]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/sh/kernel/dwarf.c
88d28ec3780a621ecfcb4dba2ea9f670fda86f3a
[mirror_ubuntu-artful-kernel.git] / arch / sh / kernel / dwarf.c
1 /*
2 * Copyright (C) 2009 Matt Fleming <matt@console-pimps.org>
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * This is an implementation of a DWARF unwinder. Its main purpose is
9 * for generating stacktrace information. Based on the DWARF 3
10 * specification from http://www.dwarfstd.org.
11 *
12 * TODO:
13 * - DWARF64 doesn't work.
14 * - Registers with DWARF_VAL_OFFSET rules aren't handled properly.
15 */
16
17 /* #define DEBUG */
18 #include <linux/kernel.h>
19 #include <linux/io.h>
20 #include <linux/list.h>
21 #include <linux/mempool.h>
22 #include <linux/mm.h>
23 #include <linux/elf.h>
24 #include <linux/ftrace.h>
25 #include <asm/dwarf.h>
26 #include <asm/unwinder.h>
27 #include <asm/sections.h>
28 #include <asm/unaligned.h>
29 #include <asm/stacktrace.h>
30
31 /* Reserve enough memory for two stack frames */
32 #define DWARF_FRAME_MIN_REQ 2
33 /* ... with 4 registers per frame. */
34 #define DWARF_REG_MIN_REQ (DWARF_FRAME_MIN_REQ * 4)
35
36 static struct kmem_cache *dwarf_frame_cachep;
37 static mempool_t *dwarf_frame_pool;
38
39 static struct kmem_cache *dwarf_reg_cachep;
40 static mempool_t *dwarf_reg_pool;
41
42 static LIST_HEAD(dwarf_cie_list);
43 static DEFINE_SPINLOCK(dwarf_cie_lock);
44
45 static LIST_HEAD(dwarf_fde_list);
46 static DEFINE_SPINLOCK(dwarf_fde_lock);
47
48 static struct dwarf_cie *cached_cie;
49
50 /**
51 * dwarf_frame_alloc_reg - allocate memory for a DWARF register
52 * @frame: the DWARF frame whose list of registers we insert on
53 * @reg_num: the register number
54 *
55 * Allocate space for, and initialise, a dwarf reg from
56 * dwarf_reg_pool and insert it onto the (unsorted) linked-list of
57 * dwarf registers for @frame.
58 *
59 * Return the initialised DWARF reg.
60 */
61 static struct dwarf_reg *dwarf_frame_alloc_reg(struct dwarf_frame *frame,
62 unsigned int reg_num)
63 {
64 struct dwarf_reg *reg;
65
66 reg = mempool_alloc(dwarf_reg_pool, GFP_ATOMIC);
67 if (!reg) {
68 printk(KERN_WARNING "Unable to allocate a DWARF register\n");
69 /*
70 * Let's just bomb hard here, we have no way to
71 * gracefully recover.
72 */
73 UNWINDER_BUG();
74 }
75
76 reg->number = reg_num;
77 reg->addr = 0;
78 reg->flags = 0;
79
80 list_add(&reg->link, &frame->reg_list);
81
82 return reg;
83 }
84
85 static void dwarf_frame_free_regs(struct dwarf_frame *frame)
86 {
87 struct dwarf_reg *reg, *n;
88
89 list_for_each_entry_safe(reg, n, &frame->reg_list, link) {
90 list_del(&reg->link);
91 mempool_free(reg, dwarf_reg_pool);
92 }
93 }
94
95 /**
96 * dwarf_frame_reg - return a DWARF register
97 * @frame: the DWARF frame to search in for @reg_num
98 * @reg_num: the register number to search for
99 *
100 * Lookup and return the dwarf reg @reg_num for this frame. Return
101 * NULL if @reg_num is an register invalid number.
102 */
103 static struct dwarf_reg *dwarf_frame_reg(struct dwarf_frame *frame,
104 unsigned int reg_num)
105 {
106 struct dwarf_reg *reg;
107
108 list_for_each_entry(reg, &frame->reg_list, link) {
109 if (reg->number == reg_num)
110 return reg;
111 }
112
113 return NULL;
114 }
115
116 /**
117 * dwarf_read_addr - read dwarf data
118 * @src: source address of data
119 * @dst: destination address to store the data to
120 *
121 * Read 'n' bytes from @src, where 'n' is the size of an address on
122 * the native machine. We return the number of bytes read, which
123 * should always be 'n'. We also have to be careful when reading
124 * from @src and writing to @dst, because they can be arbitrarily
125 * aligned. Return 'n' - the number of bytes read.
126 */
127 static inline int dwarf_read_addr(unsigned long *src, unsigned long *dst)
128 {
129 u32 val = get_unaligned(src);
130 put_unaligned(val, dst);
131 return sizeof(unsigned long *);
132 }
133
134 /**
135 * dwarf_read_uleb128 - read unsigned LEB128 data
136 * @addr: the address where the ULEB128 data is stored
137 * @ret: address to store the result
138 *
139 * Decode an unsigned LEB128 encoded datum. The algorithm is taken
140 * from Appendix C of the DWARF 3 spec. For information on the
141 * encodings refer to section "7.6 - Variable Length Data". Return
142 * the number of bytes read.
143 */
144 static inline unsigned long dwarf_read_uleb128(char *addr, unsigned int *ret)
145 {
146 unsigned int result;
147 unsigned char byte;
148 int shift, count;
149
150 result = 0;
151 shift = 0;
152 count = 0;
153
154 while (1) {
155 byte = __raw_readb(addr);
156 addr++;
157 count++;
158
159 result |= (byte & 0x7f) << shift;
160 shift += 7;
161
162 if (!(byte & 0x80))
163 break;
164 }
165
166 *ret = result;
167
168 return count;
169 }
170
171 /**
172 * dwarf_read_leb128 - read signed LEB128 data
173 * @addr: the address of the LEB128 encoded data
174 * @ret: address to store the result
175 *
176 * Decode signed LEB128 data. The algorithm is taken from Appendix
177 * C of the DWARF 3 spec. Return the number of bytes read.
178 */
179 static inline unsigned long dwarf_read_leb128(char *addr, int *ret)
180 {
181 unsigned char byte;
182 int result, shift;
183 int num_bits;
184 int count;
185
186 result = 0;
187 shift = 0;
188 count = 0;
189
190 while (1) {
191 byte = __raw_readb(addr);
192 addr++;
193 result |= (byte & 0x7f) << shift;
194 shift += 7;
195 count++;
196
197 if (!(byte & 0x80))
198 break;
199 }
200
201 /* The number of bits in a signed integer. */
202 num_bits = 8 * sizeof(result);
203
204 if ((shift < num_bits) && (byte & 0x40))
205 result |= (-1 << shift);
206
207 *ret = result;
208
209 return count;
210 }
211
212 /**
213 * dwarf_read_encoded_value - return the decoded value at @addr
214 * @addr: the address of the encoded value
215 * @val: where to write the decoded value
216 * @encoding: the encoding with which we can decode @addr
217 *
218 * GCC emits encoded address in the .eh_frame FDE entries. Decode
219 * the value at @addr using @encoding. The decoded value is written
220 * to @val and the number of bytes read is returned.
221 */
222 static int dwarf_read_encoded_value(char *addr, unsigned long *val,
223 char encoding)
224 {
225 unsigned long decoded_addr = 0;
226 int count = 0;
227
228 switch (encoding & 0x70) {
229 case DW_EH_PE_absptr:
230 break;
231 case DW_EH_PE_pcrel:
232 decoded_addr = (unsigned long)addr;
233 break;
234 default:
235 pr_debug("encoding=0x%x\n", (encoding & 0x70));
236 UNWINDER_BUG();
237 }
238
239 if ((encoding & 0x07) == 0x00)
240 encoding |= DW_EH_PE_udata4;
241
242 switch (encoding & 0x0f) {
243 case DW_EH_PE_sdata4:
244 case DW_EH_PE_udata4:
245 count += 4;
246 decoded_addr += get_unaligned((u32 *)addr);
247 __raw_writel(decoded_addr, val);
248 break;
249 default:
250 pr_debug("encoding=0x%x\n", encoding);
251 UNWINDER_BUG();
252 }
253
254 return count;
255 }
256
257 /**
258 * dwarf_entry_len - return the length of an FDE or CIE
259 * @addr: the address of the entry
260 * @len: the length of the entry
261 *
262 * Read the initial_length field of the entry and store the size of
263 * the entry in @len. We return the number of bytes read. Return a
264 * count of 0 on error.
265 */
266 static inline int dwarf_entry_len(char *addr, unsigned long *len)
267 {
268 u32 initial_len;
269 int count;
270
271 initial_len = get_unaligned((u32 *)addr);
272 count = 4;
273
274 /*
275 * An initial length field value in the range DW_LEN_EXT_LO -
276 * DW_LEN_EXT_HI indicates an extension, and should not be
277 * interpreted as a length. The only extension that we currently
278 * understand is the use of DWARF64 addresses.
279 */
280 if (initial_len >= DW_EXT_LO && initial_len <= DW_EXT_HI) {
281 /*
282 * The 64-bit length field immediately follows the
283 * compulsory 32-bit length field.
284 */
285 if (initial_len == DW_EXT_DWARF64) {
286 *len = get_unaligned((u64 *)addr + 4);
287 count = 12;
288 } else {
289 printk(KERN_WARNING "Unknown DWARF extension\n");
290 count = 0;
291 }
292 } else
293 *len = initial_len;
294
295 return count;
296 }
297
298 /**
299 * dwarf_lookup_cie - locate the cie
300 * @cie_ptr: pointer to help with lookup
301 */
302 static struct dwarf_cie *dwarf_lookup_cie(unsigned long cie_ptr)
303 {
304 struct dwarf_cie *cie;
305 unsigned long flags;
306
307 spin_lock_irqsave(&dwarf_cie_lock, flags);
308
309 /*
310 * We've cached the last CIE we looked up because chances are
311 * that the FDE wants this CIE.
312 */
313 if (cached_cie && cached_cie->cie_pointer == cie_ptr) {
314 cie = cached_cie;
315 goto out;
316 }
317
318 list_for_each_entry(cie, &dwarf_cie_list, link) {
319 if (cie->cie_pointer == cie_ptr) {
320 cached_cie = cie;
321 break;
322 }
323 }
324
325 /* Couldn't find the entry in the list. */
326 if (&cie->link == &dwarf_cie_list)
327 cie = NULL;
328 out:
329 spin_unlock_irqrestore(&dwarf_cie_lock, flags);
330 return cie;
331 }
332
333 /**
334 * dwarf_lookup_fde - locate the FDE that covers pc
335 * @pc: the program counter
336 */
337 struct dwarf_fde *dwarf_lookup_fde(unsigned long pc)
338 {
339 struct dwarf_fde *fde;
340 unsigned long flags;
341
342 spin_lock_irqsave(&dwarf_fde_lock, flags);
343
344 list_for_each_entry(fde, &dwarf_fde_list, link) {
345 unsigned long start, end;
346
347 start = fde->initial_location;
348 end = fde->initial_location + fde->address_range;
349
350 if (pc >= start && pc < end)
351 break;
352 }
353
354 /* Couldn't find the entry in the list. */
355 if (&fde->link == &dwarf_fde_list)
356 fde = NULL;
357
358 spin_unlock_irqrestore(&dwarf_fde_lock, flags);
359
360 return fde;
361 }
362
363 /**
364 * dwarf_cfa_execute_insns - execute instructions to calculate a CFA
365 * @insn_start: address of the first instruction
366 * @insn_end: address of the last instruction
367 * @cie: the CIE for this function
368 * @fde: the FDE for this function
369 * @frame: the instructions calculate the CFA for this frame
370 * @pc: the program counter of the address we're interested in
371 *
372 * Execute the Call Frame instruction sequence starting at
373 * @insn_start and ending at @insn_end. The instructions describe
374 * how to calculate the Canonical Frame Address of a stackframe.
375 * Store the results in @frame.
376 */
377 static int dwarf_cfa_execute_insns(unsigned char *insn_start,
378 unsigned char *insn_end,
379 struct dwarf_cie *cie,
380 struct dwarf_fde *fde,
381 struct dwarf_frame *frame,
382 unsigned long pc)
383 {
384 unsigned char insn;
385 unsigned char *current_insn;
386 unsigned int count, delta, reg, expr_len, offset;
387 struct dwarf_reg *regp;
388
389 current_insn = insn_start;
390
391 while (current_insn < insn_end && frame->pc <= pc) {
392 insn = __raw_readb(current_insn++);
393
394 /*
395 * Firstly, handle the opcodes that embed their operands
396 * in the instructions.
397 */
398 switch (DW_CFA_opcode(insn)) {
399 case DW_CFA_advance_loc:
400 delta = DW_CFA_operand(insn);
401 delta *= cie->code_alignment_factor;
402 frame->pc += delta;
403 continue;
404 /* NOTREACHED */
405 case DW_CFA_offset:
406 reg = DW_CFA_operand(insn);
407 count = dwarf_read_uleb128(current_insn, &offset);
408 current_insn += count;
409 offset *= cie->data_alignment_factor;
410 regp = dwarf_frame_alloc_reg(frame, reg);
411 regp->addr = offset;
412 regp->flags |= DWARF_REG_OFFSET;
413 continue;
414 /* NOTREACHED */
415 case DW_CFA_restore:
416 reg = DW_CFA_operand(insn);
417 continue;
418 /* NOTREACHED */
419 }
420
421 /*
422 * Secondly, handle the opcodes that don't embed their
423 * operands in the instruction.
424 */
425 switch (insn) {
426 case DW_CFA_nop:
427 continue;
428 case DW_CFA_advance_loc1:
429 delta = *current_insn++;
430 frame->pc += delta * cie->code_alignment_factor;
431 break;
432 case DW_CFA_advance_loc2:
433 delta = get_unaligned((u16 *)current_insn);
434 current_insn += 2;
435 frame->pc += delta * cie->code_alignment_factor;
436 break;
437 case DW_CFA_advance_loc4:
438 delta = get_unaligned((u32 *)current_insn);
439 current_insn += 4;
440 frame->pc += delta * cie->code_alignment_factor;
441 break;
442 case DW_CFA_offset_extended:
443 count = dwarf_read_uleb128(current_insn, &reg);
444 current_insn += count;
445 count = dwarf_read_uleb128(current_insn, &offset);
446 current_insn += count;
447 offset *= cie->data_alignment_factor;
448 break;
449 case DW_CFA_restore_extended:
450 count = dwarf_read_uleb128(current_insn, &reg);
451 current_insn += count;
452 break;
453 case DW_CFA_undefined:
454 count = dwarf_read_uleb128(current_insn, &reg);
455 current_insn += count;
456 regp = dwarf_frame_alloc_reg(frame, reg);
457 regp->flags |= DWARF_UNDEFINED;
458 break;
459 case DW_CFA_def_cfa:
460 count = dwarf_read_uleb128(current_insn,
461 &frame->cfa_register);
462 current_insn += count;
463 count = dwarf_read_uleb128(current_insn,
464 &frame->cfa_offset);
465 current_insn += count;
466
467 frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
468 break;
469 case DW_CFA_def_cfa_register:
470 count = dwarf_read_uleb128(current_insn,
471 &frame->cfa_register);
472 current_insn += count;
473 frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
474 break;
475 case DW_CFA_def_cfa_offset:
476 count = dwarf_read_uleb128(current_insn, &offset);
477 current_insn += count;
478 frame->cfa_offset = offset;
479 break;
480 case DW_CFA_def_cfa_expression:
481 count = dwarf_read_uleb128(current_insn, &expr_len);
482 current_insn += count;
483
484 frame->cfa_expr = current_insn;
485 frame->cfa_expr_len = expr_len;
486 current_insn += expr_len;
487
488 frame->flags |= DWARF_FRAME_CFA_REG_EXP;
489 break;
490 case DW_CFA_offset_extended_sf:
491 count = dwarf_read_uleb128(current_insn, &reg);
492 current_insn += count;
493 count = dwarf_read_leb128(current_insn, &offset);
494 current_insn += count;
495 offset *= cie->data_alignment_factor;
496 regp = dwarf_frame_alloc_reg(frame, reg);
497 regp->flags |= DWARF_REG_OFFSET;
498 regp->addr = offset;
499 break;
500 case DW_CFA_val_offset:
501 count = dwarf_read_uleb128(current_insn, &reg);
502 current_insn += count;
503 count = dwarf_read_leb128(current_insn, &offset);
504 offset *= cie->data_alignment_factor;
505 regp = dwarf_frame_alloc_reg(frame, reg);
506 regp->flags |= DWARF_VAL_OFFSET;
507 regp->addr = offset;
508 break;
509 case DW_CFA_GNU_args_size:
510 count = dwarf_read_uleb128(current_insn, &offset);
511 current_insn += count;
512 break;
513 case DW_CFA_GNU_negative_offset_extended:
514 count = dwarf_read_uleb128(current_insn, &reg);
515 current_insn += count;
516 count = dwarf_read_uleb128(current_insn, &offset);
517 offset *= cie->data_alignment_factor;
518
519 regp = dwarf_frame_alloc_reg(frame, reg);
520 regp->flags |= DWARF_REG_OFFSET;
521 regp->addr = -offset;
522 break;
523 default:
524 pr_debug("unhandled DWARF instruction 0x%x\n", insn);
525 UNWINDER_BUG();
526 break;
527 }
528 }
529
530 return 0;
531 }
532
533 /**
534 * dwarf_free_frame - free the memory allocated for @frame
535 * @frame: the frame to free
536 */
537 void dwarf_free_frame(struct dwarf_frame *frame)
538 {
539 dwarf_frame_free_regs(frame);
540 mempool_free(frame, dwarf_frame_pool);
541 }
542
543 /**
544 * dwarf_unwind_stack - unwind the stack
545 *
546 * @pc: address of the function to unwind
547 * @prev: struct dwarf_frame of the previous stackframe on the callstack
548 *
549 * Return a struct dwarf_frame representing the most recent frame
550 * on the callstack. Each of the lower (older) stack frames are
551 * linked via the "prev" member.
552 */
553 struct dwarf_frame * dwarf_unwind_stack(unsigned long pc,
554 struct dwarf_frame *prev)
555 {
556 struct dwarf_frame *frame;
557 struct dwarf_cie *cie;
558 struct dwarf_fde *fde;
559 struct dwarf_reg *reg;
560 unsigned long addr;
561
562 /*
563 * If we're starting at the top of the stack we need get the
564 * contents of a physical register to get the CFA in order to
565 * begin the virtual unwinding of the stack.
566 *
567 * NOTE: the return address is guaranteed to be setup by the
568 * time this function makes its first function call.
569 */
570 if (!pc || !prev)
571 pc = (unsigned long)current_text_addr();
572
573 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
574 /*
575 * If our stack has been patched by the function graph tracer
576 * then we might see the address of return_to_handler() where we
577 * expected to find the real return address.
578 */
579 if (pc == (unsigned long)&return_to_handler) {
580 int index = current->curr_ret_stack;
581
582 /*
583 * We currently have no way of tracking how many
584 * return_to_handler()'s we've seen. If there is more
585 * than one patched return address on our stack,
586 * complain loudly.
587 */
588 WARN_ON(index > 0);
589
590 pc = current->ret_stack[index].ret;
591 }
592 #endif
593
594 frame = mempool_alloc(dwarf_frame_pool, GFP_ATOMIC);
595 if (!frame) {
596 printk(KERN_ERR "Unable to allocate a dwarf frame\n");
597 UNWINDER_BUG();
598 }
599
600 INIT_LIST_HEAD(&frame->reg_list);
601 frame->flags = 0;
602 frame->prev = prev;
603 frame->return_addr = 0;
604
605 fde = dwarf_lookup_fde(pc);
606 if (!fde) {
607 /*
608 * This is our normal exit path. There are two reasons
609 * why we might exit here,
610 *
611 * a) pc has no asscociated DWARF frame info and so
612 * we don't know how to unwind this frame. This is
613 * usually the case when we're trying to unwind a
614 * frame that was called from some assembly code
615 * that has no DWARF info, e.g. syscalls.
616 *
617 * b) the DEBUG info for pc is bogus. There's
618 * really no way to distinguish this case from the
619 * case above, which sucks because we could print a
620 * warning here.
621 */
622 goto bail;
623 }
624
625 cie = dwarf_lookup_cie(fde->cie_pointer);
626
627 frame->pc = fde->initial_location;
628
629 /* CIE initial instructions */
630 dwarf_cfa_execute_insns(cie->initial_instructions,
631 cie->instructions_end, cie, fde,
632 frame, pc);
633
634 /* FDE instructions */
635 dwarf_cfa_execute_insns(fde->instructions, fde->end, cie,
636 fde, frame, pc);
637
638 /* Calculate the CFA */
639 switch (frame->flags) {
640 case DWARF_FRAME_CFA_REG_OFFSET:
641 if (prev) {
642 reg = dwarf_frame_reg(prev, frame->cfa_register);
643 UNWINDER_BUG_ON(!reg);
644 UNWINDER_BUG_ON(reg->flags != DWARF_REG_OFFSET);
645
646 addr = prev->cfa + reg->addr;
647 frame->cfa = __raw_readl(addr);
648
649 } else {
650 /*
651 * Again, we're starting from the top of the
652 * stack. We need to physically read
653 * the contents of a register in order to get
654 * the Canonical Frame Address for this
655 * function.
656 */
657 frame->cfa = dwarf_read_arch_reg(frame->cfa_register);
658 }
659
660 frame->cfa += frame->cfa_offset;
661 break;
662 default:
663 UNWINDER_BUG();
664 }
665
666 reg = dwarf_frame_reg(frame, DWARF_ARCH_RA_REG);
667
668 /*
669 * If we haven't seen the return address register or the return
670 * address column is undefined then we must assume that this is
671 * the end of the callstack.
672 */
673 if (!reg || reg->flags == DWARF_UNDEFINED)
674 goto bail;
675
676 UNWINDER_BUG_ON(reg->flags != DWARF_REG_OFFSET);
677
678 addr = frame->cfa + reg->addr;
679 frame->return_addr = __raw_readl(addr);
680
681 return frame;
682
683 bail:
684 dwarf_free_frame(frame);
685 return NULL;
686 }
687
688 static int dwarf_parse_cie(void *entry, void *p, unsigned long len,
689 unsigned char *end, struct module *mod)
690 {
691 struct dwarf_cie *cie;
692 unsigned long flags;
693 int count;
694
695 cie = kzalloc(sizeof(*cie), GFP_KERNEL);
696 if (!cie)
697 return -ENOMEM;
698
699 cie->length = len;
700
701 /*
702 * Record the offset into the .eh_frame section
703 * for this CIE. It allows this CIE to be
704 * quickly and easily looked up from the
705 * corresponding FDE.
706 */
707 cie->cie_pointer = (unsigned long)entry;
708
709 cie->version = *(char *)p++;
710 UNWINDER_BUG_ON(cie->version != 1);
711
712 cie->augmentation = p;
713 p += strlen(cie->augmentation) + 1;
714
715 count = dwarf_read_uleb128(p, &cie->code_alignment_factor);
716 p += count;
717
718 count = dwarf_read_leb128(p, &cie->data_alignment_factor);
719 p += count;
720
721 /*
722 * Which column in the rule table contains the
723 * return address?
724 */
725 if (cie->version == 1) {
726 cie->return_address_reg = __raw_readb(p);
727 p++;
728 } else {
729 count = dwarf_read_uleb128(p, &cie->return_address_reg);
730 p += count;
731 }
732
733 if (cie->augmentation[0] == 'z') {
734 unsigned int length, count;
735 cie->flags |= DWARF_CIE_Z_AUGMENTATION;
736
737 count = dwarf_read_uleb128(p, &length);
738 p += count;
739
740 UNWINDER_BUG_ON((unsigned char *)p > end);
741
742 cie->initial_instructions = p + length;
743 cie->augmentation++;
744 }
745
746 while (*cie->augmentation) {
747 /*
748 * "L" indicates a byte showing how the
749 * LSDA pointer is encoded. Skip it.
750 */
751 if (*cie->augmentation == 'L') {
752 p++;
753 cie->augmentation++;
754 } else if (*cie->augmentation == 'R') {
755 /*
756 * "R" indicates a byte showing
757 * how FDE addresses are
758 * encoded.
759 */
760 cie->encoding = *(char *)p++;
761 cie->augmentation++;
762 } else if (*cie->augmentation == 'P') {
763 /*
764 * "R" indicates a personality
765 * routine in the CIE
766 * augmentation.
767 */
768 UNWINDER_BUG();
769 } else if (*cie->augmentation == 'S') {
770 UNWINDER_BUG();
771 } else {
772 /*
773 * Unknown augmentation. Assume
774 * 'z' augmentation.
775 */
776 p = cie->initial_instructions;
777 UNWINDER_BUG_ON(!p);
778 break;
779 }
780 }
781
782 cie->initial_instructions = p;
783 cie->instructions_end = end;
784
785 cie->mod = mod;
786
787 /* Add to list */
788 spin_lock_irqsave(&dwarf_cie_lock, flags);
789 list_add_tail(&cie->link, &dwarf_cie_list);
790 spin_unlock_irqrestore(&dwarf_cie_lock, flags);
791
792 return 0;
793 }
794
795 static int dwarf_parse_fde(void *entry, u32 entry_type,
796 void *start, unsigned long len,
797 unsigned char *end, struct module *mod)
798 {
799 struct dwarf_fde *fde;
800 struct dwarf_cie *cie;
801 unsigned long flags;
802 int count;
803 void *p = start;
804
805 fde = kzalloc(sizeof(*fde), GFP_KERNEL);
806 if (!fde)
807 return -ENOMEM;
808
809 fde->length = len;
810
811 /*
812 * In a .eh_frame section the CIE pointer is the
813 * delta between the address within the FDE
814 */
815 fde->cie_pointer = (unsigned long)(p - entry_type - 4);
816
817 cie = dwarf_lookup_cie(fde->cie_pointer);
818 fde->cie = cie;
819
820 if (cie->encoding)
821 count = dwarf_read_encoded_value(p, &fde->initial_location,
822 cie->encoding);
823 else
824 count = dwarf_read_addr(p, &fde->initial_location);
825
826 p += count;
827
828 if (cie->encoding)
829 count = dwarf_read_encoded_value(p, &fde->address_range,
830 cie->encoding & 0x0f);
831 else
832 count = dwarf_read_addr(p, &fde->address_range);
833
834 p += count;
835
836 if (fde->cie->flags & DWARF_CIE_Z_AUGMENTATION) {
837 unsigned int length;
838 count = dwarf_read_uleb128(p, &length);
839 p += count + length;
840 }
841
842 /* Call frame instructions. */
843 fde->instructions = p;
844 fde->end = end;
845
846 fde->mod = mod;
847
848 /* Add to list. */
849 spin_lock_irqsave(&dwarf_fde_lock, flags);
850 list_add_tail(&fde->link, &dwarf_fde_list);
851 spin_unlock_irqrestore(&dwarf_fde_lock, flags);
852
853 return 0;
854 }
855
856 static void dwarf_unwinder_dump(struct task_struct *task,
857 struct pt_regs *regs,
858 unsigned long *sp,
859 const struct stacktrace_ops *ops,
860 void *data)
861 {
862 struct dwarf_frame *frame, *_frame;
863 unsigned long return_addr;
864
865 _frame = NULL;
866 return_addr = 0;
867
868 while (1) {
869 frame = dwarf_unwind_stack(return_addr, _frame);
870
871 if (_frame)
872 dwarf_free_frame(_frame);
873
874 _frame = frame;
875
876 if (!frame || !frame->return_addr)
877 break;
878
879 return_addr = frame->return_addr;
880 ops->address(data, return_addr, 1);
881 }
882
883 if (frame)
884 dwarf_free_frame(frame);
885 }
886
887 static struct unwinder dwarf_unwinder = {
888 .name = "dwarf-unwinder",
889 .dump = dwarf_unwinder_dump,
890 .rating = 150,
891 };
892
893 static void dwarf_unwinder_cleanup(void)
894 {
895 struct dwarf_cie *cie, *cie_tmp;
896 struct dwarf_fde *fde, *fde_tmp;
897
898 /*
899 * Deallocate all the memory allocated for the DWARF unwinder.
900 * Traverse all the FDE/CIE lists and remove and free all the
901 * memory associated with those data structures.
902 */
903 list_for_each_entry_safe(cie, cie_tmp, &dwarf_cie_list, link)
904 kfree(cie);
905
906 list_for_each_entry_safe(fde, fde_tmp, &dwarf_fde_list, link)
907 kfree(fde);
908
909 kmem_cache_destroy(dwarf_reg_cachep);
910 kmem_cache_destroy(dwarf_frame_cachep);
911 }
912
913 /**
914 * dwarf_parse_section - parse DWARF section
915 * @eh_frame_start: start address of the .eh_frame section
916 * @eh_frame_end: end address of the .eh_frame section
917 * @mod: the kernel module containing the .eh_frame section
918 *
919 * Parse the information in a .eh_frame section.
920 */
921 static int dwarf_parse_section(char *eh_frame_start, char *eh_frame_end,
922 struct module *mod)
923 {
924 u32 entry_type;
925 void *p, *entry;
926 int count, err = 0;
927 unsigned long len = 0;
928 unsigned int c_entries, f_entries;
929 unsigned char *end;
930
931 c_entries = 0;
932 f_entries = 0;
933 entry = eh_frame_start;
934
935 while ((char *)entry < eh_frame_end) {
936 p = entry;
937
938 count = dwarf_entry_len(p, &len);
939 if (count == 0) {
940 /*
941 * We read a bogus length field value. There is
942 * nothing we can do here apart from disabling
943 * the DWARF unwinder. We can't even skip this
944 * entry and move to the next one because 'len'
945 * tells us where our next entry is.
946 */
947 err = -EINVAL;
948 goto out;
949 } else
950 p += count;
951
952 /* initial length does not include itself */
953 end = p + len;
954
955 entry_type = get_unaligned((u32 *)p);
956 p += 4;
957
958 if (entry_type == DW_EH_FRAME_CIE) {
959 err = dwarf_parse_cie(entry, p, len, end, mod);
960 if (err < 0)
961 goto out;
962 else
963 c_entries++;
964 } else {
965 err = dwarf_parse_fde(entry, entry_type, p, len,
966 end, mod);
967 if (err < 0)
968 goto out;
969 else
970 f_entries++;
971 }
972
973 entry = (char *)entry + len + 4;
974 }
975
976 printk(KERN_INFO "DWARF unwinder initialised: read %u CIEs, %u FDEs\n",
977 c_entries, f_entries);
978
979 return 0;
980
981 out:
982 return err;
983 }
984
985 #ifdef CONFIG_MODULES
986 int module_dwarf_finalize(const Elf_Ehdr *hdr, const Elf_Shdr *sechdrs,
987 struct module *me)
988 {
989 unsigned int i, err;
990 unsigned long start, end;
991 char *secstrings = (void *)hdr + sechdrs[hdr->e_shstrndx].sh_offset;
992
993 start = end = 0;
994
995 for (i = 1; i < hdr->e_shnum; i++) {
996 /* Alloc bit cleared means "ignore it." */
997 if ((sechdrs[i].sh_flags & SHF_ALLOC)
998 && !strcmp(secstrings+sechdrs[i].sh_name, ".eh_frame")) {
999 start = sechdrs[i].sh_addr;
1000 end = start + sechdrs[i].sh_size;
1001 break;
1002 }
1003 }
1004
1005 /* Did we find the .eh_frame section? */
1006 if (i != hdr->e_shnum) {
1007 err = dwarf_parse_section((char *)start, (char *)end, me);
1008 if (err) {
1009 printk(KERN_WARNING "%s: failed to parse DWARF info\n",
1010 me->name);
1011 return err;
1012 }
1013 }
1014
1015 return 0;
1016 }
1017
1018 /**
1019 * module_dwarf_cleanup - remove FDE/CIEs associated with @mod
1020 * @mod: the module that is being unloaded
1021 *
1022 * Remove any FDEs and CIEs from the global lists that came from
1023 * @mod's .eh_frame section because @mod is being unloaded.
1024 */
1025 void module_dwarf_cleanup(struct module *mod)
1026 {
1027 struct dwarf_fde *fde;
1028 struct dwarf_cie *cie;
1029 unsigned long flags;
1030
1031 spin_lock_irqsave(&dwarf_cie_lock, flags);
1032
1033 again_cie:
1034 list_for_each_entry(cie, &dwarf_cie_list, link) {
1035 if (cie->mod == mod)
1036 break;
1037 }
1038
1039 if (&cie->link != &dwarf_cie_list) {
1040 list_del(&cie->link);
1041 kfree(cie);
1042 goto again_cie;
1043 }
1044
1045 spin_unlock_irqrestore(&dwarf_cie_lock, flags);
1046
1047 spin_lock_irqsave(&dwarf_fde_lock, flags);
1048
1049 again_fde:
1050 list_for_each_entry(fde, &dwarf_fde_list, link) {
1051 if (fde->mod == mod)
1052 break;
1053 }
1054
1055 if (&fde->link != &dwarf_fde_list) {
1056 list_del(&fde->link);
1057 kfree(fde);
1058 goto again_fde;
1059 }
1060
1061 spin_unlock_irqrestore(&dwarf_fde_lock, flags);
1062 }
1063 #endif /* CONFIG_MODULES */
1064
1065 /**
1066 * dwarf_unwinder_init - initialise the dwarf unwinder
1067 *
1068 * Build the data structures describing the .dwarf_frame section to
1069 * make it easier to lookup CIE and FDE entries. Because the
1070 * .eh_frame section is packed as tightly as possible it is not
1071 * easy to lookup the FDE for a given PC, so we build a list of FDE
1072 * and CIE entries that make it easier.
1073 */
1074 static int __init dwarf_unwinder_init(void)
1075 {
1076 int err;
1077 INIT_LIST_HEAD(&dwarf_cie_list);
1078 INIT_LIST_HEAD(&dwarf_fde_list);
1079
1080 dwarf_frame_cachep = kmem_cache_create("dwarf_frames",
1081 sizeof(struct dwarf_frame), 0,
1082 SLAB_PANIC | SLAB_HWCACHE_ALIGN | SLAB_NOTRACK, NULL);
1083
1084 dwarf_reg_cachep = kmem_cache_create("dwarf_regs",
1085 sizeof(struct dwarf_reg), 0,
1086 SLAB_PANIC | SLAB_HWCACHE_ALIGN | SLAB_NOTRACK, NULL);
1087
1088 dwarf_frame_pool = mempool_create(DWARF_FRAME_MIN_REQ,
1089 mempool_alloc_slab,
1090 mempool_free_slab,
1091 dwarf_frame_cachep);
1092
1093 dwarf_reg_pool = mempool_create(DWARF_REG_MIN_REQ,
1094 mempool_alloc_slab,
1095 mempool_free_slab,
1096 dwarf_reg_cachep);
1097
1098 err = dwarf_parse_section(__start_eh_frame, __stop_eh_frame, NULL);
1099 if (err)
1100 goto out;
1101
1102 err = unwinder_register(&dwarf_unwinder);
1103 if (err)
1104 goto out;
1105
1106 return 0;
1107
1108 out:
1109 printk(KERN_ERR "Failed to initialise DWARF unwinder: %d\n", err);
1110 dwarf_unwinder_cleanup();
1111 return -EINVAL;
1112 }
1113 early_initcall(dwarf_unwinder_init);