]> git.proxmox.com Git - mirror_ubuntu-focal-kernel.git/blob - arch/sh/kernel/setup.c
Merge branch 'for-2.6.24' of master.kernel.org:/pub/scm/linux/kernel/git/jwboyer...
[mirror_ubuntu-focal-kernel.git] / arch / sh / kernel / setup.c
1 /*
2 * arch/sh/kernel/setup.c
3 *
4 * This file handles the architecture-dependent parts of initialization
5 *
6 * Copyright (C) 1999 Niibe Yutaka
7 * Copyright (C) 2002 - 2007 Paul Mundt
8 */
9 #include <linux/screen_info.h>
10 #include <linux/ioport.h>
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/bootmem.h>
14 #include <linux/console.h>
15 #include <linux/seq_file.h>
16 #include <linux/root_dev.h>
17 #include <linux/utsname.h>
18 #include <linux/nodemask.h>
19 #include <linux/cpu.h>
20 #include <linux/pfn.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kexec.h>
24 #include <linux/module.h>
25 #include <linux/smp.h>
26 #include <asm/uaccess.h>
27 #include <asm/io.h>
28 #include <asm/page.h>
29 #include <asm/sections.h>
30 #include <asm/irq.h>
31 #include <asm/setup.h>
32 #include <asm/clock.h>
33 #include <asm/mmu_context.h>
34
35 extern void * __rd_start, * __rd_end;
36
37 /*
38 * Machine setup..
39 */
40
41 /*
42 * Initialize loops_per_jiffy as 10000000 (1000MIPS).
43 * This value will be used at the very early stage of serial setup.
44 * The bigger value means no problem.
45 */
46 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
47 [0] = {
48 .type = CPU_SH_NONE,
49 .loops_per_jiffy = 10000000,
50 },
51 };
52 EXPORT_SYMBOL(cpu_data);
53
54 /*
55 * The machine vector. First entry in .machvec.init, or clobbered by
56 * sh_mv= on the command line, prior to .machvec.init teardown.
57 */
58 struct sh_machine_vector sh_mv = { .mv_name = "generic", };
59
60 #ifdef CONFIG_VT
61 struct screen_info screen_info;
62 #endif
63
64 extern int root_mountflags;
65
66 /*
67 * This is set up by the setup-routine at boot-time
68 */
69 #define PARAM ((unsigned char *)empty_zero_page)
70
71 #define MOUNT_ROOT_RDONLY (*(unsigned long *) (PARAM+0x000))
72 #define RAMDISK_FLAGS (*(unsigned long *) (PARAM+0x004))
73 #define ORIG_ROOT_DEV (*(unsigned long *) (PARAM+0x008))
74 #define LOADER_TYPE (*(unsigned long *) (PARAM+0x00c))
75 #define INITRD_START (*(unsigned long *) (PARAM+0x010))
76 #define INITRD_SIZE (*(unsigned long *) (PARAM+0x014))
77 /* ... */
78 #define COMMAND_LINE ((char *) (PARAM+0x100))
79
80 #define RAMDISK_IMAGE_START_MASK 0x07FF
81 #define RAMDISK_PROMPT_FLAG 0x8000
82 #define RAMDISK_LOAD_FLAG 0x4000
83
84 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
85
86 static struct resource code_resource = { .name = "Kernel code", };
87 static struct resource data_resource = { .name = "Kernel data", };
88
89 unsigned long memory_start;
90 EXPORT_SYMBOL(memory_start);
91
92 unsigned long memory_end;
93 EXPORT_SYMBOL(memory_end);
94
95 static int __init early_parse_mem(char *p)
96 {
97 unsigned long size;
98
99 memory_start = (unsigned long)PAGE_OFFSET+__MEMORY_START;
100 size = memparse(p, &p);
101 memory_end = memory_start + size;
102
103 return 0;
104 }
105 early_param("mem", early_parse_mem);
106
107 /*
108 * Register fully available low RAM pages with the bootmem allocator.
109 */
110 static void __init register_bootmem_low_pages(void)
111 {
112 unsigned long curr_pfn, last_pfn, pages;
113
114 /*
115 * We are rounding up the start address of usable memory:
116 */
117 curr_pfn = PFN_UP(__MEMORY_START);
118
119 /*
120 * ... and at the end of the usable range downwards:
121 */
122 last_pfn = PFN_DOWN(__pa(memory_end));
123
124 if (last_pfn > max_low_pfn)
125 last_pfn = max_low_pfn;
126
127 pages = last_pfn - curr_pfn;
128 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
129 }
130
131 #ifdef CONFIG_KEXEC
132 static void __init reserve_crashkernel(void)
133 {
134 unsigned long long free_mem;
135 unsigned long long crash_size, crash_base;
136 int ret;
137
138 free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
139
140 ret = parse_crashkernel(boot_command_line, free_mem,
141 &crash_size, &crash_base);
142 if (ret == 0 && crash_size) {
143 if (crash_base > 0) {
144 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
145 "for crashkernel (System RAM: %ldMB)\n",
146 (unsigned long)(crash_size >> 20),
147 (unsigned long)(crash_base >> 20),
148 (unsigned long)(free_mem >> 20));
149 crashk_res.start = crash_base;
150 crashk_res.end = crash_base + crash_size - 1;
151 reserve_bootmem(crash_base, crash_size);
152 } else
153 printk(KERN_INFO "crashkernel reservation failed - "
154 "you have to specify a base address\n");
155 }
156 }
157 #else
158 static inline void __init reserve_crashkernel(void)
159 {}
160 #endif
161
162 void __init setup_bootmem_allocator(unsigned long free_pfn)
163 {
164 unsigned long bootmap_size;
165
166 /*
167 * Find a proper area for the bootmem bitmap. After this
168 * bootstrap step all allocations (until the page allocator
169 * is intact) must be done via bootmem_alloc().
170 */
171 bootmap_size = init_bootmem_node(NODE_DATA(0), free_pfn,
172 min_low_pfn, max_low_pfn);
173
174 add_active_range(0, min_low_pfn, max_low_pfn);
175 register_bootmem_low_pages();
176
177 node_set_online(0);
178
179 /*
180 * Reserve the kernel text and
181 * Reserve the bootmem bitmap. We do this in two steps (first step
182 * was init_bootmem()), because this catches the (definitely buggy)
183 * case of us accidentally initializing the bootmem allocator with
184 * an invalid RAM area.
185 */
186 reserve_bootmem(__MEMORY_START+PAGE_SIZE,
187 (PFN_PHYS(free_pfn)+bootmap_size+PAGE_SIZE-1)-__MEMORY_START);
188
189 /*
190 * reserve physical page 0 - it's a special BIOS page on many boxes,
191 * enabling clean reboots, SMP operation, laptop functions.
192 */
193 reserve_bootmem(__MEMORY_START, PAGE_SIZE);
194
195 sparse_memory_present_with_active_regions(0);
196
197 #ifdef CONFIG_BLK_DEV_INITRD
198 ROOT_DEV = MKDEV(RAMDISK_MAJOR, 0);
199 if (&__rd_start != &__rd_end) {
200 LOADER_TYPE = 1;
201 INITRD_START = PHYSADDR((unsigned long)&__rd_start) -
202 __MEMORY_START;
203 INITRD_SIZE = (unsigned long)&__rd_end -
204 (unsigned long)&__rd_start;
205 }
206
207 if (LOADER_TYPE && INITRD_START) {
208 if (INITRD_START + INITRD_SIZE <= (max_low_pfn << PAGE_SHIFT)) {
209 reserve_bootmem(INITRD_START + __MEMORY_START,
210 INITRD_SIZE);
211 initrd_start = INITRD_START + PAGE_OFFSET +
212 __MEMORY_START;
213 initrd_end = initrd_start + INITRD_SIZE;
214 } else {
215 printk("initrd extends beyond end of memory "
216 "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
217 INITRD_START + INITRD_SIZE,
218 max_low_pfn << PAGE_SHIFT);
219 initrd_start = 0;
220 }
221 }
222 #endif
223
224 reserve_crashkernel();
225 }
226
227 #ifndef CONFIG_NEED_MULTIPLE_NODES
228 static void __init setup_memory(void)
229 {
230 unsigned long start_pfn;
231
232 /*
233 * Partially used pages are not usable - thus
234 * we are rounding upwards:
235 */
236 start_pfn = PFN_UP(__pa(_end));
237 setup_bootmem_allocator(start_pfn);
238 }
239 #else
240 extern void __init setup_memory(void);
241 #endif
242
243 void __init setup_arch(char **cmdline_p)
244 {
245 enable_mmu();
246
247 ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
248
249 #ifdef CONFIG_BLK_DEV_RAM
250 rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
251 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
252 rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
253 #endif
254
255 if (!MOUNT_ROOT_RDONLY)
256 root_mountflags &= ~MS_RDONLY;
257 init_mm.start_code = (unsigned long) _text;
258 init_mm.end_code = (unsigned long) _etext;
259 init_mm.end_data = (unsigned long) _edata;
260 init_mm.brk = (unsigned long) _end;
261
262 code_resource.start = virt_to_phys(_text);
263 code_resource.end = virt_to_phys(_etext)-1;
264 data_resource.start = virt_to_phys(_etext);
265 data_resource.end = virt_to_phys(_edata)-1;
266
267 memory_start = (unsigned long)PAGE_OFFSET+__MEMORY_START;
268 memory_end = memory_start + __MEMORY_SIZE;
269
270 #ifdef CONFIG_CMDLINE_BOOL
271 strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
272 #else
273 strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
274 #endif
275
276 /* Save unparsed command line copy for /proc/cmdline */
277 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
278 *cmdline_p = command_line;
279
280 parse_early_param();
281
282 sh_mv_setup();
283
284 /*
285 * Find the highest page frame number we have available
286 */
287 max_pfn = PFN_DOWN(__pa(memory_end));
288
289 /*
290 * Determine low and high memory ranges:
291 */
292 max_low_pfn = max_pfn;
293 min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
294
295 nodes_clear(node_online_map);
296
297 /* Setup bootmem with available RAM */
298 setup_memory();
299 sparse_init();
300
301 #ifdef CONFIG_DUMMY_CONSOLE
302 conswitchp = &dummy_con;
303 #endif
304
305 /* Perform the machine specific initialisation */
306 if (likely(sh_mv.mv_setup))
307 sh_mv.mv_setup(cmdline_p);
308
309 paging_init();
310
311 #ifdef CONFIG_SMP
312 plat_smp_setup();
313 #endif
314 }
315
316 static const char *cpu_name[] = {
317 [CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619",
318 [CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706",
319 [CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708",
320 [CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710",
321 [CPU_SH7712] = "SH7712", [CPU_SH7720] = "SH7720",
322 [CPU_SH7729] = "SH7729", [CPU_SH7750] = "SH7750",
323 [CPU_SH7750S] = "SH7750S", [CPU_SH7750R] = "SH7750R",
324 [CPU_SH7751] = "SH7751", [CPU_SH7751R] = "SH7751R",
325 [CPU_SH7760] = "SH7760",
326 [CPU_ST40RA] = "ST40RA", [CPU_ST40GX1] = "ST40GX1",
327 [CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501",
328 [CPU_SH7770] = "SH7770", [CPU_SH7780] = "SH7780",
329 [CPU_SH7781] = "SH7781", [CPU_SH7343] = "SH7343",
330 [CPU_SH7785] = "SH7785", [CPU_SH7722] = "SH7722",
331 [CPU_SHX3] = "SH-X3", [CPU_SH_NONE] = "Unknown"
332 };
333
334 const char *get_cpu_subtype(struct sh_cpuinfo *c)
335 {
336 return cpu_name[c->type];
337 }
338
339 #ifdef CONFIG_PROC_FS
340 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
341 static const char *cpu_flags[] = {
342 "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
343 "ptea", "llsc", "l2", "op32", NULL
344 };
345
346 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
347 {
348 unsigned long i;
349
350 seq_printf(m, "cpu flags\t:");
351
352 if (!c->flags) {
353 seq_printf(m, " %s\n", cpu_flags[0]);
354 return;
355 }
356
357 for (i = 0; cpu_flags[i]; i++)
358 if ((c->flags & (1 << i)))
359 seq_printf(m, " %s", cpu_flags[i+1]);
360
361 seq_printf(m, "\n");
362 }
363
364 static void show_cacheinfo(struct seq_file *m, const char *type,
365 struct cache_info info)
366 {
367 unsigned int cache_size;
368
369 cache_size = info.ways * info.sets * info.linesz;
370
371 seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
372 type, cache_size >> 10, info.ways);
373 }
374
375 /*
376 * Get CPU information for use by the procfs.
377 */
378 static int show_cpuinfo(struct seq_file *m, void *v)
379 {
380 struct sh_cpuinfo *c = v;
381 unsigned int cpu = c - cpu_data;
382
383 if (!cpu_online(cpu))
384 return 0;
385
386 if (cpu == 0)
387 seq_printf(m, "machine\t\t: %s\n", get_system_type());
388
389 seq_printf(m, "processor\t: %d\n", cpu);
390 seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
391 seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
392
393 show_cpuflags(m, c);
394
395 seq_printf(m, "cache type\t: ");
396
397 /*
398 * Check for what type of cache we have, we support both the
399 * unified cache on the SH-2 and SH-3, as well as the harvard
400 * style cache on the SH-4.
401 */
402 if (c->icache.flags & SH_CACHE_COMBINED) {
403 seq_printf(m, "unified\n");
404 show_cacheinfo(m, "cache", c->icache);
405 } else {
406 seq_printf(m, "split (harvard)\n");
407 show_cacheinfo(m, "icache", c->icache);
408 show_cacheinfo(m, "dcache", c->dcache);
409 }
410
411 /* Optional secondary cache */
412 if (c->flags & CPU_HAS_L2_CACHE)
413 show_cacheinfo(m, "scache", c->scache);
414
415 seq_printf(m, "bogomips\t: %lu.%02lu\n",
416 c->loops_per_jiffy/(500000/HZ),
417 (c->loops_per_jiffy/(5000/HZ)) % 100);
418
419 return 0;
420 }
421
422 static void *c_start(struct seq_file *m, loff_t *pos)
423 {
424 return *pos < NR_CPUS ? cpu_data + *pos : NULL;
425 }
426 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
427 {
428 ++*pos;
429 return c_start(m, pos);
430 }
431 static void c_stop(struct seq_file *m, void *v)
432 {
433 }
434 struct seq_operations cpuinfo_op = {
435 .start = c_start,
436 .next = c_next,
437 .stop = c_stop,
438 .show = show_cpuinfo,
439 };
440 #endif /* CONFIG_PROC_FS */