]> git.proxmox.com Git - mirror_ubuntu-hirsute-kernel.git/blob - arch/sh/mm/cache-sh4.c
x86/mm: simplify init_trampoline() and surrounding logic
[mirror_ubuntu-hirsute-kernel.git] / arch / sh / mm / cache-sh4.c
1 /*
2 * arch/sh/mm/cache-sh4.c
3 *
4 * Copyright (C) 1999, 2000, 2002 Niibe Yutaka
5 * Copyright (C) 2001 - 2009 Paul Mundt
6 * Copyright (C) 2003 Richard Curnow
7 * Copyright (c) 2007 STMicroelectronics (R&D) Ltd.
8 *
9 * This file is subject to the terms and conditions of the GNU General Public
10 * License. See the file "COPYING" in the main directory of this archive
11 * for more details.
12 */
13 #include <linux/init.h>
14 #include <linux/mm.h>
15 #include <linux/io.h>
16 #include <linux/mutex.h>
17 #include <linux/fs.h>
18 #include <linux/highmem.h>
19 #include <asm/mmu_context.h>
20 #include <asm/cache_insns.h>
21 #include <asm/cacheflush.h>
22
23 /*
24 * The maximum number of pages we support up to when doing ranged dcache
25 * flushing. Anything exceeding this will simply flush the dcache in its
26 * entirety.
27 */
28 #define MAX_ICACHE_PAGES 32
29
30 static void __flush_cache_one(unsigned long addr, unsigned long phys,
31 unsigned long exec_offset);
32
33 /*
34 * Write back the range of D-cache, and purge the I-cache.
35 *
36 * Called from kernel/module.c:sys_init_module and routine for a.out format,
37 * signal handler code and kprobes code
38 */
39 static void sh4_flush_icache_range(void *args)
40 {
41 struct flusher_data *data = args;
42 unsigned long start, end;
43 unsigned long flags, v;
44 int i;
45
46 start = data->addr1;
47 end = data->addr2;
48
49 /* If there are too many pages then just blow away the caches */
50 if (((end - start) >> PAGE_SHIFT) >= MAX_ICACHE_PAGES) {
51 local_flush_cache_all(NULL);
52 return;
53 }
54
55 /*
56 * Selectively flush d-cache then invalidate the i-cache.
57 * This is inefficient, so only use this for small ranges.
58 */
59 start &= ~(L1_CACHE_BYTES-1);
60 end += L1_CACHE_BYTES-1;
61 end &= ~(L1_CACHE_BYTES-1);
62
63 local_irq_save(flags);
64 jump_to_uncached();
65
66 for (v = start; v < end; v += L1_CACHE_BYTES) {
67 unsigned long icacheaddr;
68 int j, n;
69
70 __ocbwb(v);
71
72 icacheaddr = CACHE_IC_ADDRESS_ARRAY | (v &
73 cpu_data->icache.entry_mask);
74
75 /* Clear i-cache line valid-bit */
76 n = boot_cpu_data.icache.n_aliases;
77 for (i = 0; i < cpu_data->icache.ways; i++) {
78 for (j = 0; j < n; j++)
79 __raw_writel(0, icacheaddr + (j * PAGE_SIZE));
80 icacheaddr += cpu_data->icache.way_incr;
81 }
82 }
83
84 back_to_cached();
85 local_irq_restore(flags);
86 }
87
88 static inline void flush_cache_one(unsigned long start, unsigned long phys)
89 {
90 unsigned long flags, exec_offset = 0;
91
92 /*
93 * All types of SH-4 require PC to be uncached to operate on the I-cache.
94 * Some types of SH-4 require PC to be uncached to operate on the D-cache.
95 */
96 if ((boot_cpu_data.flags & CPU_HAS_P2_FLUSH_BUG) ||
97 (start < CACHE_OC_ADDRESS_ARRAY))
98 exec_offset = cached_to_uncached;
99
100 local_irq_save(flags);
101 __flush_cache_one(start, phys, exec_offset);
102 local_irq_restore(flags);
103 }
104
105 /*
106 * Write back & invalidate the D-cache of the page.
107 * (To avoid "alias" issues)
108 */
109 static void sh4_flush_dcache_page(void *arg)
110 {
111 struct page *page = arg;
112 unsigned long addr = (unsigned long)page_address(page);
113 #ifndef CONFIG_SMP
114 struct address_space *mapping = page_mapping_file(page);
115
116 if (mapping && !mapping_mapped(mapping))
117 clear_bit(PG_dcache_clean, &page->flags);
118 else
119 #endif
120 flush_cache_one(CACHE_OC_ADDRESS_ARRAY |
121 (addr & shm_align_mask), page_to_phys(page));
122
123 wmb();
124 }
125
126 /* TODO: Selective icache invalidation through IC address array.. */
127 static void flush_icache_all(void)
128 {
129 unsigned long flags, ccr;
130
131 local_irq_save(flags);
132 jump_to_uncached();
133
134 /* Flush I-cache */
135 ccr = __raw_readl(SH_CCR);
136 ccr |= CCR_CACHE_ICI;
137 __raw_writel(ccr, SH_CCR);
138
139 /*
140 * back_to_cached() will take care of the barrier for us, don't add
141 * another one!
142 */
143
144 back_to_cached();
145 local_irq_restore(flags);
146 }
147
148 static void flush_dcache_all(void)
149 {
150 unsigned long addr, end_addr, entry_offset;
151
152 end_addr = CACHE_OC_ADDRESS_ARRAY +
153 (current_cpu_data.dcache.sets <<
154 current_cpu_data.dcache.entry_shift) *
155 current_cpu_data.dcache.ways;
156
157 entry_offset = 1 << current_cpu_data.dcache.entry_shift;
158
159 for (addr = CACHE_OC_ADDRESS_ARRAY; addr < end_addr; ) {
160 __raw_writel(0, addr); addr += entry_offset;
161 __raw_writel(0, addr); addr += entry_offset;
162 __raw_writel(0, addr); addr += entry_offset;
163 __raw_writel(0, addr); addr += entry_offset;
164 __raw_writel(0, addr); addr += entry_offset;
165 __raw_writel(0, addr); addr += entry_offset;
166 __raw_writel(0, addr); addr += entry_offset;
167 __raw_writel(0, addr); addr += entry_offset;
168 }
169 }
170
171 static void sh4_flush_cache_all(void *unused)
172 {
173 flush_dcache_all();
174 flush_icache_all();
175 }
176
177 /*
178 * Note : (RPC) since the caches are physically tagged, the only point
179 * of flush_cache_mm for SH-4 is to get rid of aliases from the
180 * D-cache. The assumption elsewhere, e.g. flush_cache_range, is that
181 * lines can stay resident so long as the virtual address they were
182 * accessed with (hence cache set) is in accord with the physical
183 * address (i.e. tag). It's no different here.
184 *
185 * Caller takes mm->mmap_sem.
186 */
187 static void sh4_flush_cache_mm(void *arg)
188 {
189 struct mm_struct *mm = arg;
190
191 if (cpu_context(smp_processor_id(), mm) == NO_CONTEXT)
192 return;
193
194 flush_dcache_all();
195 }
196
197 /*
198 * Write back and invalidate I/D-caches for the page.
199 *
200 * ADDR: Virtual Address (U0 address)
201 * PFN: Physical page number
202 */
203 static void sh4_flush_cache_page(void *args)
204 {
205 struct flusher_data *data = args;
206 struct vm_area_struct *vma;
207 struct page *page;
208 unsigned long address, pfn, phys;
209 int map_coherent = 0;
210 pgd_t *pgd;
211 p4d_t *p4d;
212 pud_t *pud;
213 pmd_t *pmd;
214 pte_t *pte;
215 void *vaddr;
216
217 vma = data->vma;
218 address = data->addr1 & PAGE_MASK;
219 pfn = data->addr2;
220 phys = pfn << PAGE_SHIFT;
221 page = pfn_to_page(pfn);
222
223 if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT)
224 return;
225
226 pgd = pgd_offset(vma->vm_mm, address);
227 p4d = p4d_offset(pgd, address);
228 pud = pud_offset(p4d, address);
229 pmd = pmd_offset(pud, address);
230 pte = pte_offset_kernel(pmd, address);
231
232 /* If the page isn't present, there is nothing to do here. */
233 if (!(pte_val(*pte) & _PAGE_PRESENT))
234 return;
235
236 if ((vma->vm_mm == current->active_mm))
237 vaddr = NULL;
238 else {
239 /*
240 * Use kmap_coherent or kmap_atomic to do flushes for
241 * another ASID than the current one.
242 */
243 map_coherent = (current_cpu_data.dcache.n_aliases &&
244 test_bit(PG_dcache_clean, &page->flags) &&
245 page_mapcount(page));
246 if (map_coherent)
247 vaddr = kmap_coherent(page, address);
248 else
249 vaddr = kmap_atomic(page);
250
251 address = (unsigned long)vaddr;
252 }
253
254 flush_cache_one(CACHE_OC_ADDRESS_ARRAY |
255 (address & shm_align_mask), phys);
256
257 if (vma->vm_flags & VM_EXEC)
258 flush_icache_all();
259
260 if (vaddr) {
261 if (map_coherent)
262 kunmap_coherent(vaddr);
263 else
264 kunmap_atomic(vaddr);
265 }
266 }
267
268 /*
269 * Write back and invalidate D-caches.
270 *
271 * START, END: Virtual Address (U0 address)
272 *
273 * NOTE: We need to flush the _physical_ page entry.
274 * Flushing the cache lines for U0 only isn't enough.
275 * We need to flush for P1 too, which may contain aliases.
276 */
277 static void sh4_flush_cache_range(void *args)
278 {
279 struct flusher_data *data = args;
280 struct vm_area_struct *vma;
281 unsigned long start, end;
282
283 vma = data->vma;
284 start = data->addr1;
285 end = data->addr2;
286
287 if (cpu_context(smp_processor_id(), vma->vm_mm) == NO_CONTEXT)
288 return;
289
290 /*
291 * If cache is only 4k-per-way, there are never any 'aliases'. Since
292 * the cache is physically tagged, the data can just be left in there.
293 */
294 if (boot_cpu_data.dcache.n_aliases == 0)
295 return;
296
297 flush_dcache_all();
298
299 if (vma->vm_flags & VM_EXEC)
300 flush_icache_all();
301 }
302
303 /**
304 * __flush_cache_one
305 *
306 * @addr: address in memory mapped cache array
307 * @phys: P1 address to flush (has to match tags if addr has 'A' bit
308 * set i.e. associative write)
309 * @exec_offset: set to 0x20000000 if flush has to be executed from P2
310 * region else 0x0
311 *
312 * The offset into the cache array implied by 'addr' selects the
313 * 'colour' of the virtual address range that will be flushed. The
314 * operation (purge/write-back) is selected by the lower 2 bits of
315 * 'phys'.
316 */
317 static void __flush_cache_one(unsigned long addr, unsigned long phys,
318 unsigned long exec_offset)
319 {
320 int way_count;
321 unsigned long base_addr = addr;
322 struct cache_info *dcache;
323 unsigned long way_incr;
324 unsigned long a, ea, p;
325 unsigned long temp_pc;
326
327 dcache = &boot_cpu_data.dcache;
328 /* Write this way for better assembly. */
329 way_count = dcache->ways;
330 way_incr = dcache->way_incr;
331
332 /*
333 * Apply exec_offset (i.e. branch to P2 if required.).
334 *
335 * FIXME:
336 *
337 * If I write "=r" for the (temp_pc), it puts this in r6 hence
338 * trashing exec_offset before it's been added on - why? Hence
339 * "=&r" as a 'workaround'
340 */
341 asm volatile("mov.l 1f, %0\n\t"
342 "add %1, %0\n\t"
343 "jmp @%0\n\t"
344 "nop\n\t"
345 ".balign 4\n\t"
346 "1: .long 2f\n\t"
347 "2:\n" : "=&r" (temp_pc) : "r" (exec_offset));
348
349 /*
350 * We know there will be >=1 iteration, so write as do-while to avoid
351 * pointless nead-of-loop check for 0 iterations.
352 */
353 do {
354 ea = base_addr + PAGE_SIZE;
355 a = base_addr;
356 p = phys;
357
358 do {
359 *(volatile unsigned long *)a = p;
360 /*
361 * Next line: intentionally not p+32, saves an add, p
362 * will do since only the cache tag bits need to
363 * match.
364 */
365 *(volatile unsigned long *)(a+32) = p;
366 a += 64;
367 p += 64;
368 } while (a < ea);
369
370 base_addr += way_incr;
371 } while (--way_count != 0);
372 }
373
374 extern void __weak sh4__flush_region_init(void);
375
376 /*
377 * SH-4 has virtually indexed and physically tagged cache.
378 */
379 void __init sh4_cache_init(void)
380 {
381 printk("PVR=%08x CVR=%08x PRR=%08x\n",
382 __raw_readl(CCN_PVR),
383 __raw_readl(CCN_CVR),
384 __raw_readl(CCN_PRR));
385
386 local_flush_icache_range = sh4_flush_icache_range;
387 local_flush_dcache_page = sh4_flush_dcache_page;
388 local_flush_cache_all = sh4_flush_cache_all;
389 local_flush_cache_mm = sh4_flush_cache_mm;
390 local_flush_cache_dup_mm = sh4_flush_cache_mm;
391 local_flush_cache_page = sh4_flush_cache_page;
392 local_flush_cache_range = sh4_flush_cache_range;
393
394 sh4__flush_region_init();
395 }