]> git.proxmox.com Git - mirror_ubuntu-artful-kernel.git/blob - arch/sh/kernel/smp.c
HID: multitouch: detect serial protocol
[mirror_ubuntu-artful-kernel.git] / arch / sh / kernel / smp.c
1 /*
2 * arch/sh/kernel/smp.c
3 *
4 * SMP support for the SuperH processors.
5 *
6 * Copyright (C) 2002 - 2010 Paul Mundt
7 * Copyright (C) 2006 - 2007 Akio Idehara
8 *
9 * This file is subject to the terms and conditions of the GNU General Public
10 * License. See the file "COPYING" in the main directory of this archive
11 * for more details.
12 */
13 #include <linux/err.h>
14 #include <linux/cache.h>
15 #include <linux/cpumask.h>
16 #include <linux/delay.h>
17 #include <linux/init.h>
18 #include <linux/spinlock.h>
19 #include <linux/mm.h>
20 #include <linux/module.h>
21 #include <linux/cpu.h>
22 #include <linux/interrupt.h>
23 #include <linux/sched.h>
24 #include <linux/atomic.h>
25 #include <asm/processor.h>
26 #include <asm/system.h>
27 #include <asm/mmu_context.h>
28 #include <asm/smp.h>
29 #include <asm/cacheflush.h>
30 #include <asm/sections.h>
31
32 int __cpu_number_map[NR_CPUS]; /* Map physical to logical */
33 int __cpu_logical_map[NR_CPUS]; /* Map logical to physical */
34
35 struct plat_smp_ops *mp_ops = NULL;
36
37 /* State of each CPU */
38 DEFINE_PER_CPU(int, cpu_state) = { 0 };
39
40 void __cpuinit register_smp_ops(struct plat_smp_ops *ops)
41 {
42 if (mp_ops)
43 printk(KERN_WARNING "Overriding previously set SMP ops\n");
44
45 mp_ops = ops;
46 }
47
48 static inline void __cpuinit smp_store_cpu_info(unsigned int cpu)
49 {
50 struct sh_cpuinfo *c = cpu_data + cpu;
51
52 memcpy(c, &boot_cpu_data, sizeof(struct sh_cpuinfo));
53
54 c->loops_per_jiffy = loops_per_jiffy;
55 }
56
57 void __init smp_prepare_cpus(unsigned int max_cpus)
58 {
59 unsigned int cpu = smp_processor_id();
60
61 init_new_context(current, &init_mm);
62 current_thread_info()->cpu = cpu;
63 mp_ops->prepare_cpus(max_cpus);
64
65 #ifndef CONFIG_HOTPLUG_CPU
66 init_cpu_present(&cpu_possible_map);
67 #endif
68 }
69
70 void __init smp_prepare_boot_cpu(void)
71 {
72 unsigned int cpu = smp_processor_id();
73
74 __cpu_number_map[0] = cpu;
75 __cpu_logical_map[0] = cpu;
76
77 set_cpu_online(cpu, true);
78 set_cpu_possible(cpu, true);
79
80 per_cpu(cpu_state, cpu) = CPU_ONLINE;
81 }
82
83 #ifdef CONFIG_HOTPLUG_CPU
84 void native_cpu_die(unsigned int cpu)
85 {
86 unsigned int i;
87
88 for (i = 0; i < 10; i++) {
89 smp_rmb();
90 if (per_cpu(cpu_state, cpu) == CPU_DEAD) {
91 if (system_state == SYSTEM_RUNNING)
92 pr_info("CPU %u is now offline\n", cpu);
93
94 return;
95 }
96
97 msleep(100);
98 }
99
100 pr_err("CPU %u didn't die...\n", cpu);
101 }
102
103 int native_cpu_disable(unsigned int cpu)
104 {
105 return cpu == 0 ? -EPERM : 0;
106 }
107
108 void play_dead_common(void)
109 {
110 idle_task_exit();
111 irq_ctx_exit(raw_smp_processor_id());
112 mb();
113
114 __get_cpu_var(cpu_state) = CPU_DEAD;
115 local_irq_disable();
116 }
117
118 void native_play_dead(void)
119 {
120 play_dead_common();
121 }
122
123 int __cpu_disable(void)
124 {
125 unsigned int cpu = smp_processor_id();
126 struct task_struct *p;
127 int ret;
128
129 ret = mp_ops->cpu_disable(cpu);
130 if (ret)
131 return ret;
132
133 /*
134 * Take this CPU offline. Once we clear this, we can't return,
135 * and we must not schedule until we're ready to give up the cpu.
136 */
137 set_cpu_online(cpu, false);
138
139 /*
140 * OK - migrate IRQs away from this CPU
141 */
142 migrate_irqs();
143
144 /*
145 * Stop the local timer for this CPU.
146 */
147 local_timer_stop(cpu);
148
149 /*
150 * Flush user cache and TLB mappings, and then remove this CPU
151 * from the vm mask set of all processes.
152 */
153 flush_cache_all();
154 local_flush_tlb_all();
155
156 read_lock(&tasklist_lock);
157 for_each_process(p)
158 if (p->mm)
159 cpumask_clear_cpu(cpu, mm_cpumask(p->mm));
160 read_unlock(&tasklist_lock);
161
162 return 0;
163 }
164 #else /* ... !CONFIG_HOTPLUG_CPU */
165 int native_cpu_disable(unsigned int cpu)
166 {
167 return -ENOSYS;
168 }
169
170 void native_cpu_die(unsigned int cpu)
171 {
172 /* We said "no" in __cpu_disable */
173 BUG();
174 }
175
176 void native_play_dead(void)
177 {
178 BUG();
179 }
180 #endif
181
182 asmlinkage void __cpuinit start_secondary(void)
183 {
184 unsigned int cpu = smp_processor_id();
185 struct mm_struct *mm = &init_mm;
186
187 enable_mmu();
188 atomic_inc(&mm->mm_count);
189 atomic_inc(&mm->mm_users);
190 current->active_mm = mm;
191 enter_lazy_tlb(mm, current);
192 local_flush_tlb_all();
193
194 per_cpu_trap_init();
195
196 preempt_disable();
197
198 notify_cpu_starting(cpu);
199
200 local_irq_enable();
201
202 /* Enable local timers */
203 local_timer_setup(cpu);
204 calibrate_delay();
205
206 smp_store_cpu_info(cpu);
207
208 set_cpu_online(cpu, true);
209 per_cpu(cpu_state, cpu) = CPU_ONLINE;
210
211 cpu_idle();
212 }
213
214 extern struct {
215 unsigned long sp;
216 unsigned long bss_start;
217 unsigned long bss_end;
218 void *start_kernel_fn;
219 void *cpu_init_fn;
220 void *thread_info;
221 } stack_start;
222
223 int __cpuinit __cpu_up(unsigned int cpu)
224 {
225 struct task_struct *tsk;
226 unsigned long timeout;
227
228 tsk = cpu_data[cpu].idle;
229 if (!tsk) {
230 tsk = fork_idle(cpu);
231 if (IS_ERR(tsk)) {
232 pr_err("Failed forking idle task for cpu %d\n", cpu);
233 return PTR_ERR(tsk);
234 }
235
236 cpu_data[cpu].idle = tsk;
237 }
238
239 per_cpu(cpu_state, cpu) = CPU_UP_PREPARE;
240
241 /* Fill in data in head.S for secondary cpus */
242 stack_start.sp = tsk->thread.sp;
243 stack_start.thread_info = tsk->stack;
244 stack_start.bss_start = 0; /* don't clear bss for secondary cpus */
245 stack_start.start_kernel_fn = start_secondary;
246
247 flush_icache_range((unsigned long)&stack_start,
248 (unsigned long)&stack_start + sizeof(stack_start));
249 wmb();
250
251 mp_ops->start_cpu(cpu, (unsigned long)_stext);
252
253 timeout = jiffies + HZ;
254 while (time_before(jiffies, timeout)) {
255 if (cpu_online(cpu))
256 break;
257
258 udelay(10);
259 barrier();
260 }
261
262 if (cpu_online(cpu))
263 return 0;
264
265 return -ENOENT;
266 }
267
268 void __init smp_cpus_done(unsigned int max_cpus)
269 {
270 unsigned long bogosum = 0;
271 int cpu;
272
273 for_each_online_cpu(cpu)
274 bogosum += cpu_data[cpu].loops_per_jiffy;
275
276 printk(KERN_INFO "SMP: Total of %d processors activated "
277 "(%lu.%02lu BogoMIPS).\n", num_online_cpus(),
278 bogosum / (500000/HZ),
279 (bogosum / (5000/HZ)) % 100);
280 }
281
282 void smp_send_reschedule(int cpu)
283 {
284 mp_ops->send_ipi(cpu, SMP_MSG_RESCHEDULE);
285 }
286
287 void smp_send_stop(void)
288 {
289 smp_call_function(stop_this_cpu, 0, 0);
290 }
291
292 void arch_send_call_function_ipi_mask(const struct cpumask *mask)
293 {
294 int cpu;
295
296 for_each_cpu(cpu, mask)
297 mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION);
298 }
299
300 void arch_send_call_function_single_ipi(int cpu)
301 {
302 mp_ops->send_ipi(cpu, SMP_MSG_FUNCTION_SINGLE);
303 }
304
305 void smp_timer_broadcast(const struct cpumask *mask)
306 {
307 int cpu;
308
309 for_each_cpu(cpu, mask)
310 mp_ops->send_ipi(cpu, SMP_MSG_TIMER);
311 }
312
313 static void ipi_timer(void)
314 {
315 irq_enter();
316 local_timer_interrupt();
317 irq_exit();
318 }
319
320 void smp_message_recv(unsigned int msg)
321 {
322 switch (msg) {
323 case SMP_MSG_FUNCTION:
324 generic_smp_call_function_interrupt();
325 break;
326 case SMP_MSG_RESCHEDULE:
327 scheduler_ipi();
328 break;
329 case SMP_MSG_FUNCTION_SINGLE:
330 generic_smp_call_function_single_interrupt();
331 break;
332 case SMP_MSG_TIMER:
333 ipi_timer();
334 break;
335 default:
336 printk(KERN_WARNING "SMP %d: %s(): unknown IPI %d\n",
337 smp_processor_id(), __func__, msg);
338 break;
339 }
340 }
341
342 /* Not really SMP stuff ... */
343 int setup_profiling_timer(unsigned int multiplier)
344 {
345 return 0;
346 }
347
348 static void flush_tlb_all_ipi(void *info)
349 {
350 local_flush_tlb_all();
351 }
352
353 void flush_tlb_all(void)
354 {
355 on_each_cpu(flush_tlb_all_ipi, 0, 1);
356 }
357
358 static void flush_tlb_mm_ipi(void *mm)
359 {
360 local_flush_tlb_mm((struct mm_struct *)mm);
361 }
362
363 /*
364 * The following tlb flush calls are invoked when old translations are
365 * being torn down, or pte attributes are changing. For single threaded
366 * address spaces, a new context is obtained on the current cpu, and tlb
367 * context on other cpus are invalidated to force a new context allocation
368 * at switch_mm time, should the mm ever be used on other cpus. For
369 * multithreaded address spaces, intercpu interrupts have to be sent.
370 * Another case where intercpu interrupts are required is when the target
371 * mm might be active on another cpu (eg debuggers doing the flushes on
372 * behalf of debugees, kswapd stealing pages from another process etc).
373 * Kanoj 07/00.
374 */
375 void flush_tlb_mm(struct mm_struct *mm)
376 {
377 preempt_disable();
378
379 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
380 smp_call_function(flush_tlb_mm_ipi, (void *)mm, 1);
381 } else {
382 int i;
383 for (i = 0; i < num_online_cpus(); i++)
384 if (smp_processor_id() != i)
385 cpu_context(i, mm) = 0;
386 }
387 local_flush_tlb_mm(mm);
388
389 preempt_enable();
390 }
391
392 struct flush_tlb_data {
393 struct vm_area_struct *vma;
394 unsigned long addr1;
395 unsigned long addr2;
396 };
397
398 static void flush_tlb_range_ipi(void *info)
399 {
400 struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
401
402 local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
403 }
404
405 void flush_tlb_range(struct vm_area_struct *vma,
406 unsigned long start, unsigned long end)
407 {
408 struct mm_struct *mm = vma->vm_mm;
409
410 preempt_disable();
411 if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
412 struct flush_tlb_data fd;
413
414 fd.vma = vma;
415 fd.addr1 = start;
416 fd.addr2 = end;
417 smp_call_function(flush_tlb_range_ipi, (void *)&fd, 1);
418 } else {
419 int i;
420 for (i = 0; i < num_online_cpus(); i++)
421 if (smp_processor_id() != i)
422 cpu_context(i, mm) = 0;
423 }
424 local_flush_tlb_range(vma, start, end);
425 preempt_enable();
426 }
427
428 static void flush_tlb_kernel_range_ipi(void *info)
429 {
430 struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
431
432 local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
433 }
434
435 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
436 {
437 struct flush_tlb_data fd;
438
439 fd.addr1 = start;
440 fd.addr2 = end;
441 on_each_cpu(flush_tlb_kernel_range_ipi, (void *)&fd, 1);
442 }
443
444 static void flush_tlb_page_ipi(void *info)
445 {
446 struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
447
448 local_flush_tlb_page(fd->vma, fd->addr1);
449 }
450
451 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
452 {
453 preempt_disable();
454 if ((atomic_read(&vma->vm_mm->mm_users) != 1) ||
455 (current->mm != vma->vm_mm)) {
456 struct flush_tlb_data fd;
457
458 fd.vma = vma;
459 fd.addr1 = page;
460 smp_call_function(flush_tlb_page_ipi, (void *)&fd, 1);
461 } else {
462 int i;
463 for (i = 0; i < num_online_cpus(); i++)
464 if (smp_processor_id() != i)
465 cpu_context(i, vma->vm_mm) = 0;
466 }
467 local_flush_tlb_page(vma, page);
468 preempt_enable();
469 }
470
471 static void flush_tlb_one_ipi(void *info)
472 {
473 struct flush_tlb_data *fd = (struct flush_tlb_data *)info;
474 local_flush_tlb_one(fd->addr1, fd->addr2);
475 }
476
477 void flush_tlb_one(unsigned long asid, unsigned long vaddr)
478 {
479 struct flush_tlb_data fd;
480
481 fd.addr1 = asid;
482 fd.addr2 = vaddr;
483
484 smp_call_function(flush_tlb_one_ipi, (void *)&fd, 1);
485 local_flush_tlb_one(asid, vaddr);
486 }