]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/sh/kernel/dwarf.c
db021361b161b16beb4b0f721f2ae20313c19957
[mirror_ubuntu-artful-kernel.git] / arch / sh / kernel / dwarf.c
1 /*
2 * Copyright (C) 2009 Matt Fleming <matt@console-pimps.org>
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * This is an implementation of a DWARF unwinder. Its main purpose is
9 * for generating stacktrace information. Based on the DWARF 3
10 * specification from http://www.dwarfstd.org.
11 *
12 * TODO:
13 * - DWARF64 doesn't work.
14 */
15
16 /* #define DEBUG */
17 #include <linux/kernel.h>
18 #include <linux/io.h>
19 #include <linux/list.h>
20 #include <linux/mm.h>
21 #include <asm/dwarf.h>
22 #include <asm/unwinder.h>
23 #include <asm/sections.h>
24 #include <asm/unaligned.h>
25 #include <asm/dwarf.h>
26 #include <asm/stacktrace.h>
27
28 static LIST_HEAD(dwarf_cie_list);
29 DEFINE_SPINLOCK(dwarf_cie_lock);
30
31 static LIST_HEAD(dwarf_fde_list);
32 DEFINE_SPINLOCK(dwarf_fde_lock);
33
34 static struct dwarf_cie *cached_cie;
35
36 /*
37 * Figure out whether we need to allocate some dwarf registers. If dwarf
38 * registers have already been allocated then we may need to realloc
39 * them. "reg" is a register number that we need to be able to access
40 * after this call.
41 *
42 * Register numbers start at zero, therefore we need to allocate space
43 * for "reg" + 1 registers.
44 */
45 static void dwarf_frame_alloc_regs(struct dwarf_frame *frame,
46 unsigned int reg)
47 {
48 struct dwarf_reg *regs;
49 unsigned int num_regs = reg + 1;
50 size_t new_size;
51 size_t old_size;
52
53 new_size = num_regs * sizeof(*regs);
54 old_size = frame->num_regs * sizeof(*regs);
55
56 /* Fast path: don't allocate any regs if we've already got enough. */
57 if (frame->num_regs >= num_regs)
58 return;
59
60 regs = kzalloc(new_size, GFP_ATOMIC);
61 if (!regs) {
62 printk(KERN_WARNING "Unable to allocate DWARF registers\n");
63 /*
64 * Let's just bomb hard here, we have no way to
65 * gracefully recover.
66 */
67 BUG();
68 }
69
70 if (frame->regs) {
71 memcpy(regs, frame->regs, old_size);
72 kfree(frame->regs);
73 }
74
75 frame->regs = regs;
76 frame->num_regs = num_regs;
77 }
78
79 /**
80 * dwarf_read_addr - read dwarf data
81 * @src: source address of data
82 * @dst: destination address to store the data to
83 *
84 * Read 'n' bytes from @src, where 'n' is the size of an address on
85 * the native machine. We return the number of bytes read, which
86 * should always be 'n'. We also have to be careful when reading
87 * from @src and writing to @dst, because they can be arbitrarily
88 * aligned. Return 'n' - the number of bytes read.
89 */
90 static inline int dwarf_read_addr(unsigned long *src, unsigned long *dst)
91 {
92 u32 val = get_unaligned(src);
93 put_unaligned(val, dst);
94 return sizeof(unsigned long *);
95 }
96
97 /**
98 * dwarf_read_uleb128 - read unsigned LEB128 data
99 * @addr: the address where the ULEB128 data is stored
100 * @ret: address to store the result
101 *
102 * Decode an unsigned LEB128 encoded datum. The algorithm is taken
103 * from Appendix C of the DWARF 3 spec. For information on the
104 * encodings refer to section "7.6 - Variable Length Data". Return
105 * the number of bytes read.
106 */
107 static inline unsigned long dwarf_read_uleb128(char *addr, unsigned int *ret)
108 {
109 unsigned int result;
110 unsigned char byte;
111 int shift, count;
112
113 result = 0;
114 shift = 0;
115 count = 0;
116
117 while (1) {
118 byte = __raw_readb(addr);
119 addr++;
120 count++;
121
122 result |= (byte & 0x7f) << shift;
123 shift += 7;
124
125 if (!(byte & 0x80))
126 break;
127 }
128
129 *ret = result;
130
131 return count;
132 }
133
134 /**
135 * dwarf_read_leb128 - read signed LEB128 data
136 * @addr: the address of the LEB128 encoded data
137 * @ret: address to store the result
138 *
139 * Decode signed LEB128 data. The algorithm is taken from Appendix
140 * C of the DWARF 3 spec. Return the number of bytes read.
141 */
142 static inline unsigned long dwarf_read_leb128(char *addr, int *ret)
143 {
144 unsigned char byte;
145 int result, shift;
146 int num_bits;
147 int count;
148
149 result = 0;
150 shift = 0;
151 count = 0;
152
153 while (1) {
154 byte = __raw_readb(addr);
155 addr++;
156 result |= (byte & 0x7f) << shift;
157 shift += 7;
158 count++;
159
160 if (!(byte & 0x80))
161 break;
162 }
163
164 /* The number of bits in a signed integer. */
165 num_bits = 8 * sizeof(result);
166
167 if ((shift < num_bits) && (byte & 0x40))
168 result |= (-1 << shift);
169
170 *ret = result;
171
172 return count;
173 }
174
175 /**
176 * dwarf_read_encoded_value - return the decoded value at @addr
177 * @addr: the address of the encoded value
178 * @val: where to write the decoded value
179 * @encoding: the encoding with which we can decode @addr
180 *
181 * GCC emits encoded address in the .eh_frame FDE entries. Decode
182 * the value at @addr using @encoding. The decoded value is written
183 * to @val and the number of bytes read is returned.
184 */
185 static int dwarf_read_encoded_value(char *addr, unsigned long *val,
186 char encoding)
187 {
188 unsigned long decoded_addr = 0;
189 int count = 0;
190
191 switch (encoding & 0x70) {
192 case DW_EH_PE_absptr:
193 break;
194 case DW_EH_PE_pcrel:
195 decoded_addr = (unsigned long)addr;
196 break;
197 default:
198 pr_debug("encoding=0x%x\n", (encoding & 0x70));
199 BUG();
200 }
201
202 if ((encoding & 0x07) == 0x00)
203 encoding |= DW_EH_PE_udata4;
204
205 switch (encoding & 0x0f) {
206 case DW_EH_PE_sdata4:
207 case DW_EH_PE_udata4:
208 count += 4;
209 decoded_addr += get_unaligned((u32 *)addr);
210 __raw_writel(decoded_addr, val);
211 break;
212 default:
213 pr_debug("encoding=0x%x\n", encoding);
214 BUG();
215 }
216
217 return count;
218 }
219
220 /**
221 * dwarf_entry_len - return the length of an FDE or CIE
222 * @addr: the address of the entry
223 * @len: the length of the entry
224 *
225 * Read the initial_length field of the entry and store the size of
226 * the entry in @len. We return the number of bytes read. Return a
227 * count of 0 on error.
228 */
229 static inline int dwarf_entry_len(char *addr, unsigned long *len)
230 {
231 u32 initial_len;
232 int count;
233
234 initial_len = get_unaligned((u32 *)addr);
235 count = 4;
236
237 /*
238 * An initial length field value in the range DW_LEN_EXT_LO -
239 * DW_LEN_EXT_HI indicates an extension, and should not be
240 * interpreted as a length. The only extension that we currently
241 * understand is the use of DWARF64 addresses.
242 */
243 if (initial_len >= DW_EXT_LO && initial_len <= DW_EXT_HI) {
244 /*
245 * The 64-bit length field immediately follows the
246 * compulsory 32-bit length field.
247 */
248 if (initial_len == DW_EXT_DWARF64) {
249 *len = get_unaligned((u64 *)addr + 4);
250 count = 12;
251 } else {
252 printk(KERN_WARNING "Unknown DWARF extension\n");
253 count = 0;
254 }
255 } else
256 *len = initial_len;
257
258 return count;
259 }
260
261 /**
262 * dwarf_lookup_cie - locate the cie
263 * @cie_ptr: pointer to help with lookup
264 */
265 static struct dwarf_cie *dwarf_lookup_cie(unsigned long cie_ptr)
266 {
267 struct dwarf_cie *cie, *n;
268 unsigned long flags;
269
270 spin_lock_irqsave(&dwarf_cie_lock, flags);
271
272 /*
273 * We've cached the last CIE we looked up because chances are
274 * that the FDE wants this CIE.
275 */
276 if (cached_cie && cached_cie->cie_pointer == cie_ptr) {
277 cie = cached_cie;
278 goto out;
279 }
280
281 list_for_each_entry_safe(cie, n, &dwarf_cie_list, link) {
282 if (cie->cie_pointer == cie_ptr) {
283 cached_cie = cie;
284 break;
285 }
286 }
287
288 /* Couldn't find the entry in the list. */
289 if (&cie->link == &dwarf_cie_list)
290 cie = NULL;
291 out:
292 spin_unlock_irqrestore(&dwarf_cie_lock, flags);
293 return cie;
294 }
295
296 /**
297 * dwarf_lookup_fde - locate the FDE that covers pc
298 * @pc: the program counter
299 */
300 struct dwarf_fde *dwarf_lookup_fde(unsigned long pc)
301 {
302 unsigned long flags;
303 struct dwarf_fde *fde, *n;
304
305 spin_lock_irqsave(&dwarf_fde_lock, flags);
306 list_for_each_entry_safe(fde, n, &dwarf_fde_list, link) {
307 unsigned long start, end;
308
309 start = fde->initial_location;
310 end = fde->initial_location + fde->address_range;
311
312 if (pc >= start && pc < end)
313 break;
314 }
315
316 /* Couldn't find the entry in the list. */
317 if (&fde->link == &dwarf_fde_list)
318 fde = NULL;
319
320 spin_unlock_irqrestore(&dwarf_fde_lock, flags);
321
322 return fde;
323 }
324
325 /**
326 * dwarf_cfa_execute_insns - execute instructions to calculate a CFA
327 * @insn_start: address of the first instruction
328 * @insn_end: address of the last instruction
329 * @cie: the CIE for this function
330 * @fde: the FDE for this function
331 * @frame: the instructions calculate the CFA for this frame
332 * @pc: the program counter of the address we're interested in
333 * @define_ra: keep executing insns until the return addr reg is defined?
334 *
335 * Execute the Call Frame instruction sequence starting at
336 * @insn_start and ending at @insn_end. The instructions describe
337 * how to calculate the Canonical Frame Address of a stackframe.
338 * Store the results in @frame.
339 */
340 static int dwarf_cfa_execute_insns(unsigned char *insn_start,
341 unsigned char *insn_end,
342 struct dwarf_cie *cie,
343 struct dwarf_fde *fde,
344 struct dwarf_frame *frame,
345 unsigned long pc,
346 bool define_ra)
347 {
348 unsigned char insn;
349 unsigned char *current_insn;
350 unsigned int count, delta, reg, expr_len, offset;
351 bool seen_ra_reg;
352
353 current_insn = insn_start;
354
355 /*
356 * If we're executing instructions for the dwarf_unwind_stack()
357 * FDE we need to keep executing instructions until the value of
358 * DWARF_ARCH_RA_REG is defined. See the comment in
359 * dwarf_unwind_stack() for more details.
360 */
361 if (define_ra)
362 seen_ra_reg = false;
363 else
364 seen_ra_reg = true;
365
366 while (current_insn < insn_end && (frame->pc <= pc || !seen_ra_reg) ) {
367 insn = __raw_readb(current_insn++);
368
369 if (!seen_ra_reg) {
370 if (frame->num_regs >= DWARF_ARCH_RA_REG &&
371 frame->regs[DWARF_ARCH_RA_REG].flags)
372 seen_ra_reg = true;
373 }
374
375 /*
376 * Firstly, handle the opcodes that embed their operands
377 * in the instructions.
378 */
379 switch (DW_CFA_opcode(insn)) {
380 case DW_CFA_advance_loc:
381 delta = DW_CFA_operand(insn);
382 delta *= cie->code_alignment_factor;
383 frame->pc += delta;
384 continue;
385 /* NOTREACHED */
386 case DW_CFA_offset:
387 reg = DW_CFA_operand(insn);
388 count = dwarf_read_uleb128(current_insn, &offset);
389 current_insn += count;
390 offset *= cie->data_alignment_factor;
391 dwarf_frame_alloc_regs(frame, reg);
392 frame->regs[reg].addr = offset;
393 frame->regs[reg].flags |= DWARF_REG_OFFSET;
394 continue;
395 /* NOTREACHED */
396 case DW_CFA_restore:
397 reg = DW_CFA_operand(insn);
398 continue;
399 /* NOTREACHED */
400 }
401
402 /*
403 * Secondly, handle the opcodes that don't embed their
404 * operands in the instruction.
405 */
406 switch (insn) {
407 case DW_CFA_nop:
408 continue;
409 case DW_CFA_advance_loc1:
410 delta = *current_insn++;
411 frame->pc += delta * cie->code_alignment_factor;
412 break;
413 case DW_CFA_advance_loc2:
414 delta = get_unaligned((u16 *)current_insn);
415 current_insn += 2;
416 frame->pc += delta * cie->code_alignment_factor;
417 break;
418 case DW_CFA_advance_loc4:
419 delta = get_unaligned((u32 *)current_insn);
420 current_insn += 4;
421 frame->pc += delta * cie->code_alignment_factor;
422 break;
423 case DW_CFA_offset_extended:
424 count = dwarf_read_uleb128(current_insn, &reg);
425 current_insn += count;
426 count = dwarf_read_uleb128(current_insn, &offset);
427 current_insn += count;
428 offset *= cie->data_alignment_factor;
429 break;
430 case DW_CFA_restore_extended:
431 count = dwarf_read_uleb128(current_insn, &reg);
432 current_insn += count;
433 break;
434 case DW_CFA_undefined:
435 count = dwarf_read_uleb128(current_insn, &reg);
436 current_insn += count;
437 break;
438 case DW_CFA_def_cfa:
439 count = dwarf_read_uleb128(current_insn,
440 &frame->cfa_register);
441 current_insn += count;
442 count = dwarf_read_uleb128(current_insn,
443 &frame->cfa_offset);
444 current_insn += count;
445
446 frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
447 break;
448 case DW_CFA_def_cfa_register:
449 count = dwarf_read_uleb128(current_insn,
450 &frame->cfa_register);
451 current_insn += count;
452 frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
453 break;
454 case DW_CFA_def_cfa_offset:
455 count = dwarf_read_uleb128(current_insn, &offset);
456 current_insn += count;
457 frame->cfa_offset = offset;
458 break;
459 case DW_CFA_def_cfa_expression:
460 count = dwarf_read_uleb128(current_insn, &expr_len);
461 current_insn += count;
462
463 frame->cfa_expr = current_insn;
464 frame->cfa_expr_len = expr_len;
465 current_insn += expr_len;
466
467 frame->flags |= DWARF_FRAME_CFA_REG_EXP;
468 break;
469 case DW_CFA_offset_extended_sf:
470 count = dwarf_read_uleb128(current_insn, &reg);
471 current_insn += count;
472 count = dwarf_read_leb128(current_insn, &offset);
473 current_insn += count;
474 offset *= cie->data_alignment_factor;
475 dwarf_frame_alloc_regs(frame, reg);
476 frame->regs[reg].flags |= DWARF_REG_OFFSET;
477 frame->regs[reg].addr = offset;
478 break;
479 case DW_CFA_val_offset:
480 count = dwarf_read_uleb128(current_insn, &reg);
481 current_insn += count;
482 count = dwarf_read_leb128(current_insn, &offset);
483 offset *= cie->data_alignment_factor;
484 frame->regs[reg].flags |= DWARF_REG_OFFSET;
485 frame->regs[reg].addr = offset;
486 break;
487 default:
488 pr_debug("unhandled DWARF instruction 0x%x\n", insn);
489 break;
490 }
491 }
492
493 return 0;
494 }
495
496 /**
497 * dwarf_unwind_stack - recursively unwind the stack
498 * @pc: address of the function to unwind
499 * @prev: struct dwarf_frame of the previous stackframe on the callstack
500 *
501 * Return a struct dwarf_frame representing the most recent frame
502 * on the callstack. Each of the lower (older) stack frames are
503 * linked via the "prev" member.
504 */
505 struct dwarf_frame *dwarf_unwind_stack(unsigned long pc,
506 struct dwarf_frame *prev)
507 {
508 struct dwarf_frame *frame;
509 struct dwarf_cie *cie;
510 struct dwarf_fde *fde;
511 unsigned long addr;
512 int i, offset;
513 bool define_ra = false;
514
515 /*
516 * If this is the first invocation of this recursive function we
517 * need get the contents of a physical register to get the CFA
518 * in order to begin the virtual unwinding of the stack.
519 *
520 * Setting "define_ra" to true indictates that we want
521 * dwarf_cfa_execute_insns() to continue executing instructions
522 * until we know how to calculate the value of DWARF_ARCH_RA_REG
523 * (which we need in order to kick off the whole unwinding
524 * process).
525 *
526 * NOTE: the return address is guaranteed to be setup by the
527 * time this function makes its first function call.
528 */
529 if (!pc && !prev) {
530 pc = (unsigned long)&dwarf_unwind_stack;
531 define_ra = true;
532 }
533
534 frame = kzalloc(sizeof(*frame), GFP_ATOMIC);
535 if (!frame)
536 return NULL;
537
538 frame->prev = prev;
539
540 fde = dwarf_lookup_fde(pc);
541 if (!fde) {
542 /*
543 * This is our normal exit path - the one that stops the
544 * recursion. There's two reasons why we might exit
545 * here,
546 *
547 * a) pc has no asscociated DWARF frame info and so
548 * we don't know how to unwind this frame. This is
549 * usually the case when we're trying to unwind a
550 * frame that was called from some assembly code
551 * that has no DWARF info, e.g. syscalls.
552 *
553 * b) the DEBUG info for pc is bogus. There's
554 * really no way to distinguish this case from the
555 * case above, which sucks because we could print a
556 * warning here.
557 */
558 return NULL;
559 }
560
561 cie = dwarf_lookup_cie(fde->cie_pointer);
562
563 frame->pc = fde->initial_location;
564
565 /* CIE initial instructions */
566 dwarf_cfa_execute_insns(cie->initial_instructions,
567 cie->instructions_end, cie, fde,
568 frame, pc, false);
569
570 /* FDE instructions */
571 dwarf_cfa_execute_insns(fde->instructions, fde->end, cie,
572 fde, frame, pc, define_ra);
573
574 /* Calculate the CFA */
575 switch (frame->flags) {
576 case DWARF_FRAME_CFA_REG_OFFSET:
577 if (prev) {
578 BUG_ON(!prev->regs[frame->cfa_register].flags);
579
580 addr = prev->cfa;
581 addr += prev->regs[frame->cfa_register].addr;
582 frame->cfa = __raw_readl(addr);
583
584 } else {
585 /*
586 * Again, this is the first invocation of this
587 * recurisve function. We need to physically
588 * read the contents of a register in order to
589 * get the Canonical Frame Address for this
590 * function.
591 */
592 frame->cfa = dwarf_read_arch_reg(frame->cfa_register);
593 }
594
595 frame->cfa += frame->cfa_offset;
596 break;
597 default:
598 BUG();
599 }
600
601 /* If we haven't seen the return address reg, we're screwed. */
602 BUG_ON(!frame->regs[DWARF_ARCH_RA_REG].flags);
603
604 for (i = 0; i <= frame->num_regs; i++) {
605 struct dwarf_reg *reg = &frame->regs[i];
606
607 if (!reg->flags)
608 continue;
609
610 offset = reg->addr;
611 offset += frame->cfa;
612 }
613
614 addr = frame->cfa + frame->regs[DWARF_ARCH_RA_REG].addr;
615 frame->return_addr = __raw_readl(addr);
616
617 frame->next = dwarf_unwind_stack(frame->return_addr, frame);
618 return frame;
619 }
620
621 static int dwarf_parse_cie(void *entry, void *p, unsigned long len,
622 unsigned char *end)
623 {
624 struct dwarf_cie *cie;
625 unsigned long flags;
626 int count;
627
628 cie = kzalloc(sizeof(*cie), GFP_KERNEL);
629 if (!cie)
630 return -ENOMEM;
631
632 cie->length = len;
633
634 /*
635 * Record the offset into the .eh_frame section
636 * for this CIE. It allows this CIE to be
637 * quickly and easily looked up from the
638 * corresponding FDE.
639 */
640 cie->cie_pointer = (unsigned long)entry;
641
642 cie->version = *(char *)p++;
643 BUG_ON(cie->version != 1);
644
645 cie->augmentation = p;
646 p += strlen(cie->augmentation) + 1;
647
648 count = dwarf_read_uleb128(p, &cie->code_alignment_factor);
649 p += count;
650
651 count = dwarf_read_leb128(p, &cie->data_alignment_factor);
652 p += count;
653
654 /*
655 * Which column in the rule table contains the
656 * return address?
657 */
658 if (cie->version == 1) {
659 cie->return_address_reg = __raw_readb(p);
660 p++;
661 } else {
662 count = dwarf_read_uleb128(p, &cie->return_address_reg);
663 p += count;
664 }
665
666 if (cie->augmentation[0] == 'z') {
667 unsigned int length, count;
668 cie->flags |= DWARF_CIE_Z_AUGMENTATION;
669
670 count = dwarf_read_uleb128(p, &length);
671 p += count;
672
673 BUG_ON((unsigned char *)p > end);
674
675 cie->initial_instructions = p + length;
676 cie->augmentation++;
677 }
678
679 while (*cie->augmentation) {
680 /*
681 * "L" indicates a byte showing how the
682 * LSDA pointer is encoded. Skip it.
683 */
684 if (*cie->augmentation == 'L') {
685 p++;
686 cie->augmentation++;
687 } else if (*cie->augmentation == 'R') {
688 /*
689 * "R" indicates a byte showing
690 * how FDE addresses are
691 * encoded.
692 */
693 cie->encoding = *(char *)p++;
694 cie->augmentation++;
695 } else if (*cie->augmentation == 'P') {
696 /*
697 * "R" indicates a personality
698 * routine in the CIE
699 * augmentation.
700 */
701 BUG();
702 } else if (*cie->augmentation == 'S') {
703 BUG();
704 } else {
705 /*
706 * Unknown augmentation. Assume
707 * 'z' augmentation.
708 */
709 p = cie->initial_instructions;
710 BUG_ON(!p);
711 break;
712 }
713 }
714
715 cie->initial_instructions = p;
716 cie->instructions_end = end;
717
718 /* Add to list */
719 spin_lock_irqsave(&dwarf_cie_lock, flags);
720 list_add_tail(&cie->link, &dwarf_cie_list);
721 spin_unlock_irqrestore(&dwarf_cie_lock, flags);
722
723 return 0;
724 }
725
726 static int dwarf_parse_fde(void *entry, u32 entry_type,
727 void *start, unsigned long len)
728 {
729 struct dwarf_fde *fde;
730 struct dwarf_cie *cie;
731 unsigned long flags;
732 int count;
733 void *p = start;
734
735 fde = kzalloc(sizeof(*fde), GFP_KERNEL);
736 if (!fde)
737 return -ENOMEM;
738
739 fde->length = len;
740
741 /*
742 * In a .eh_frame section the CIE pointer is the
743 * delta between the address within the FDE
744 */
745 fde->cie_pointer = (unsigned long)(p - entry_type - 4);
746
747 cie = dwarf_lookup_cie(fde->cie_pointer);
748 fde->cie = cie;
749
750 if (cie->encoding)
751 count = dwarf_read_encoded_value(p, &fde->initial_location,
752 cie->encoding);
753 else
754 count = dwarf_read_addr(p, &fde->initial_location);
755
756 p += count;
757
758 if (cie->encoding)
759 count = dwarf_read_encoded_value(p, &fde->address_range,
760 cie->encoding & 0x0f);
761 else
762 count = dwarf_read_addr(p, &fde->address_range);
763
764 p += count;
765
766 if (fde->cie->flags & DWARF_CIE_Z_AUGMENTATION) {
767 unsigned int length;
768 count = dwarf_read_uleb128(p, &length);
769 p += count + length;
770 }
771
772 /* Call frame instructions. */
773 fde->instructions = p;
774 fde->end = start + len;
775
776 /* Add to list. */
777 spin_lock_irqsave(&dwarf_fde_lock, flags);
778 list_add_tail(&fde->link, &dwarf_fde_list);
779 spin_unlock_irqrestore(&dwarf_fde_lock, flags);
780
781 return 0;
782 }
783
784 static void dwarf_unwinder_dump(struct task_struct *task, struct pt_regs *regs,
785 unsigned long *sp,
786 const struct stacktrace_ops *ops, void *data)
787 {
788 struct dwarf_frame *frame;
789
790 frame = dwarf_unwind_stack(0, NULL);
791
792 while (frame && frame->return_addr) {
793 ops->address(data, frame->return_addr, 1);
794 frame = frame->next;
795 }
796 }
797
798 static struct unwinder dwarf_unwinder = {
799 .name = "dwarf-unwinder",
800 .dump = dwarf_unwinder_dump,
801 .rating = 150,
802 };
803
804 static void dwarf_unwinder_cleanup(void)
805 {
806 struct dwarf_cie *cie, *m;
807 struct dwarf_fde *fde, *n;
808 unsigned long flags;
809
810 /*
811 * Deallocate all the memory allocated for the DWARF unwinder.
812 * Traverse all the FDE/CIE lists and remove and free all the
813 * memory associated with those data structures.
814 */
815 spin_lock_irqsave(&dwarf_cie_lock, flags);
816 list_for_each_entry_safe(cie, m, &dwarf_cie_list, link)
817 kfree(cie);
818 spin_unlock_irqrestore(&dwarf_cie_lock, flags);
819
820 spin_lock_irqsave(&dwarf_fde_lock, flags);
821 list_for_each_entry_safe(fde, n, &dwarf_fde_list, link)
822 kfree(fde);
823 spin_unlock_irqrestore(&dwarf_fde_lock, flags);
824 }
825
826 /**
827 * dwarf_unwinder_init - initialise the dwarf unwinder
828 *
829 * Build the data structures describing the .dwarf_frame section to
830 * make it easier to lookup CIE and FDE entries. Because the
831 * .eh_frame section is packed as tightly as possible it is not
832 * easy to lookup the FDE for a given PC, so we build a list of FDE
833 * and CIE entries that make it easier.
834 */
835 void dwarf_unwinder_init(void)
836 {
837 u32 entry_type;
838 void *p, *entry;
839 int count, err;
840 unsigned long len;
841 unsigned int c_entries, f_entries;
842 unsigned char *end;
843 INIT_LIST_HEAD(&dwarf_cie_list);
844 INIT_LIST_HEAD(&dwarf_fde_list);
845
846 c_entries = 0;
847 f_entries = 0;
848 entry = &__start_eh_frame;
849
850 while ((char *)entry < __stop_eh_frame) {
851 p = entry;
852
853 count = dwarf_entry_len(p, &len);
854 if (count == 0) {
855 /*
856 * We read a bogus length field value. There is
857 * nothing we can do here apart from disabling
858 * the DWARF unwinder. We can't even skip this
859 * entry and move to the next one because 'len'
860 * tells us where our next entry is.
861 */
862 goto out;
863 } else
864 p += count;
865
866 /* initial length does not include itself */
867 end = p + len;
868
869 entry_type = get_unaligned((u32 *)p);
870 p += 4;
871
872 if (entry_type == DW_EH_FRAME_CIE) {
873 err = dwarf_parse_cie(entry, p, len, end);
874 if (err < 0)
875 goto out;
876 else
877 c_entries++;
878 } else {
879 err = dwarf_parse_fde(entry, entry_type, p, len);
880 if (err < 0)
881 goto out;
882 else
883 f_entries++;
884 }
885
886 entry = (char *)entry + len + 4;
887 }
888
889 printk(KERN_INFO "DWARF unwinder initialised: read %u CIEs, %u FDEs\n",
890 c_entries, f_entries);
891
892 err = unwinder_register(&dwarf_unwinder);
893 if (err)
894 goto out;
895
896 return;
897
898 out:
899 printk(KERN_ERR "Failed to initialise DWARF unwinder: %d\n", err);
900 dwarf_unwinder_cleanup();
901 }