351 */
1352
1353 /* lg %r1,bpf_func(%r1) */
1354 EMIT6_DISP_LH(0xe3000000, 0x0004, REG_1, REG_1, REG_0,
1355 offsetof(struct bpf_prog, bpf_func));
1356 /* bc 0xf,tail_call_start(%r1) */
1357 _EMIT4(0x47f01000 + jit->tail_call_start);
1358 /* out: */
1359 if (jit->prg_buf) {
1360 *(u16 *)(jit->prg_buf + patch_1_clrj + 2) =
1361 (jit->prg - patch_1_clrj) >> 1;
1362 *(u16 *)(jit->prg_buf + patch_2_clij + 2) =
1363 (jit->prg - patch_2_clij) >> 1;
1364 *(u16 *)(jit->prg_buf + patch_3_brc + 2) =
1365 (jit->prg - patch_3_brc) >> 1;
1366 }
1367 break;
1368 }
1369 case BPF_JMP | BPF_EXIT: /* return b0 */
1370 last = (i == fp->len - 1) ? 1 : 0;
1371 if (last)
1372 break;
1373 if (!is_first_pass(jit) && can_use_rel(jit, jit->exit_ip))
1374 /* brc 0xf, <exit> */
1375 EMIT4_PCREL_RIC(0xa7040000, 0xf, jit->exit_ip);
1376 else
1377 /* brcl 0xf, <exit> */
1378 EMIT6_PCREL_RILC(0xc0040000, 0xf, jit->exit_ip);
1379 break;
1380 /*
1381 * Branch relative (number of skipped instructions) to offset on
1382 * condition.
1383 *
1384 * Condition code to mask mapping:
1385 *
1386 * CC | Description | Mask
1387 * ------------------------------
1388 * 0 | Operands equal | 8
1389 * 1 | First operand low | 4
1390 * 2 | First operand high | 2
1391 * 3 | Unused | 1
1392 *
1393 * For s390x relative branches: ip = ip + off_bytes
1394 * For BPF relative branches: insn = insn + off_insns + 1
1395 *
1396 * For example for s390x with offset 0 we jump to the branch
1397 * instruction itself (loop) and for BPF with offset 0 we
1398 * branch to the instruction behind the branch.
1399 */
1400 case BPF_JMP | BPF_JA: /* if (true) */
1401 mask = 0xf000; /* j */
1402 goto branch_oc;
1403 case BPF_JMP | BPF_JSGT | BPF_K: /* ((s64) dst > (s64) imm) */
1404 case BPF_JMP32 | BPF_JSGT | BPF_K: /* ((s32) dst > (s32) imm) */
1405 mask = 0x2000; /* jh */
1406 goto branch_ks;
1407 case BPF_JMP | BPF_JSLT | BPF_K: /* ((s64) dst < (s64) imm) */
1408 case BPF_JMP32 | BPF_JSLT | BPF_K: /* ((s32) dst < (s32) imm) */
1409 mask = 0x4000; /* jl */
1410 goto branch_ks;
1411 case BPF_JMP | BPF_JSGE | BPF_K: /* ((s64) dst >= (s64) imm) */
1412 case BPF_JMP32 | BPF_JSGE | BPF_K: /* ((s32) dst >= (s32) imm) */
1413 mask = 0xa000; /* jhe */
1414 goto branch_ks;
1415 case BPF_JMP | BPF_JSLE | BPF_K: /* ((s64) dst <= (s64) imm) */
1416 case BPF_JMP32 | BPF_JSLE | BPF_K: /* ((s32) dst <= (s32) imm) */
1417 mask = 0xc000; /* jle */
1418 goto branch_ks;
1419 case BPF_JMP | BPF_JGT | BPF_K: /* (dst_reg > imm) */
1420 case BPF_JMP32 | BPF_JGT | BPF_K: /* ((u32) dst_reg > (u32) imm) */
1421 mask = 0x2000; /* jh */
1422 goto branch_ku;
1423 case BPF_JMP | BPF_JLT | BPF_K: /* (dst_reg < imm) */
1424 case BPF_JMP32 | BPF_JLT | BPF_K: /* ((u32) dst_reg < (u32) imm) */
1425 mask = 0x4000; /* jl */
1426 goto branch_ku;
1427 case BPF_JMP | BPF_JGE | BPF_K: /* (dst_reg >= imm) */
1428 case BPF_JMP32 | BPF_JGE | BPF_K: /* ((u32) dst_reg >= (u32) imm) */
1429 mask = 0xa000; /* jhe */
1430 goto branch_ku;
1431 case BPF_JMP | BPF_JLE | BPF_K: /* (dst_reg <= imm) */
1432 case BPF_JMP32 | BPF_JLE | BPF_K: /* ((u32) dst_reg <= (u32) imm) */
1433 mask = 0xc000; /* jle */
1434 goto branch_ku;
1435 case BPF_JMP | BPF_JNE | BPF_K: /* (dst_reg != imm) */
1436 case BPF_JMP32 | BPF_JNE | BPF_K: /* ((u32) dst_reg != (u32) imm) */
1437 mask = 0x7000; /* jne */
1438 goto branch_ku;
1439 case BPF_JMP | BPF_JEQ | BPF_K: /* (dst_reg == imm) */
1440 case BPF_JMP32 | BPF_JEQ | BPF_K: /* ((u32) dst_reg == (u32) imm) */
1441 mask = 0x8000; /* je */
1442 goto branch_ku;
1443 case BPF_JMP | BPF_JSET | BPF_K: /* (dst_reg & imm) */
1444 case BPF_JMP32 | BPF_JSET | BPF_K: /* ((u32) dst_reg & (u32) imm) */
1445 mask = 0x7000; /* jnz */
1446 if (BPF_CLASS(insn->code) == BPF_JMP32) {
1447 /* llilf %w1,imm (load zero extend imm) */
1448 EMIT6_IMM(0xc00f0000, REG_W1, imm);
1449 /* nr %w1,%dst */
1450 EMIT2(0x1400, REG_W1, dst_reg);
1451 } else {
1452 /* lgfi %w1,imm (load sign extend imm) */
1453 EMIT6_IMM(0xc0010000, REG_W1, imm);
1454 /* ngr %w1,%dst */
1455 EMIT4(0xb9800000, REG_W1, dst_reg);
1456 }
1457 goto branch_oc;
1458
1459 case BPF_JMP | BPF_JSGT | BPF_X: /* ((s64) dst > (s64) src) */
1460 case BPF_JMP32 | BPF_JSGT | BPF_X: /* ((s32) dst > (s32) src) */
1461 mask = 0x2000; /* jh */
1462 goto branch_xs;
1463 case BPF_JMP | BPF_JSLT | BPF_X: /* ((s64) dst < (s64) src) */
1464 case BPF_JMP32 | BPF_JSLT | BPF_X: /* ((s32) dst < (s32) src) */
1465 mask = 0x4000; /* jl */
1466 goto branch_xs;
1467 case BPF_JMP | BPF_JSGE | BPF_X: /* ((s64) dst >= (s64) src) */
1468 case BPF_JMP32 | BPF_JSGE | BPF_X: /* ((s32) dst >= (s32) src) */
1469 mask = 0xa000; /* jhe */
1470 goto branch_xs;
1471 case BPF_JMP | BPF_JSLE | BPF_X: /* ((s64) dst <= (s64) src) */
1472 case BPF_JMP32 | BPF_JSLE | BPF_X: /* ((s32) dst <= (s32) src) */
1473 mask = 0xc000; /* jle */
1474 goto branch_xs;
1475 case BPF_JMP | BPF_JGT | BPF_X: /* (dst > src) */
1476 case BPF_JMP32 | BPF_JGT | BPF_X: /* ((u32) dst > (u32) src) */
1477 mask = 0x2000; /* jh */
1478 goto branch_xu;
1479 case BPF_JMP | BPF_JLT | BPF_X: /* (dst < src) */
1480 case BPF_JMP32 | BPF_JLT | BPF_X: /* ((u32) dst < (u32) src) */
1481 mask = 0x4000; /* jl */
1482 goto branch_xu;
1483 case BPF_JMP | BPF_JGE | BPF_X: /* (dst >= src) */
1484 case BPF_JMP32 | BPF_JGE | BPF_X: /* ((u32) dst >= (u32) src) */
1485 mask = 0xa000; /* jhe */
1486 goto branch_xu;
1487 case BPF_JMP | BPF_JLE | BPF_X: /* (dst <= src) */
1488 case BPF_JMP32 | BPF_JLE | BPF_X: /* ((u32) dst <= (u32) src) */
1489 mask = 0xc000; /* jle */
1490 goto branch_xu;
1491 case BPF_JMP | BPF_JNE | BPF_X: /* (dst != src) */
1492 case BPF_JMP32 | BPF_JNE | BPF_X: /* ((u32) dst != (u32) src) */
1493 mask = 0x7000; /* jne */
1494 goto branch_xu;
1495 case BPF_JMP | BPF_JEQ | BPF_X: /* (dst == src) */
1496 case BPF_JMP32 | BPF_JEQ | BPF_X: /* ((u32) dst == (u32) src) */
1497 mask = 0x8000; /* je */
1498 goto branch_xu;
1499 case BPF_JMP | BPF_JSET | BPF_X: /* (dst & src) */
1500 case BPF_JMP32 | BPF_JSET | BPF_X: /* ((u32) dst & (u32) src) */
1501 {
1502 bool is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1503
1504 mask = 0x7000; /* jnz */
1505 /* nrk or ngrk %w1,%dst,%src */
1506 EMIT4_RRF((is_jmp32 ? 0xb9f40000 : 0xb9e40000),
1507 REG_W1, dst_reg, src_reg);
1508 goto branch_oc;
1509 branch_ks:
1510 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1511 /* cfi or cgfi %dst,imm */
1512 EMIT6_IMM(is_jmp32 ? 0xc20d0000 : 0xc20c0000,
1513 dst_reg, imm);
1514 if (!is_first_pass(jit) &&
1515 can_use_rel(jit, addrs[i + off + 1])) {
1516 /* brc mask,off */
1517 EMIT4_PCREL_RIC(0xa7040000,
1518 mask >> 12, addrs[i + off + 1]);
1519 } else {
1520 /* brcl mask,off */
1521 EMIT6_PCREL_RILC(0xc0040000,
1522 mask >> 12, addrs[i + off + 1]);
1523 }
1524 break;
1525 branch_ku:
1526 /* lgfi %w1,imm (load sign extend imm) */
1527 src_reg = REG_1;
1528 EMIT6_IMM(0xc0010000, src_reg, imm);
1529 goto branch_xu;
1530 branch_xs:
1531 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1532 if (!is_first_pass(jit) &&
1533 can_use_rel(jit, addrs[i + off + 1])) {
1534 /* crj or cgrj %dst,%src,mask,off */
1535 EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0076 : 0x0064),
1536 dst_reg, src_reg, i, off, mask);
1537 } else {
1538 /* cr or cgr %dst,%src */
1539 if (is_jmp32)
1540 EMIT2(0x1900, dst_reg, src_reg);
1541 else
1542 EMIT4(0xb9200000, dst_reg, src_reg);
1543 /* brcl mask,off */
1544 EMIT6_PCREL_RILC(0xc0040000,
1545 mask >> 12, addrs[i + off + 1]);
1546 }
1547 break;
1548 branch_xu:
1549 is_jmp32 = BPF_CLASS(insn->code) == BPF_JMP32;
1550 if (!is_first_pass(jit) &&
1551 can_use_rel(jit, addrs[i + off + 1])) {
1552 /* clrj or clgrj %dst,%src,mask,off */
1553 EMIT6_PCREL(0xec000000, (is_jmp32 ? 0x0077 : 0x0065),
1554 dst_reg, src_reg, i, off, mask);
1555 } else {
1556 /* clr or clgr %dst,%src */
1557 if (is_jmp32)
1558 EMIT2(0x1500, dst_reg, src_reg);
1559 else
1560 EMIT4(0xb9210000, dst_reg, src_reg);
1561 /* brcl mask,off */
1562 EMIT6_PCREL_RILC(0xc0040000,
1563 mask >> 12, addrs[i + off + 1]);
1564 }
1565 break;
1566 branch_oc:
1567 if (!is_first_pass(jit) &&
1568 can_use_rel(jit, addrs[i + off + 1])) {
1569 /* brc mask,off */
1570 EMIT4_PCREL_RIC(0xa7040000,
1571 mask >> 12, addrs[i + off + 1]);
1572 } else {
1573 /* brcl mask,off */
1574 EMIT6_PCREL_RILC(0xc0040000,
1575 mask >> 12, addrs[i + off + 1]);
1576 }
1577 break;
1578 }
1579 default: /* too complex, give up */
1580 pr_err("Unknown opcode %02x\n", insn->code);
1581 return -1;
1582 }
1583
1584 if (probe_prg != -1) {
1585 /*
1586 * Handlers of certain exceptions leave psw.addr pointing to
1587 * the instruction directly after the failing one. Therefore,
1588 * create two exception table entries and also add a nop in
1589 * case two probing instructions come directly after each
1590 * other.
1591 */
1592 nop_prg = jit->prg;
1593 /* bcr 0,%0 */
1594 _EMIT2(0x0700);
1595 err = bpf_jit_probe_mem(jit, fp, probe_prg, nop_prg);
1596 if (err < 0)
1597 return err;
1598 }
1599
1600 return insn_count;
1601 }
1602
1603 /*
1604 * Return whether new i-th instruction address does not violate any invariant
1605 */
1606 static bool bpf_is_new_addr_sane(struct bpf_jit *jit, int i)
1607 {
1608 /* On the first pass anything goes */
1609 if (is_first_pass(jit))
1610 return true;
1611
1612 /* The codegen pass must not change anything */
1613 if (is_codegen_pass(jit))
1614 return jit->addrs[i] == jit->prg;
1615
1616 /* Passes in between must not increase code size */
1617 return jit->addrs[i] >= jit->prg;
1618 }
1619
1620 /*
1621 * Update the address of i-th instruction
1622 */
1623 static int bpf_set_addr(struct bpf_jit *jit, int i)
1624 {
1625 int delta;
1626
1627 if (is_codegen_pass(jit)) {
1628 delta = jit->prg - jit->addrs[i];
1629 if (delta < 0)
1630 bpf_skip(jit, -delta);
1631 }
1632 if (WARN_ON_ONCE(!bpf_is_new_addr_sane(jit, i)))
1633 return -1;
1634 jit->addrs[i] = jit->prg;
1635 return 0;
1636 }
1637
1638 /*
1639 * Compile eBPF program into s390x code
1640 */
1641 static int bpf_jit_prog(struct bpf_jit *jit, struct bpf_prog *fp,
1642 bool extra_pass, u32 stack_depth)
1643 {
1644 int i, insn_count, lit32_size, lit64_size;
1645
1646 jit->lit32 = jit->lit32_start;
1647 jit->lit64 = jit->lit64_start;
1648 jit->prg = 0;
1649 jit->excnt = 0;
1650
1651 bpf_jit_prologue(jit, stack_depth);
1652 if (bpf_set_addr(jit, 0) < 0)
1653 return -1;
1654 for (i = 0; i < fp->len; i += insn_count) {
1655 insn_count = bpf_jit_insn(jit, fp, i, extra_pass, stack_depth);
1656 if (insn_count < 0)
1657 return -1;
1658 /* Next instruction address */
1659 if (bpf_set_addr(jit, i + insn_count) < 0)
1660 return -1;
1661 }
1662 bpf_jit_epilogue(jit, stack_depth);
1663
1664 lit32_size = jit->lit32 - jit->lit32_start;
1665 lit64_size = jit->lit64 - jit->lit64_start;
1666 jit->lit32_start = jit->prg;
1667 if (lit32_size)
1668 jit->lit32_start = ALIGN(jit->lit32_start, 4);
1669 jit->lit64_start = jit->lit32_start + lit32_size;
1670 if (lit64_size)
1671 jit->lit64_start = ALIGN(jit->lit64_start, 8);
1672 jit->size = jit->lit64_start + lit64_size;
1673 jit->size_prg = jit->prg;
1674
1675 if (WARN_ON_ONCE(fp->aux->extable &&
1676 jit->excnt != fp->aux->num_exentries))
1677 /* Verifier bug - too many entries. */
1678 return -1;
1679
1680 return 0;
1681 }
1682
1683 bool bpf_jit_needs_zext(void)
1684 {
1685 return true;
1686 }
1687
1688 struct s390_jit_data {
1689 struct bpf_binary_header *header;
1690 struct bpf_jit ctx;
1691 int pass;
1692 };
1693
1694 static struct bpf_binary_header *bpf_jit_alloc(struct bpf_jit *jit,
1695 struct bpf_prog *fp)
1696 {
1697 struct bpf_binary_header *header;
1698 u32 extable_size;
1699 u32 code_size;
1700
1701 /* We need two entries per insn. */
1702 fp->aux->num_exentries *= 2;
1703
1704 code_size = roundup(jit->size,
1705 __alignof__(struct exception_table_entry));
1706 extable_size = fp->aux->num_exentries *
1707 sizeof(struct exception_table_entry);
1708 header = bpf_jit_binary_alloc(code_size + extable_size, &jit->prg_buf,
1709 8, jit_fill_hole);
1710 if (!header)
1711 return NULL;
1712 fp->aux->extable = (struct exception_table_entry *)
1713 (jit->prg_buf + code_size);
1714 return header;
1715 }
1716
1717 /*
1718 * Compile eBPF program "fp"
1719 */
1720 struct bpf_prog *bpf_int_jit_compile(struct bpf_prog *fp)
1721 {
1722 u32 stack_depth = round_up(fp->aux->stack_depth, 8);
1723 struct bpf_prog *tmp, *orig_fp = fp;
1724 struct bpf_binary_header *header;
1725 struct s390_jit_data *jit_data;
1726 bool tmp_blinded = false;
1727 bool extra_pass = false;
1728 struct bpf_jit jit;
1729 int pass;
1730
1731 if (!fp->jit_requested)
1732 return orig_fp;
1733
1734 tmp = bpf_jit_blind_constants(fp);
1735 /*
1736 * If blinding was requested and we failed during blinding,
1737 * we must fall back to the interpreter.
1738 */
1739 if (IS_ERR(tmp))
1740 return orig_fp;
1741 if (tmp != fp) {
1742 tmp_blinded = true;
1743 fp = tmp;
1744 }
1745
1746 jit_data = fp->aux->jit_data;
1747 if (!jit_data) {
1748 jit_data = kzalloc(sizeof(*jit_data), GFP_KERNEL);
1749 if (!jit_data) {
1750 fp = orig_fp;
1751 goto out;
1752 }
1753 fp->aux->jit_data = jit_data;
1754 }
1755 if (jit_data->ctx.addrs) {
1756 jit = jit_data->ctx;
1757 header = jit_data->header;
1758 extra_pass = true;
1759 pass = jit_data->pass + 1;
1760 goto skip_init_ctx;
1761 }
1762
1763 memset(&jit, 0, sizeof(jit));
1764 jit.addrs = kvcalloc(fp->len + 1, sizeof(*jit.addrs), GFP_KERNEL);
1765 if (jit.addrs == NULL) {
1766 fp = orig_fp;
1767 goto out;
1768 }
1769 /*
1770 * Three initial passes:
1771 * - 1/2: Determine clobbered registers
1772 * - 3: Calculate program size and addrs arrray
1773 */
1774 for (pass = 1; pass <= 3; pass++) {
1775 if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1776 fp = orig_fp;
1777 goto free_addrs;
1778 }
1779 }
1780 /*
1781 * Final pass: Allocate and generate program
1782 */
1783 header = bpf_jit_alloc(&jit, fp);
1784 if (!header) {
1785 fp = orig_fp;
1786 goto free_addrs;
1787 }
1788 skip_init_ctx:
1789 if (bpf_jit_prog(&jit, fp, extra_pass, stack_depth)) {
1790 bpf_jit_binary_free(header);
1791 fp = orig_fp;
1792 goto free_addrs;
1793 }
1794 if (bpf_jit_enable > 1) {
1795 bpf_jit_dump(fp->len, jit.size, pass, jit.prg_buf);
1796 print_fn_code(jit.prg_buf, jit.size_prg);
1797 }
1798 if (!fp->is_func || extra_pass) {
1799 bpf_jit_binary_lock_ro(header);
1800 } else {
1801 jit_data->header = header;
1802 jit_data->ctx = jit;
1803 jit_data->pass = pass;
1804 }
1805 fp->bpf_func = (void *) jit.prg_buf;
1806 fp->jited = 1;
1807 fp->jited_len = jit.size;
1808
1809 if (!fp->is_func || extra_pass) {
1810 bpf_prog_fill_jited_linfo(fp, jit.addrs + 1);
1811 free_addrs:
1812 kvfree(jit.addrs);
1813 kfree(jit_data);
1814 fp->aux->jit_data = NULL;
1815 }
1816 out:
1817 if (tmp_blinded)
1818 bpf_jit_prog_release_other(fp, fp == orig_fp ?
1819 tmp : orig_fp);
1820 return fp;
1821 }