]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/sh/kernel/setup.c
ceb409bf7741433bf5fd2c720a39ed0613eb4686
[mirror_ubuntu-artful-kernel.git] / arch / sh / kernel / setup.c
1 /*
2 * arch/sh/kernel/setup.c
3 *
4 * This file handles the architecture-dependent parts of initialization
5 *
6 * Copyright (C) 1999 Niibe Yutaka
7 * Copyright (C) 2002 - 2007 Paul Mundt
8 */
9 #include <linux/screen_info.h>
10 #include <linux/ioport.h>
11 #include <linux/init.h>
12 #include <linux/initrd.h>
13 #include <linux/bootmem.h>
14 #include <linux/console.h>
15 #include <linux/seq_file.h>
16 #include <linux/root_dev.h>
17 #include <linux/utsname.h>
18 #include <linux/nodemask.h>
19 #include <linux/cpu.h>
20 #include <linux/pfn.h>
21 #include <linux/fs.h>
22 #include <linux/mm.h>
23 #include <linux/kexec.h>
24 #include <linux/module.h>
25 #include <linux/smp.h>
26 #include <linux/err.h>
27 #include <linux/debugfs.h>
28 #include <linux/crash_dump.h>
29 #include <linux/mmzone.h>
30 #include <linux/clk.h>
31 #include <linux/delay.h>
32 #include <linux/platform_device.h>
33 #include <linux/lmb.h>
34 #include <asm/uaccess.h>
35 #include <asm/io.h>
36 #include <asm/page.h>
37 #include <asm/elf.h>
38 #include <asm/sections.h>
39 #include <asm/irq.h>
40 #include <asm/setup.h>
41 #include <asm/clock.h>
42 #include <asm/mmu_context.h>
43
44 /*
45 * Initialize loops_per_jiffy as 10000000 (1000MIPS).
46 * This value will be used at the very early stage of serial setup.
47 * The bigger value means no problem.
48 */
49 struct sh_cpuinfo cpu_data[NR_CPUS] __read_mostly = {
50 [0] = {
51 .type = CPU_SH_NONE,
52 .loops_per_jiffy = 10000000,
53 },
54 };
55 EXPORT_SYMBOL(cpu_data);
56
57 /*
58 * The machine vector. First entry in .machvec.init, or clobbered by
59 * sh_mv= on the command line, prior to .machvec.init teardown.
60 */
61 struct sh_machine_vector sh_mv = { .mv_name = "generic", };
62 EXPORT_SYMBOL(sh_mv);
63
64 #ifdef CONFIG_VT
65 struct screen_info screen_info;
66 #endif
67
68 extern int root_mountflags;
69
70 #define RAMDISK_IMAGE_START_MASK 0x07FF
71 #define RAMDISK_PROMPT_FLAG 0x8000
72 #define RAMDISK_LOAD_FLAG 0x4000
73
74 static char __initdata command_line[COMMAND_LINE_SIZE] = { 0, };
75
76 static struct resource code_resource = {
77 .name = "Kernel code",
78 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
79 };
80
81 static struct resource data_resource = {
82 .name = "Kernel data",
83 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
84 };
85
86 static struct resource bss_resource = {
87 .name = "Kernel bss",
88 .flags = IORESOURCE_BUSY | IORESOURCE_MEM,
89 };
90
91 unsigned long memory_start;
92 EXPORT_SYMBOL(memory_start);
93 unsigned long memory_end = 0;
94 EXPORT_SYMBOL(memory_end);
95
96 static struct resource mem_resources[MAX_NUMNODES];
97
98 int l1i_cache_shape, l1d_cache_shape, l2_cache_shape;
99
100 static int __init early_parse_mem(char *p)
101 {
102 unsigned long size;
103
104 memory_start = (unsigned long)__va(__MEMORY_START);
105 size = memparse(p, &p);
106
107 if (size > __MEMORY_SIZE) {
108 printk(KERN_ERR
109 "Using mem= to increase the size of kernel memory "
110 "is not allowed.\n"
111 " Recompile the kernel with the correct value for "
112 "CONFIG_MEMORY_SIZE.\n");
113 return 0;
114 }
115
116 memory_end = memory_start + size;
117
118 return 0;
119 }
120 early_param("mem", early_parse_mem);
121
122 /*
123 * Register fully available low RAM pages with the bootmem allocator.
124 */
125 static void __init register_bootmem_low_pages(void)
126 {
127 unsigned long curr_pfn, last_pfn, pages;
128
129 /*
130 * We are rounding up the start address of usable memory:
131 */
132 curr_pfn = PFN_UP(__MEMORY_START);
133
134 /*
135 * ... and at the end of the usable range downwards:
136 */
137 last_pfn = PFN_DOWN(__pa(memory_end));
138
139 if (last_pfn > max_low_pfn)
140 last_pfn = max_low_pfn;
141
142 pages = last_pfn - curr_pfn;
143 free_bootmem(PFN_PHYS(curr_pfn), PFN_PHYS(pages));
144 }
145
146 #ifdef CONFIG_KEXEC
147 static void __init reserve_crashkernel(void)
148 {
149 unsigned long long free_mem;
150 unsigned long long crash_size, crash_base;
151 void *vp;
152 int ret;
153
154 free_mem = ((unsigned long long)max_low_pfn - min_low_pfn) << PAGE_SHIFT;
155
156 ret = parse_crashkernel(boot_command_line, free_mem,
157 &crash_size, &crash_base);
158 if (ret == 0 && crash_size) {
159 if (crash_base <= 0) {
160 vp = alloc_bootmem_nopanic(crash_size);
161 if (!vp) {
162 printk(KERN_INFO "crashkernel allocation "
163 "failed\n");
164 return;
165 }
166 crash_base = __pa(vp);
167 } else if (reserve_bootmem(crash_base, crash_size,
168 BOOTMEM_EXCLUSIVE) < 0) {
169 printk(KERN_INFO "crashkernel reservation failed - "
170 "memory is in use\n");
171 return;
172 }
173
174 printk(KERN_INFO "Reserving %ldMB of memory at %ldMB "
175 "for crashkernel (System RAM: %ldMB)\n",
176 (unsigned long)(crash_size >> 20),
177 (unsigned long)(crash_base >> 20),
178 (unsigned long)(free_mem >> 20));
179 crashk_res.start = crash_base;
180 crashk_res.end = crash_base + crash_size - 1;
181 insert_resource(&iomem_resource, &crashk_res);
182 }
183 }
184 #else
185 static inline void __init reserve_crashkernel(void)
186 {}
187 #endif
188
189 void __cpuinit calibrate_delay(void)
190 {
191 struct clk *clk = clk_get(NULL, "cpu_clk");
192
193 if (IS_ERR(clk))
194 panic("Need a sane CPU clock definition!");
195
196 loops_per_jiffy = (clk_get_rate(clk) >> 1) / HZ;
197
198 printk(KERN_INFO "Calibrating delay loop (skipped)... "
199 "%lu.%02lu BogoMIPS PRESET (lpj=%lu)\n",
200 loops_per_jiffy/(500000/HZ),
201 (loops_per_jiffy/(5000/HZ)) % 100,
202 loops_per_jiffy);
203 }
204
205 void __init __add_active_range(unsigned int nid, unsigned long start_pfn,
206 unsigned long end_pfn)
207 {
208 struct resource *res = &mem_resources[nid];
209
210 WARN_ON(res->name); /* max one active range per node for now */
211
212 res->name = "System RAM";
213 res->start = start_pfn << PAGE_SHIFT;
214 res->end = (end_pfn << PAGE_SHIFT) - 1;
215 res->flags = IORESOURCE_MEM | IORESOURCE_BUSY;
216 if (request_resource(&iomem_resource, res)) {
217 pr_err("unable to request memory_resource 0x%lx 0x%lx\n",
218 start_pfn, end_pfn);
219 return;
220 }
221
222 /*
223 * We don't know which RAM region contains kernel data,
224 * so we try it repeatedly and let the resource manager
225 * test it.
226 */
227 request_resource(res, &code_resource);
228 request_resource(res, &data_resource);
229 request_resource(res, &bss_resource);
230
231 add_active_range(nid, start_pfn, end_pfn);
232 }
233
234 void __init setup_bootmem_allocator(unsigned long free_pfn)
235 {
236 unsigned long bootmap_size;
237 unsigned long bootmap_pages, bootmem_paddr;
238 u64 total_pages = (lmb_end_of_DRAM() - __MEMORY_START) >> PAGE_SHIFT;
239 int i;
240
241 bootmap_pages = bootmem_bootmap_pages(total_pages);
242
243 bootmem_paddr = lmb_alloc(bootmap_pages << PAGE_SHIFT, PAGE_SIZE);
244
245 /*
246 * Find a proper area for the bootmem bitmap. After this
247 * bootstrap step all allocations (until the page allocator
248 * is intact) must be done via bootmem_alloc().
249 */
250 bootmap_size = init_bootmem_node(NODE_DATA(0),
251 bootmem_paddr >> PAGE_SHIFT,
252 min_low_pfn, max_low_pfn);
253
254 /* Add active regions with valid PFNs. */
255 for (i = 0; i < lmb.memory.cnt; i++) {
256 unsigned long start_pfn, end_pfn;
257 start_pfn = lmb.memory.region[i].base >> PAGE_SHIFT;
258 end_pfn = start_pfn + lmb_size_pages(&lmb.memory, i);
259 __add_active_range(0, start_pfn, end_pfn);
260 }
261
262 /*
263 * Add all physical memory to the bootmem map and mark each
264 * area as present.
265 */
266 register_bootmem_low_pages();
267
268 /* Reserve the sections we're already using. */
269 for (i = 0; i < lmb.reserved.cnt; i++)
270 reserve_bootmem(lmb.reserved.region[i].base,
271 lmb_size_bytes(&lmb.reserved, i),
272 BOOTMEM_DEFAULT);
273
274 node_set_online(0);
275
276 sparse_memory_present_with_active_regions(0);
277
278 #ifdef CONFIG_BLK_DEV_INITRD
279 ROOT_DEV = Root_RAM0;
280
281 if (LOADER_TYPE && INITRD_START) {
282 unsigned long initrd_start_phys = INITRD_START + __MEMORY_START;
283
284 if (initrd_start_phys + INITRD_SIZE <= PFN_PHYS(max_low_pfn)) {
285 reserve_bootmem(initrd_start_phys, INITRD_SIZE,
286 BOOTMEM_DEFAULT);
287 initrd_start = (unsigned long)__va(initrd_start_phys);
288 initrd_end = initrd_start + INITRD_SIZE;
289 } else {
290 printk("initrd extends beyond end of memory "
291 "(0x%08lx > 0x%08lx)\ndisabling initrd\n",
292 initrd_start_phys + INITRD_SIZE,
293 (unsigned long)PFN_PHYS(max_low_pfn));
294 initrd_start = 0;
295 }
296 }
297 #endif
298
299 reserve_crashkernel();
300 }
301
302 #ifndef CONFIG_NEED_MULTIPLE_NODES
303 static void __init setup_memory(void)
304 {
305 unsigned long start_pfn;
306 u64 base = min_low_pfn << PAGE_SHIFT;
307 u64 size = (max_low_pfn << PAGE_SHIFT) - base;
308
309 /*
310 * Partially used pages are not usable - thus
311 * we are rounding upwards:
312 */
313 start_pfn = PFN_UP(__pa(_end));
314
315 lmb_add(base, size);
316
317 /*
318 * Reserve the kernel text and
319 * Reserve the bootmem bitmap. We do this in two steps (first step
320 * was init_bootmem()), because this catches the (definitely buggy)
321 * case of us accidentally initializing the bootmem allocator with
322 * an invalid RAM area.
323 */
324 lmb_reserve(__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET,
325 (PFN_PHYS(start_pfn) + PAGE_SIZE - 1) -
326 (__MEMORY_START + CONFIG_ZERO_PAGE_OFFSET));
327
328 /*
329 * Reserve physical pages below CONFIG_ZERO_PAGE_OFFSET.
330 */
331 if (CONFIG_ZERO_PAGE_OFFSET != 0)
332 lmb_reserve(__MEMORY_START, CONFIG_ZERO_PAGE_OFFSET);
333
334 lmb_analyze();
335 lmb_dump_all();
336
337 setup_bootmem_allocator(start_pfn);
338 }
339 #else
340 extern void __init setup_memory(void);
341 #endif
342
343 /*
344 * Note: elfcorehdr_addr is not just limited to vmcore. It is also used by
345 * is_kdump_kernel() to determine if we are booting after a panic. Hence
346 * ifdef it under CONFIG_CRASH_DUMP and not CONFIG_PROC_VMCORE.
347 */
348 #ifdef CONFIG_CRASH_DUMP
349 /* elfcorehdr= specifies the location of elf core header
350 * stored by the crashed kernel.
351 */
352 static int __init parse_elfcorehdr(char *arg)
353 {
354 if (!arg)
355 return -EINVAL;
356 elfcorehdr_addr = memparse(arg, &arg);
357 return 0;
358 }
359 early_param("elfcorehdr", parse_elfcorehdr);
360 #endif
361
362 void __init __attribute__ ((weak)) plat_early_device_setup(void)
363 {
364 }
365
366 void __init setup_arch(char **cmdline_p)
367 {
368 enable_mmu();
369
370 ROOT_DEV = old_decode_dev(ORIG_ROOT_DEV);
371
372 printk(KERN_NOTICE "Boot params:\n"
373 "... MOUNT_ROOT_RDONLY - %08lx\n"
374 "... RAMDISK_FLAGS - %08lx\n"
375 "... ORIG_ROOT_DEV - %08lx\n"
376 "... LOADER_TYPE - %08lx\n"
377 "... INITRD_START - %08lx\n"
378 "... INITRD_SIZE - %08lx\n",
379 MOUNT_ROOT_RDONLY, RAMDISK_FLAGS,
380 ORIG_ROOT_DEV, LOADER_TYPE,
381 INITRD_START, INITRD_SIZE);
382
383 #ifdef CONFIG_BLK_DEV_RAM
384 rd_image_start = RAMDISK_FLAGS & RAMDISK_IMAGE_START_MASK;
385 rd_prompt = ((RAMDISK_FLAGS & RAMDISK_PROMPT_FLAG) != 0);
386 rd_doload = ((RAMDISK_FLAGS & RAMDISK_LOAD_FLAG) != 0);
387 #endif
388
389 if (!MOUNT_ROOT_RDONLY)
390 root_mountflags &= ~MS_RDONLY;
391 init_mm.start_code = (unsigned long) _text;
392 init_mm.end_code = (unsigned long) _etext;
393 init_mm.end_data = (unsigned long) _edata;
394 init_mm.brk = (unsigned long) _end;
395
396 code_resource.start = virt_to_phys(_text);
397 code_resource.end = virt_to_phys(_etext)-1;
398 data_resource.start = virt_to_phys(_etext);
399 data_resource.end = virt_to_phys(_edata)-1;
400 bss_resource.start = virt_to_phys(__bss_start);
401 bss_resource.end = virt_to_phys(_ebss)-1;
402
403 memory_start = (unsigned long)__va(__MEMORY_START);
404 if (!memory_end)
405 memory_end = memory_start + __MEMORY_SIZE;
406
407 #ifdef CONFIG_CMDLINE_BOOL
408 strlcpy(command_line, CONFIG_CMDLINE, sizeof(command_line));
409 #else
410 strlcpy(command_line, COMMAND_LINE, sizeof(command_line));
411 #endif
412
413 /* Save unparsed command line copy for /proc/cmdline */
414 memcpy(boot_command_line, command_line, COMMAND_LINE_SIZE);
415 *cmdline_p = command_line;
416
417 parse_early_param();
418
419 plat_early_device_setup();
420
421 sh_mv_setup();
422
423 /*
424 * Find the highest page frame number we have available
425 */
426 max_pfn = PFN_DOWN(__pa(memory_end));
427
428 /*
429 * Determine low and high memory ranges:
430 */
431 max_low_pfn = max_pfn;
432 min_low_pfn = __MEMORY_START >> PAGE_SHIFT;
433
434 nodes_clear(node_online_map);
435
436 /* Setup bootmem with available RAM */
437 lmb_init();
438 setup_memory();
439 sparse_init();
440
441 #ifdef CONFIG_DUMMY_CONSOLE
442 conswitchp = &dummy_con;
443 #endif
444
445 /* Perform the machine specific initialisation */
446 if (likely(sh_mv.mv_setup))
447 sh_mv.mv_setup(cmdline_p);
448
449 paging_init();
450
451 #ifdef CONFIG_SMP
452 plat_smp_setup();
453 #endif
454 }
455
456 /* processor boot mode configuration */
457 int generic_mode_pins(void)
458 {
459 pr_warning("generic_mode_pins(): missing mode pin configuration\n");
460 return 0;
461 }
462
463 int test_mode_pin(int pin)
464 {
465 return sh_mv.mv_mode_pins() & pin;
466 }
467
468 static const char *cpu_name[] = {
469 [CPU_SH7201] = "SH7201",
470 [CPU_SH7203] = "SH7203", [CPU_SH7263] = "SH7263",
471 [CPU_SH7206] = "SH7206", [CPU_SH7619] = "SH7619",
472 [CPU_SH7705] = "SH7705", [CPU_SH7706] = "SH7706",
473 [CPU_SH7707] = "SH7707", [CPU_SH7708] = "SH7708",
474 [CPU_SH7709] = "SH7709", [CPU_SH7710] = "SH7710",
475 [CPU_SH7712] = "SH7712", [CPU_SH7720] = "SH7720",
476 [CPU_SH7721] = "SH7721", [CPU_SH7729] = "SH7729",
477 [CPU_SH7750] = "SH7750", [CPU_SH7750S] = "SH7750S",
478 [CPU_SH7750R] = "SH7750R", [CPU_SH7751] = "SH7751",
479 [CPU_SH7751R] = "SH7751R", [CPU_SH7760] = "SH7760",
480 [CPU_SH4_202] = "SH4-202", [CPU_SH4_501] = "SH4-501",
481 [CPU_SH7763] = "SH7763", [CPU_SH7770] = "SH7770",
482 [CPU_SH7780] = "SH7780", [CPU_SH7781] = "SH7781",
483 [CPU_SH7343] = "SH7343", [CPU_SH7785] = "SH7785",
484 [CPU_SH7786] = "SH7786",
485 [CPU_SH7722] = "SH7722", [CPU_SHX3] = "SH-X3",
486 [CPU_SH5_101] = "SH5-101", [CPU_SH5_103] = "SH5-103",
487 [CPU_MXG] = "MX-G", [CPU_SH7723] = "SH7723",
488 [CPU_SH7366] = "SH7366", [CPU_SH7724] = "SH7724",
489 [CPU_SH_NONE] = "Unknown"
490 };
491
492 const char *get_cpu_subtype(struct sh_cpuinfo *c)
493 {
494 return cpu_name[c->type];
495 }
496 EXPORT_SYMBOL(get_cpu_subtype);
497
498 #ifdef CONFIG_PROC_FS
499 /* Symbolic CPU flags, keep in sync with asm/cpu-features.h */
500 static const char *cpu_flags[] = {
501 "none", "fpu", "p2flush", "mmuassoc", "dsp", "perfctr",
502 "ptea", "llsc", "l2", "op32", "pteaex", NULL
503 };
504
505 static void show_cpuflags(struct seq_file *m, struct sh_cpuinfo *c)
506 {
507 unsigned long i;
508
509 seq_printf(m, "cpu flags\t:");
510
511 if (!c->flags) {
512 seq_printf(m, " %s\n", cpu_flags[0]);
513 return;
514 }
515
516 for (i = 0; cpu_flags[i]; i++)
517 if ((c->flags & (1 << i)))
518 seq_printf(m, " %s", cpu_flags[i+1]);
519
520 seq_printf(m, "\n");
521 }
522
523 static void show_cacheinfo(struct seq_file *m, const char *type,
524 struct cache_info info)
525 {
526 unsigned int cache_size;
527
528 cache_size = info.ways * info.sets * info.linesz;
529
530 seq_printf(m, "%s size\t: %2dKiB (%d-way)\n",
531 type, cache_size >> 10, info.ways);
532 }
533
534 /*
535 * Get CPU information for use by the procfs.
536 */
537 static int show_cpuinfo(struct seq_file *m, void *v)
538 {
539 struct sh_cpuinfo *c = v;
540 unsigned int cpu = c - cpu_data;
541
542 if (!cpu_online(cpu))
543 return 0;
544
545 if (cpu == 0)
546 seq_printf(m, "machine\t\t: %s\n", get_system_type());
547
548 seq_printf(m, "processor\t: %d\n", cpu);
549 seq_printf(m, "cpu family\t: %s\n", init_utsname()->machine);
550 seq_printf(m, "cpu type\t: %s\n", get_cpu_subtype(c));
551 if (c->cut_major == -1)
552 seq_printf(m, "cut\t\t: unknown\n");
553 else if (c->cut_minor == -1)
554 seq_printf(m, "cut\t\t: %d.x\n", c->cut_major);
555 else
556 seq_printf(m, "cut\t\t: %d.%d\n", c->cut_major, c->cut_minor);
557
558 show_cpuflags(m, c);
559
560 seq_printf(m, "cache type\t: ");
561
562 /*
563 * Check for what type of cache we have, we support both the
564 * unified cache on the SH-2 and SH-3, as well as the harvard
565 * style cache on the SH-4.
566 */
567 if (c->icache.flags & SH_CACHE_COMBINED) {
568 seq_printf(m, "unified\n");
569 show_cacheinfo(m, "cache", c->icache);
570 } else {
571 seq_printf(m, "split (harvard)\n");
572 show_cacheinfo(m, "icache", c->icache);
573 show_cacheinfo(m, "dcache", c->dcache);
574 }
575
576 /* Optional secondary cache */
577 if (c->flags & CPU_HAS_L2_CACHE)
578 show_cacheinfo(m, "scache", c->scache);
579
580 seq_printf(m, "bogomips\t: %lu.%02lu\n",
581 c->loops_per_jiffy/(500000/HZ),
582 (c->loops_per_jiffy/(5000/HZ)) % 100);
583
584 return 0;
585 }
586
587 static void *c_start(struct seq_file *m, loff_t *pos)
588 {
589 return *pos < NR_CPUS ? cpu_data + *pos : NULL;
590 }
591 static void *c_next(struct seq_file *m, void *v, loff_t *pos)
592 {
593 ++*pos;
594 return c_start(m, pos);
595 }
596 static void c_stop(struct seq_file *m, void *v)
597 {
598 }
599 const struct seq_operations cpuinfo_op = {
600 .start = c_start,
601 .next = c_next,
602 .stop = c_stop,
603 .show = show_cpuinfo,
604 };
605 #endif /* CONFIG_PROC_FS */
606
607 struct dentry *sh_debugfs_root;
608
609 static int __init sh_debugfs_init(void)
610 {
611 sh_debugfs_root = debugfs_create_dir("sh", NULL);
612 if (!sh_debugfs_root)
613 return -ENOMEM;
614 if (IS_ERR(sh_debugfs_root))
615 return PTR_ERR(sh_debugfs_root);
616
617 return 0;
618 }
619 arch_initcall(sh_debugfs_init);