]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/sh/kernel/dwarf.c
sh: unwinder: Fix memory leak and create our own kmem cache
[mirror_ubuntu-artful-kernel.git] / arch / sh / kernel / dwarf.c
1 /*
2 * Copyright (C) 2009 Matt Fleming <matt@console-pimps.org>
3 *
4 * This file is subject to the terms and conditions of the GNU General Public
5 * License. See the file "COPYING" in the main directory of this archive
6 * for more details.
7 *
8 * This is an implementation of a DWARF unwinder. Its main purpose is
9 * for generating stacktrace information. Based on the DWARF 3
10 * specification from http://www.dwarfstd.org.
11 *
12 * TODO:
13 * - DWARF64 doesn't work.
14 */
15
16 /* #define DEBUG */
17 #include <linux/kernel.h>
18 #include <linux/io.h>
19 #include <linux/list.h>
20 #include <linux/mempool.h>
21 #include <linux/mm.h>
22 #include <asm/dwarf.h>
23 #include <asm/unwinder.h>
24 #include <asm/sections.h>
25 #include <asm/unaligned.h>
26 #include <asm/dwarf.h>
27 #include <asm/stacktrace.h>
28
29 /* Reserve enough memory for two stack frames */
30 #define DWARF_FRAME_MIN_REQ 2
31 /* ... with 4 registers per frame. */
32 #define DWARF_REG_MIN_REQ (DWARF_FRAME_MIN_REQ * 4)
33
34 static struct kmem_cache *dwarf_frame_cachep;
35 static mempool_t *dwarf_frame_pool;
36
37 static struct kmem_cache *dwarf_reg_cachep;
38 static mempool_t *dwarf_reg_pool;
39
40 static LIST_HEAD(dwarf_cie_list);
41 static DEFINE_SPINLOCK(dwarf_cie_lock);
42
43 static LIST_HEAD(dwarf_fde_list);
44 static DEFINE_SPINLOCK(dwarf_fde_lock);
45
46 static struct dwarf_cie *cached_cie;
47
48 /**
49 * dwarf_frame_alloc_reg - allocate memory for a DWARF register
50 * @frame: the DWARF frame whose list of registers we insert on
51 * @reg_num: the register number
52 *
53 * Allocate space for, and initialise, a dwarf reg from
54 * dwarf_reg_pool and insert it onto the (unsorted) linked-list of
55 * dwarf registers for @frame.
56 *
57 * Return the initialised DWARF reg.
58 */
59 static struct dwarf_reg *dwarf_frame_alloc_reg(struct dwarf_frame *frame,
60 unsigned int reg_num)
61 {
62 struct dwarf_reg *reg;
63
64 reg = mempool_alloc(dwarf_reg_pool, GFP_ATOMIC);
65 if (!reg) {
66 printk(KERN_WARNING "Unable to allocate a DWARF register\n");
67 /*
68 * Let's just bomb hard here, we have no way to
69 * gracefully recover.
70 */
71 BUG();
72 }
73
74 reg->number = reg_num;
75 reg->addr = 0;
76 reg->flags = 0;
77
78 list_add(&reg->link, &frame->reg_list);
79
80 return reg;
81 }
82
83 static void dwarf_frame_free_regs(struct dwarf_frame *frame)
84 {
85 struct dwarf_reg *reg, *n;
86
87 list_for_each_entry_safe(reg, n, &frame->reg_list, link) {
88 list_del(&reg->link);
89 mempool_free(reg, dwarf_reg_pool);
90 }
91 }
92
93 /**
94 * dwarf_frame_reg - return a DWARF register
95 * @frame: the DWARF frame to search in for @reg_num
96 * @reg_num: the register number to search for
97 *
98 * Lookup and return the dwarf reg @reg_num for this frame. Return
99 * NULL if @reg_num is an register invalid number.
100 */
101 static struct dwarf_reg *dwarf_frame_reg(struct dwarf_frame *frame,
102 unsigned int reg_num)
103 {
104 struct dwarf_reg *reg;
105
106 list_for_each_entry(reg, &frame->reg_list, link) {
107 if (reg->number == reg_num)
108 return reg;
109 }
110
111 return NULL;
112 }
113
114 /**
115 * dwarf_read_addr - read dwarf data
116 * @src: source address of data
117 * @dst: destination address to store the data to
118 *
119 * Read 'n' bytes from @src, where 'n' is the size of an address on
120 * the native machine. We return the number of bytes read, which
121 * should always be 'n'. We also have to be careful when reading
122 * from @src and writing to @dst, because they can be arbitrarily
123 * aligned. Return 'n' - the number of bytes read.
124 */
125 static inline int dwarf_read_addr(unsigned long *src, unsigned long *dst)
126 {
127 u32 val = get_unaligned(src);
128 put_unaligned(val, dst);
129 return sizeof(unsigned long *);
130 }
131
132 /**
133 * dwarf_read_uleb128 - read unsigned LEB128 data
134 * @addr: the address where the ULEB128 data is stored
135 * @ret: address to store the result
136 *
137 * Decode an unsigned LEB128 encoded datum. The algorithm is taken
138 * from Appendix C of the DWARF 3 spec. For information on the
139 * encodings refer to section "7.6 - Variable Length Data". Return
140 * the number of bytes read.
141 */
142 static inline unsigned long dwarf_read_uleb128(char *addr, unsigned int *ret)
143 {
144 unsigned int result;
145 unsigned char byte;
146 int shift, count;
147
148 result = 0;
149 shift = 0;
150 count = 0;
151
152 while (1) {
153 byte = __raw_readb(addr);
154 addr++;
155 count++;
156
157 result |= (byte & 0x7f) << shift;
158 shift += 7;
159
160 if (!(byte & 0x80))
161 break;
162 }
163
164 *ret = result;
165
166 return count;
167 }
168
169 /**
170 * dwarf_read_leb128 - read signed LEB128 data
171 * @addr: the address of the LEB128 encoded data
172 * @ret: address to store the result
173 *
174 * Decode signed LEB128 data. The algorithm is taken from Appendix
175 * C of the DWARF 3 spec. Return the number of bytes read.
176 */
177 static inline unsigned long dwarf_read_leb128(char *addr, int *ret)
178 {
179 unsigned char byte;
180 int result, shift;
181 int num_bits;
182 int count;
183
184 result = 0;
185 shift = 0;
186 count = 0;
187
188 while (1) {
189 byte = __raw_readb(addr);
190 addr++;
191 result |= (byte & 0x7f) << shift;
192 shift += 7;
193 count++;
194
195 if (!(byte & 0x80))
196 break;
197 }
198
199 /* The number of bits in a signed integer. */
200 num_bits = 8 * sizeof(result);
201
202 if ((shift < num_bits) && (byte & 0x40))
203 result |= (-1 << shift);
204
205 *ret = result;
206
207 return count;
208 }
209
210 /**
211 * dwarf_read_encoded_value - return the decoded value at @addr
212 * @addr: the address of the encoded value
213 * @val: where to write the decoded value
214 * @encoding: the encoding with which we can decode @addr
215 *
216 * GCC emits encoded address in the .eh_frame FDE entries. Decode
217 * the value at @addr using @encoding. The decoded value is written
218 * to @val and the number of bytes read is returned.
219 */
220 static int dwarf_read_encoded_value(char *addr, unsigned long *val,
221 char encoding)
222 {
223 unsigned long decoded_addr = 0;
224 int count = 0;
225
226 switch (encoding & 0x70) {
227 case DW_EH_PE_absptr:
228 break;
229 case DW_EH_PE_pcrel:
230 decoded_addr = (unsigned long)addr;
231 break;
232 default:
233 pr_debug("encoding=0x%x\n", (encoding & 0x70));
234 BUG();
235 }
236
237 if ((encoding & 0x07) == 0x00)
238 encoding |= DW_EH_PE_udata4;
239
240 switch (encoding & 0x0f) {
241 case DW_EH_PE_sdata4:
242 case DW_EH_PE_udata4:
243 count += 4;
244 decoded_addr += get_unaligned((u32 *)addr);
245 __raw_writel(decoded_addr, val);
246 break;
247 default:
248 pr_debug("encoding=0x%x\n", encoding);
249 BUG();
250 }
251
252 return count;
253 }
254
255 /**
256 * dwarf_entry_len - return the length of an FDE or CIE
257 * @addr: the address of the entry
258 * @len: the length of the entry
259 *
260 * Read the initial_length field of the entry and store the size of
261 * the entry in @len. We return the number of bytes read. Return a
262 * count of 0 on error.
263 */
264 static inline int dwarf_entry_len(char *addr, unsigned long *len)
265 {
266 u32 initial_len;
267 int count;
268
269 initial_len = get_unaligned((u32 *)addr);
270 count = 4;
271
272 /*
273 * An initial length field value in the range DW_LEN_EXT_LO -
274 * DW_LEN_EXT_HI indicates an extension, and should not be
275 * interpreted as a length. The only extension that we currently
276 * understand is the use of DWARF64 addresses.
277 */
278 if (initial_len >= DW_EXT_LO && initial_len <= DW_EXT_HI) {
279 /*
280 * The 64-bit length field immediately follows the
281 * compulsory 32-bit length field.
282 */
283 if (initial_len == DW_EXT_DWARF64) {
284 *len = get_unaligned((u64 *)addr + 4);
285 count = 12;
286 } else {
287 printk(KERN_WARNING "Unknown DWARF extension\n");
288 count = 0;
289 }
290 } else
291 *len = initial_len;
292
293 return count;
294 }
295
296 /**
297 * dwarf_lookup_cie - locate the cie
298 * @cie_ptr: pointer to help with lookup
299 */
300 static struct dwarf_cie *dwarf_lookup_cie(unsigned long cie_ptr)
301 {
302 struct dwarf_cie *cie;
303 unsigned long flags;
304
305 spin_lock_irqsave(&dwarf_cie_lock, flags);
306
307 /*
308 * We've cached the last CIE we looked up because chances are
309 * that the FDE wants this CIE.
310 */
311 if (cached_cie && cached_cie->cie_pointer == cie_ptr) {
312 cie = cached_cie;
313 goto out;
314 }
315
316 list_for_each_entry(cie, &dwarf_cie_list, link) {
317 if (cie->cie_pointer == cie_ptr) {
318 cached_cie = cie;
319 break;
320 }
321 }
322
323 /* Couldn't find the entry in the list. */
324 if (&cie->link == &dwarf_cie_list)
325 cie = NULL;
326 out:
327 spin_unlock_irqrestore(&dwarf_cie_lock, flags);
328 return cie;
329 }
330
331 /**
332 * dwarf_lookup_fde - locate the FDE that covers pc
333 * @pc: the program counter
334 */
335 struct dwarf_fde *dwarf_lookup_fde(unsigned long pc)
336 {
337 struct dwarf_fde *fde;
338 unsigned long flags;
339
340 spin_lock_irqsave(&dwarf_fde_lock, flags);
341
342 list_for_each_entry(fde, &dwarf_fde_list, link) {
343 unsigned long start, end;
344
345 start = fde->initial_location;
346 end = fde->initial_location + fde->address_range;
347
348 if (pc >= start && pc < end)
349 break;
350 }
351
352 /* Couldn't find the entry in the list. */
353 if (&fde->link == &dwarf_fde_list)
354 fde = NULL;
355
356 spin_unlock_irqrestore(&dwarf_fde_lock, flags);
357
358 return fde;
359 }
360
361 /**
362 * dwarf_cfa_execute_insns - execute instructions to calculate a CFA
363 * @insn_start: address of the first instruction
364 * @insn_end: address of the last instruction
365 * @cie: the CIE for this function
366 * @fde: the FDE for this function
367 * @frame: the instructions calculate the CFA for this frame
368 * @pc: the program counter of the address we're interested in
369 *
370 * Execute the Call Frame instruction sequence starting at
371 * @insn_start and ending at @insn_end. The instructions describe
372 * how to calculate the Canonical Frame Address of a stackframe.
373 * Store the results in @frame.
374 */
375 static int dwarf_cfa_execute_insns(unsigned char *insn_start,
376 unsigned char *insn_end,
377 struct dwarf_cie *cie,
378 struct dwarf_fde *fde,
379 struct dwarf_frame *frame,
380 unsigned long pc)
381 {
382 unsigned char insn;
383 unsigned char *current_insn;
384 unsigned int count, delta, reg, expr_len, offset;
385 struct dwarf_reg *regp;
386
387 current_insn = insn_start;
388
389 while (current_insn < insn_end && frame->pc <= pc) {
390 insn = __raw_readb(current_insn++);
391
392 /*
393 * Firstly, handle the opcodes that embed their operands
394 * in the instructions.
395 */
396 switch (DW_CFA_opcode(insn)) {
397 case DW_CFA_advance_loc:
398 delta = DW_CFA_operand(insn);
399 delta *= cie->code_alignment_factor;
400 frame->pc += delta;
401 continue;
402 /* NOTREACHED */
403 case DW_CFA_offset:
404 reg = DW_CFA_operand(insn);
405 count = dwarf_read_uleb128(current_insn, &offset);
406 current_insn += count;
407 offset *= cie->data_alignment_factor;
408 regp = dwarf_frame_alloc_reg(frame, reg);
409 regp->addr = offset;
410 regp->flags |= DWARF_REG_OFFSET;
411 continue;
412 /* NOTREACHED */
413 case DW_CFA_restore:
414 reg = DW_CFA_operand(insn);
415 continue;
416 /* NOTREACHED */
417 }
418
419 /*
420 * Secondly, handle the opcodes that don't embed their
421 * operands in the instruction.
422 */
423 switch (insn) {
424 case DW_CFA_nop:
425 continue;
426 case DW_CFA_advance_loc1:
427 delta = *current_insn++;
428 frame->pc += delta * cie->code_alignment_factor;
429 break;
430 case DW_CFA_advance_loc2:
431 delta = get_unaligned((u16 *)current_insn);
432 current_insn += 2;
433 frame->pc += delta * cie->code_alignment_factor;
434 break;
435 case DW_CFA_advance_loc4:
436 delta = get_unaligned((u32 *)current_insn);
437 current_insn += 4;
438 frame->pc += delta * cie->code_alignment_factor;
439 break;
440 case DW_CFA_offset_extended:
441 count = dwarf_read_uleb128(current_insn, &reg);
442 current_insn += count;
443 count = dwarf_read_uleb128(current_insn, &offset);
444 current_insn += count;
445 offset *= cie->data_alignment_factor;
446 break;
447 case DW_CFA_restore_extended:
448 count = dwarf_read_uleb128(current_insn, &reg);
449 current_insn += count;
450 break;
451 case DW_CFA_undefined:
452 count = dwarf_read_uleb128(current_insn, &reg);
453 current_insn += count;
454 break;
455 case DW_CFA_def_cfa:
456 count = dwarf_read_uleb128(current_insn,
457 &frame->cfa_register);
458 current_insn += count;
459 count = dwarf_read_uleb128(current_insn,
460 &frame->cfa_offset);
461 current_insn += count;
462
463 frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
464 break;
465 case DW_CFA_def_cfa_register:
466 count = dwarf_read_uleb128(current_insn,
467 &frame->cfa_register);
468 current_insn += count;
469 frame->flags |= DWARF_FRAME_CFA_REG_OFFSET;
470 break;
471 case DW_CFA_def_cfa_offset:
472 count = dwarf_read_uleb128(current_insn, &offset);
473 current_insn += count;
474 frame->cfa_offset = offset;
475 break;
476 case DW_CFA_def_cfa_expression:
477 count = dwarf_read_uleb128(current_insn, &expr_len);
478 current_insn += count;
479
480 frame->cfa_expr = current_insn;
481 frame->cfa_expr_len = expr_len;
482 current_insn += expr_len;
483
484 frame->flags |= DWARF_FRAME_CFA_REG_EXP;
485 break;
486 case DW_CFA_offset_extended_sf:
487 count = dwarf_read_uleb128(current_insn, &reg);
488 current_insn += count;
489 count = dwarf_read_leb128(current_insn, &offset);
490 current_insn += count;
491 offset *= cie->data_alignment_factor;
492 regp = dwarf_frame_alloc_reg(frame, reg);
493 regp->flags |= DWARF_REG_OFFSET;
494 regp->addr = offset;
495 break;
496 case DW_CFA_val_offset:
497 count = dwarf_read_uleb128(current_insn, &reg);
498 current_insn += count;
499 count = dwarf_read_leb128(current_insn, &offset);
500 offset *= cie->data_alignment_factor;
501 regp = dwarf_frame_alloc_reg(frame, reg);
502 regp->flags |= DWARF_REG_OFFSET;
503 regp->addr = offset;
504 break;
505 case DW_CFA_GNU_args_size:
506 count = dwarf_read_uleb128(current_insn, &offset);
507 current_insn += count;
508 break;
509 case DW_CFA_GNU_negative_offset_extended:
510 count = dwarf_read_uleb128(current_insn, &reg);
511 current_insn += count;
512 count = dwarf_read_uleb128(current_insn, &offset);
513 offset *= cie->data_alignment_factor;
514
515 regp = dwarf_frame_alloc_reg(frame, reg);
516 regp->flags |= DWARF_REG_OFFSET;
517 regp->addr = -offset;
518 break;
519 default:
520 pr_debug("unhandled DWARF instruction 0x%x\n", insn);
521 break;
522 }
523 }
524
525 return 0;
526 }
527
528 /**
529 * dwarf_unwind_stack - recursively unwind the stack
530 * @pc: address of the function to unwind
531 * @prev: struct dwarf_frame of the previous stackframe on the callstack
532 *
533 * Return a struct dwarf_frame representing the most recent frame
534 * on the callstack. Each of the lower (older) stack frames are
535 * linked via the "prev" member.
536 */
537 struct dwarf_frame *dwarf_unwind_stack(unsigned long pc,
538 struct dwarf_frame *prev)
539 {
540 struct dwarf_frame *frame;
541 struct dwarf_cie *cie;
542 struct dwarf_fde *fde;
543 struct dwarf_reg *reg;
544 unsigned long addr;
545
546 /*
547 * If this is the first invocation of this recursive function we
548 * need get the contents of a physical register to get the CFA
549 * in order to begin the virtual unwinding of the stack.
550 *
551 * NOTE: the return address is guaranteed to be setup by the
552 * time this function makes its first function call.
553 */
554 if (!pc && !prev)
555 pc = (unsigned long)current_text_addr();
556
557 frame = mempool_alloc(dwarf_frame_pool, GFP_ATOMIC);
558 if (!frame) {
559 printk(KERN_ERR "Unable to allocate a dwarf frame\n");
560 BUG();
561 }
562
563 INIT_LIST_HEAD(&frame->reg_list);
564 frame->flags = 0;
565 frame->prev = prev;
566 frame->return_addr = 0;
567
568 fde = dwarf_lookup_fde(pc);
569 if (!fde) {
570 /*
571 * This is our normal exit path - the one that stops the
572 * recursion. There's two reasons why we might exit
573 * here,
574 *
575 * a) pc has no asscociated DWARF frame info and so
576 * we don't know how to unwind this frame. This is
577 * usually the case when we're trying to unwind a
578 * frame that was called from some assembly code
579 * that has no DWARF info, e.g. syscalls.
580 *
581 * b) the DEBUG info for pc is bogus. There's
582 * really no way to distinguish this case from the
583 * case above, which sucks because we could print a
584 * warning here.
585 */
586 goto bail;
587 }
588
589 cie = dwarf_lookup_cie(fde->cie_pointer);
590
591 frame->pc = fde->initial_location;
592
593 /* CIE initial instructions */
594 dwarf_cfa_execute_insns(cie->initial_instructions,
595 cie->instructions_end, cie, fde,
596 frame, pc);
597
598 /* FDE instructions */
599 dwarf_cfa_execute_insns(fde->instructions, fde->end, cie,
600 fde, frame, pc);
601
602 /* Calculate the CFA */
603 switch (frame->flags) {
604 case DWARF_FRAME_CFA_REG_OFFSET:
605 if (prev) {
606 reg = dwarf_frame_reg(prev, frame->cfa_register);
607 BUG_ON(!reg);
608
609 addr = prev->cfa + reg->addr;
610 frame->cfa = __raw_readl(addr);
611
612 } else {
613 /*
614 * Again, this is the first invocation of this
615 * recurisve function. We need to physically
616 * read the contents of a register in order to
617 * get the Canonical Frame Address for this
618 * function.
619 */
620 frame->cfa = dwarf_read_arch_reg(frame->cfa_register);
621 }
622
623 frame->cfa += frame->cfa_offset;
624 break;
625 default:
626 BUG();
627 }
628
629 /* If we haven't seen the return address reg, we're screwed. */
630 reg = dwarf_frame_reg(frame, DWARF_ARCH_RA_REG);
631 BUG_ON(!reg);
632
633 addr = frame->cfa + reg->addr;
634 frame->return_addr = __raw_readl(addr);
635
636 return frame;
637
638 bail:
639 dwarf_frame_free_regs(frame);
640 mempool_free(frame, dwarf_frame_pool);
641 return NULL;
642 }
643
644 static int dwarf_parse_cie(void *entry, void *p, unsigned long len,
645 unsigned char *end)
646 {
647 struct dwarf_cie *cie;
648 unsigned long flags;
649 int count;
650
651 cie = kzalloc(sizeof(*cie), GFP_KERNEL);
652 if (!cie)
653 return -ENOMEM;
654
655 cie->length = len;
656
657 /*
658 * Record the offset into the .eh_frame section
659 * for this CIE. It allows this CIE to be
660 * quickly and easily looked up from the
661 * corresponding FDE.
662 */
663 cie->cie_pointer = (unsigned long)entry;
664
665 cie->version = *(char *)p++;
666 BUG_ON(cie->version != 1);
667
668 cie->augmentation = p;
669 p += strlen(cie->augmentation) + 1;
670
671 count = dwarf_read_uleb128(p, &cie->code_alignment_factor);
672 p += count;
673
674 count = dwarf_read_leb128(p, &cie->data_alignment_factor);
675 p += count;
676
677 /*
678 * Which column in the rule table contains the
679 * return address?
680 */
681 if (cie->version == 1) {
682 cie->return_address_reg = __raw_readb(p);
683 p++;
684 } else {
685 count = dwarf_read_uleb128(p, &cie->return_address_reg);
686 p += count;
687 }
688
689 if (cie->augmentation[0] == 'z') {
690 unsigned int length, count;
691 cie->flags |= DWARF_CIE_Z_AUGMENTATION;
692
693 count = dwarf_read_uleb128(p, &length);
694 p += count;
695
696 BUG_ON((unsigned char *)p > end);
697
698 cie->initial_instructions = p + length;
699 cie->augmentation++;
700 }
701
702 while (*cie->augmentation) {
703 /*
704 * "L" indicates a byte showing how the
705 * LSDA pointer is encoded. Skip it.
706 */
707 if (*cie->augmentation == 'L') {
708 p++;
709 cie->augmentation++;
710 } else if (*cie->augmentation == 'R') {
711 /*
712 * "R" indicates a byte showing
713 * how FDE addresses are
714 * encoded.
715 */
716 cie->encoding = *(char *)p++;
717 cie->augmentation++;
718 } else if (*cie->augmentation == 'P') {
719 /*
720 * "R" indicates a personality
721 * routine in the CIE
722 * augmentation.
723 */
724 BUG();
725 } else if (*cie->augmentation == 'S') {
726 BUG();
727 } else {
728 /*
729 * Unknown augmentation. Assume
730 * 'z' augmentation.
731 */
732 p = cie->initial_instructions;
733 BUG_ON(!p);
734 break;
735 }
736 }
737
738 cie->initial_instructions = p;
739 cie->instructions_end = end;
740
741 /* Add to list */
742 spin_lock_irqsave(&dwarf_cie_lock, flags);
743 list_add_tail(&cie->link, &dwarf_cie_list);
744 spin_unlock_irqrestore(&dwarf_cie_lock, flags);
745
746 return 0;
747 }
748
749 static int dwarf_parse_fde(void *entry, u32 entry_type,
750 void *start, unsigned long len)
751 {
752 struct dwarf_fde *fde;
753 struct dwarf_cie *cie;
754 unsigned long flags;
755 int count;
756 void *p = start;
757
758 fde = kzalloc(sizeof(*fde), GFP_KERNEL);
759 if (!fde)
760 return -ENOMEM;
761
762 fde->length = len;
763
764 /*
765 * In a .eh_frame section the CIE pointer is the
766 * delta between the address within the FDE
767 */
768 fde->cie_pointer = (unsigned long)(p - entry_type - 4);
769
770 cie = dwarf_lookup_cie(fde->cie_pointer);
771 fde->cie = cie;
772
773 if (cie->encoding)
774 count = dwarf_read_encoded_value(p, &fde->initial_location,
775 cie->encoding);
776 else
777 count = dwarf_read_addr(p, &fde->initial_location);
778
779 p += count;
780
781 if (cie->encoding)
782 count = dwarf_read_encoded_value(p, &fde->address_range,
783 cie->encoding & 0x0f);
784 else
785 count = dwarf_read_addr(p, &fde->address_range);
786
787 p += count;
788
789 if (fde->cie->flags & DWARF_CIE_Z_AUGMENTATION) {
790 unsigned int length;
791 count = dwarf_read_uleb128(p, &length);
792 p += count + length;
793 }
794
795 /* Call frame instructions. */
796 fde->instructions = p;
797 fde->end = start + len;
798
799 /* Add to list. */
800 spin_lock_irqsave(&dwarf_fde_lock, flags);
801 list_add_tail(&fde->link, &dwarf_fde_list);
802 spin_unlock_irqrestore(&dwarf_fde_lock, flags);
803
804 return 0;
805 }
806
807 static void dwarf_unwinder_dump(struct task_struct *task, struct pt_regs *regs,
808 unsigned long *sp,
809 const struct stacktrace_ops *ops, void *data)
810 {
811 struct dwarf_frame *frame, *_frame;
812 unsigned long return_addr;
813
814 _frame = NULL;
815 return_addr = 0;
816
817 while (1) {
818 frame = dwarf_unwind_stack(return_addr, _frame);
819
820 if (_frame) {
821 dwarf_frame_free_regs(_frame);
822 mempool_free(_frame, dwarf_frame_pool);
823 }
824
825 _frame = frame;
826
827 if (!frame || !frame->return_addr)
828 break;
829
830 return_addr = frame->return_addr;
831 ops->address(data, return_addr, 1);
832 }
833
834 }
835
836 static struct unwinder dwarf_unwinder = {
837 .name = "dwarf-unwinder",
838 .dump = dwarf_unwinder_dump,
839 .rating = 150,
840 };
841
842 static void dwarf_unwinder_cleanup(void)
843 {
844 struct dwarf_cie *cie;
845 struct dwarf_fde *fde;
846
847 /*
848 * Deallocate all the memory allocated for the DWARF unwinder.
849 * Traverse all the FDE/CIE lists and remove and free all the
850 * memory associated with those data structures.
851 */
852 list_for_each_entry(cie, &dwarf_cie_list, link)
853 kfree(cie);
854
855 list_for_each_entry(fde, &dwarf_fde_list, link)
856 kfree(fde);
857
858 kmem_cache_destroy(dwarf_reg_cachep);
859 kmem_cache_destroy(dwarf_frame_cachep);
860 }
861
862 /**
863 * dwarf_unwinder_init - initialise the dwarf unwinder
864 *
865 * Build the data structures describing the .dwarf_frame section to
866 * make it easier to lookup CIE and FDE entries. Because the
867 * .eh_frame section is packed as tightly as possible it is not
868 * easy to lookup the FDE for a given PC, so we build a list of FDE
869 * and CIE entries that make it easier.
870 */
871 static int __init dwarf_unwinder_init(void)
872 {
873 u32 entry_type;
874 void *p, *entry;
875 int count, err;
876 unsigned long len;
877 unsigned int c_entries, f_entries;
878 unsigned char *end;
879 INIT_LIST_HEAD(&dwarf_cie_list);
880 INIT_LIST_HEAD(&dwarf_fde_list);
881
882 c_entries = 0;
883 f_entries = 0;
884 entry = &__start_eh_frame;
885
886 dwarf_frame_cachep = kmem_cache_create("dwarf_frames",
887 sizeof(struct dwarf_frame), 0, SLAB_PANIC, NULL);
888 dwarf_reg_cachep = kmem_cache_create("dwarf_regs",
889 sizeof(struct dwarf_reg), 0, SLAB_PANIC, NULL);
890
891 dwarf_frame_pool = mempool_create(DWARF_FRAME_MIN_REQ,
892 mempool_alloc_slab,
893 mempool_free_slab,
894 dwarf_frame_cachep);
895
896 dwarf_reg_pool = mempool_create(DWARF_REG_MIN_REQ,
897 mempool_alloc_slab,
898 mempool_free_slab,
899 dwarf_reg_cachep);
900
901 while ((char *)entry < __stop_eh_frame) {
902 p = entry;
903
904 count = dwarf_entry_len(p, &len);
905 if (count == 0) {
906 /*
907 * We read a bogus length field value. There is
908 * nothing we can do here apart from disabling
909 * the DWARF unwinder. We can't even skip this
910 * entry and move to the next one because 'len'
911 * tells us where our next entry is.
912 */
913 goto out;
914 } else
915 p += count;
916
917 /* initial length does not include itself */
918 end = p + len;
919
920 entry_type = get_unaligned((u32 *)p);
921 p += 4;
922
923 if (entry_type == DW_EH_FRAME_CIE) {
924 err = dwarf_parse_cie(entry, p, len, end);
925 if (err < 0)
926 goto out;
927 else
928 c_entries++;
929 } else {
930 err = dwarf_parse_fde(entry, entry_type, p, len);
931 if (err < 0)
932 goto out;
933 else
934 f_entries++;
935 }
936
937 entry = (char *)entry + len + 4;
938 }
939
940 printk(KERN_INFO "DWARF unwinder initialised: read %u CIEs, %u FDEs\n",
941 c_entries, f_entries);
942
943 err = unwinder_register(&dwarf_unwinder);
944 if (err)
945 goto out;
946
947 return 0;
948
949 out:
950 printk(KERN_ERR "Failed to initialise DWARF unwinder: %d\n", err);
951 dwarf_unwinder_cleanup();
952 return -EINVAL;
953 }
954 early_initcall(dwarf_unwinder_init);